Abstract

We conducted a pilot study on 10 patients undergoing general surgery to test the feasibility of diffuse reflectance spectroscopy in the visible wavelength range as a noninvasive monitoring tool for blood loss during surgery. Ratios of raw diffuse reflectance at wavelength pairs were tested as a first-pass for estimating hemoglobin concentration. Ratios can be calculated easily and rapidly with limited post-processing, and so this can be considered a near real-time monitoring device. We found the best hemoglobin correlations were when ratios at isosbestic points of oxy- and deoxyhemoglobin were used, specifically 529/500 nm. Baseline subtraction improved correlations, specifically at 520/509 nm. These results demonstrate proof-of-concept for the ability of this noninvasive device to monitor hemoglobin concentration changes due to surgical blood loss. The 529/500 nm ratio also appears to account for variations in probe pressure, as determined from measurements on two volunteers.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Thibodeau, and K. T. Patton, Anatomy and Physiology, 5 ed. (Mosby, Inc., St. Louis, MO, 2003).
  2. American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies, “Practice guidelines for perioperative blood transfusion and adjuvant therapies: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies,” Anesthesiology 105(1), 198–208 (2006).
    [PubMed]
  3. B. I. Whitaker, J. Green, M. R. King, L. L. Leibeg, S. N. Mathew, K. S. Schlumpf, and G. B. Schreiber, “The 2007 Nationwide Blood Collection and Utilization Survey Report,” (US Department of Health and Human Services, 2007). http://www.dhhs.gov/ophs/bloodsafety/2007nbcus_survey.pdf .
  4. M. R. Macknet, S. Norton, P. Kimball-Jones, and R. Applegate, “Continuous noninvasive measurement of hemoglobin via pulse CO-oximetry,” Anesth. Analg. 104, S-32 (2007).
  5. M. R. Macknet, P. Kimball-Jones, R. Applegate, and M. Allard, “Continuous non-invasive measurement of hemoglobin via pulse CO-oximetry during liver transplantation, a case report,” Anesth. Analg. 104, S-31 (2007).
  6. T. Ahrens, and K. Rutherford, Essentials of oxygenation, 1 ed. (Jones & Bartlett Publishers, Boston, MA, 1993).
  7. J. W. McMurdy, G. D. Jay, S. Suner, and G. Crawford, “Noninvasive optical, electrical, and acoustic methods of total hemoglobin determination,” Clin. Chem. 54(2), 264–272 (2008).
    [CrossRef] [PubMed]
  8. W. Secomski, A. Nowicki, P. Tortoli, and R. Olszewski, “Multigate Doppler measurements of ultrasonic attenuation and blood hematocrit in human arteries,” Ultrasound Med. Biol. 35(2), 230–236 (2009).
    [CrossRef] [PubMed]
  9. R. O. Esenaliev, Y. Y. Petrov, O. Hartrumpf, D. J. Deyo, and D. S. Prough, “Continuous, noninvasive monitoring of total hemoglobin concentration by an optoacoustic technique,” Appl. Opt. 43(17), 3401–3407 (2004).
    [CrossRef] [PubMed]
  10. R. G. Nadeau and W. Groner, “The role of a new noninvasive imaging technology in the diagnosis of anemia,” J. Nutr. 131(5), 1610S–1614S (2001).
    [PubMed]
  11. D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
    [CrossRef]
  12. X. Wu, S. Yeh, T. W. Jeng, and O. S. Khalil, “Noninvasive determination of hemoglobin and hematocrit using a temperature-controlled localized reflectance tissue photometer,” Anal. Biochem. 287(2), 284–293 (2000).
    [CrossRef] [PubMed]
  13. S. Zhang, B. R. Soller, S. Kaur, K. Perras, and T. J. Vandersalm, “Investigation of noninvasive in vivo blood hematocrit measurement using NIR reflectance spectroscopy and partial least-squares regression,” Appl. Spectrosc. 54(2), 294–299 (2000).
    [CrossRef]
  14. J. W. McMurdy, G. D. Jay, S. Suner, F. M. Trespalacios, and G. P. Crawford, “Diffuse reflectance spectra of the palpebral conjunctiva and its utility as a noninvasive indicator of total hemoglobin,” J. Biomed. Opt. 11(1), 014019 (2006).
    [CrossRef] [PubMed]
  15. B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13(6), 060505 (2008).
    [CrossRef] [PubMed]
  16. J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express 17(3), 1372–1384 (2009).
    [CrossRef] [PubMed]
  17. M. J. Rathbone, Oral Mucosal Drug Delivery. (Marcel Dekker, Inc., New York, NY, 1996).
  18. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
    [CrossRef] [PubMed]
  19. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis,” Appl. Opt. 45(5), 1072–1078 (2006).
    [CrossRef] [PubMed]
  20. J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE T. Biomed. Eng. (N.Y.) 56(4), 960–968 (2009).
    [CrossRef]
  21. K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11(9), 889–900 (2009).
    [PubMed]
  22. K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
    [CrossRef] [PubMed]
  23. Q. Liu and N. Ramanujam, “Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media,” J. Opt. Soc. Am. A 24(4), 1011–1025 (2007).
    [CrossRef]
  24. S. Prahl, “Optical Properties Spectra,” (Oregon Medical Laser Center, 2003). http://omlc.ogi.edu/spectra/index.html .
  25. R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
    [CrossRef] [PubMed]
  26. Y. Ti and W. C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express 16(6), 4250–4262 (2008).
    [CrossRef] [PubMed]
  27. E. Chan, B. Sorg, D. Protsenko, M. O'Neil, M. Motamedi, and A. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quant. 2(4), 943–950 (1996).
    [CrossRef]
  28. B. R. Duling and C. Desjardins, “Capillary hematocrit – what does it mean?” News Physiol. Sci. 2, 66–69 (1987).
  29. R. D. Braun, M. W. Dewhirst, and D. L. Hatchell, “Quantification of erythrocyte flow in the choroid of the albino rat,” Am. J. Physiol. 272(3 Pt 2), H1444–H1453 (1997).
    [PubMed]
  30. M. G. Mythen and A. R. Webb, “Intra-operative gut mucosal hypoperfusion is associated with increased post-operative complications and cost,” Intensive Care Med. 20(2), 99–104 (1994).
    [CrossRef] [PubMed]

2009

W. Secomski, A. Nowicki, P. Tortoli, and R. Olszewski, “Multigate Doppler measurements of ultrasonic attenuation and blood hematocrit in human arteries,” Ultrasound Med. Biol. 35(2), 230–236 (2009).
[CrossRef] [PubMed]

J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express 17(3), 1372–1384 (2009).
[CrossRef] [PubMed]

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE T. Biomed. Eng. (N.Y.) 56(4), 960–968 (2009).
[CrossRef]

K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11(9), 889–900 (2009).
[PubMed]

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[CrossRef] [PubMed]

2008

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13(6), 060505 (2008).
[CrossRef] [PubMed]

J. W. McMurdy, G. D. Jay, S. Suner, and G. Crawford, “Noninvasive optical, electrical, and acoustic methods of total hemoglobin determination,” Clin. Chem. 54(2), 264–272 (2008).
[CrossRef] [PubMed]

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

Y. Ti and W. C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express 16(6), 4250–4262 (2008).
[CrossRef] [PubMed]

2007

M. R. Macknet, S. Norton, P. Kimball-Jones, and R. Applegate, “Continuous noninvasive measurement of hemoglobin via pulse CO-oximetry,” Anesth. Analg. 104, S-32 (2007).

M. R. Macknet, P. Kimball-Jones, R. Applegate, and M. Allard, “Continuous non-invasive measurement of hemoglobin via pulse CO-oximetry during liver transplantation, a case report,” Anesth. Analg. 104, S-31 (2007).

Q. Liu and N. Ramanujam, “Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media,” J. Opt. Soc. Am. A 24(4), 1011–1025 (2007).
[CrossRef]

2006

J. W. McMurdy, G. D. Jay, S. Suner, F. M. Trespalacios, and G. P. Crawford, “Diffuse reflectance spectra of the palpebral conjunctiva and its utility as a noninvasive indicator of total hemoglobin,” J. Biomed. Opt. 11(1), 014019 (2006).
[CrossRef] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
[CrossRef] [PubMed]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis,” Appl. Opt. 45(5), 1072–1078 (2006).
[CrossRef] [PubMed]

American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies, “Practice guidelines for perioperative blood transfusion and adjuvant therapies: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies,” Anesthesiology 105(1), 198–208 (2006).
[PubMed]

2005

D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
[CrossRef]

2004

2001

R. G. Nadeau and W. Groner, “The role of a new noninvasive imaging technology in the diagnosis of anemia,” J. Nutr. 131(5), 1610S–1614S (2001).
[PubMed]

2000

X. Wu, S. Yeh, T. W. Jeng, and O. S. Khalil, “Noninvasive determination of hemoglobin and hematocrit using a temperature-controlled localized reflectance tissue photometer,” Anal. Biochem. 287(2), 284–293 (2000).
[CrossRef] [PubMed]

S. Zhang, B. R. Soller, S. Kaur, K. Perras, and T. J. Vandersalm, “Investigation of noninvasive in vivo blood hematocrit measurement using NIR reflectance spectroscopy and partial least-squares regression,” Appl. Spectrosc. 54(2), 294–299 (2000).
[CrossRef]

1997

R. D. Braun, M. W. Dewhirst, and D. L. Hatchell, “Quantification of erythrocyte flow in the choroid of the albino rat,” Am. J. Physiol. 272(3 Pt 2), H1444–H1453 (1997).
[PubMed]

1996

E. Chan, B. Sorg, D. Protsenko, M. O'Neil, M. Motamedi, and A. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quant. 2(4), 943–950 (1996).
[CrossRef]

1994

M. G. Mythen and A. R. Webb, “Intra-operative gut mucosal hypoperfusion is associated with increased post-operative complications and cost,” Intensive Care Med. 20(2), 99–104 (1994).
[CrossRef] [PubMed]

1987

B. R. Duling and C. Desjardins, “Capillary hematocrit – what does it mean?” News Physiol. Sci. 2, 66–69 (1987).

A’Amar, O.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

Allard, M.

M. R. Macknet, P. Kimball-Jones, R. Applegate, and M. Allard, “Continuous non-invasive measurement of hemoglobin via pulse CO-oximetry during liver transplantation, a case report,” Anesth. Analg. 104, S-31 (2007).

Amorosino, M. S.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

Applegate, R.

M. R. Macknet, S. Norton, P. Kimball-Jones, and R. Applegate, “Continuous noninvasive measurement of hemoglobin via pulse CO-oximetry,” Anesth. Analg. 104, S-32 (2007).

M. R. Macknet, P. Kimball-Jones, R. Applegate, and M. Allard, “Continuous non-invasive measurement of hemoglobin via pulse CO-oximetry during liver transplantation, a case report,” Anesth. Analg. 104, S-31 (2007).

Barry, W. T.

K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11(9), 889–900 (2009).
[PubMed]

Benaron, D. A.

D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
[CrossRef]

Bender, J. E.

J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express 17(3), 1372–1384 (2009).
[CrossRef] [PubMed]

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE T. Biomed. Eng. (N.Y.) 56(4), 960–968 (2009).
[CrossRef]

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13(6), 060505 (2008).
[CrossRef] [PubMed]

Bigio, I. J.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

Braun, R. D.

R. D. Braun, M. W. Dewhirst, and D. L. Hatchell, “Quantification of erythrocyte flow in the choroid of the albino rat,” Am. J. Physiol. 272(3 Pt 2), H1444–H1453 (1997).
[PubMed]

Breslin, T. M.

Brown, J. Q.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE T. Biomed. Eng. (N.Y.) 56(4), 960–968 (2009).
[CrossRef]

Calabro, K. W.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

Chan, E.

E. Chan, B. Sorg, D. Protsenko, M. O'Neil, M. Motamedi, and A. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quant. 2(4), 943–950 (1996).
[CrossRef]

Chang, K.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[CrossRef] [PubMed]

Chang, V.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE T. Biomed. Eng. (N.Y.) 56(4), 960–968 (2009).
[CrossRef]

Cheong, W.-F.

D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
[CrossRef]

Crawford, G.

J. W. McMurdy, G. D. Jay, S. Suner, and G. Crawford, “Noninvasive optical, electrical, and acoustic methods of total hemoglobin determination,” Clin. Chem. 54(2), 264–272 (2008).
[CrossRef] [PubMed]

Crawford, G. P.

J. W. McMurdy, G. D. Jay, S. Suner, F. M. Trespalacios, and G. P. Crawford, “Diffuse reflectance spectra of the palpebral conjunctiva and its utility as a noninvasive indicator of total hemoglobin,” J. Biomed. Opt. 11(1), 014019 (2006).
[CrossRef] [PubMed]

Desjardins, C.

B. R. Duling and C. Desjardins, “Capillary hematocrit – what does it mean?” News Physiol. Sci. 2, 66–69 (1987).

Dewhirst, M. W.

K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11(9), 889–900 (2009).
[PubMed]

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[CrossRef] [PubMed]

R. D. Braun, M. W. Dewhirst, and D. L. Hatchell, “Quantification of erythrocyte flow in the choroid of the albino rat,” Am. J. Physiol. 272(3 Pt 2), H1444–H1453 (1997).
[PubMed]

Deyo, D. J.

Duckworth, J. L.

D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
[CrossRef]

Duling, B. R.

B. R. Duling and C. Desjardins, “Capillary hematocrit – what does it mean?” News Physiol. Sci. 2, 66–69 (1987).

Esenaliev, R. O.

Friedland, S.

D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
[CrossRef]

Fu, H. L.

Gilchrist, K. W.

Groner, W.

R. G. Nadeau and W. Groner, “The role of a new noninvasive imaging technology in the diagnosis of anemia,” J. Nutr. 131(5), 1610S–1614S (2001).
[PubMed]

Hartrumpf, O.

Hatchell, D. L.

R. D. Braun, M. W. Dewhirst, and D. L. Hatchell, “Quantification of erythrocyte flow in the choroid of the albino rat,” Am. J. Physiol. 272(3 Pt 2), H1444–H1453 (1997).
[PubMed]

Hörchner, U. B.

D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
[CrossRef]

Jay, G. D.

J. W. McMurdy, G. D. Jay, S. Suner, and G. Crawford, “Noninvasive optical, electrical, and acoustic methods of total hemoglobin determination,” Clin. Chem. 54(2), 264–272 (2008).
[CrossRef] [PubMed]

J. W. McMurdy, G. D. Jay, S. Suner, F. M. Trespalacios, and G. P. Crawford, “Diffuse reflectance spectra of the palpebral conjunctiva and its utility as a noninvasive indicator of total hemoglobin,” J. Biomed. Opt. 11(1), 014019 (2006).
[CrossRef] [PubMed]

Jeng, T. W.

X. Wu, S. Yeh, T. W. Jeng, and O. S. Khalil, “Noninvasive determination of hemoglobin and hematocrit using a temperature-controlled localized reflectance tissue photometer,” Anal. Biochem. 287(2), 284–293 (2000).
[CrossRef] [PubMed]

Kaur, S.

Kermit, E. L.

D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
[CrossRef]

Khalil, O. S.

X. Wu, S. Yeh, T. W. Jeng, and O. S. Khalil, “Noninvasive determination of hemoglobin and hematocrit using a temperature-controlled localized reflectance tissue photometer,” Anal. Biochem. 287(2), 284–293 (2000).
[CrossRef] [PubMed]

Kimball-Jones, P.

M. R. Macknet, S. Norton, P. Kimball-Jones, and R. Applegate, “Continuous noninvasive measurement of hemoglobin via pulse CO-oximetry,” Anesth. Analg. 104, S-32 (2007).

M. R. Macknet, P. Kimball-Jones, R. Applegate, and M. Allard, “Continuous non-invasive measurement of hemoglobin via pulse CO-oximetry during liver transplantation, a case report,” Anesth. Analg. 104, S-31 (2007).

Klein, D.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[CrossRef] [PubMed]

Kuech, T. F.

J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express 17(3), 1372–1384 (2009).
[CrossRef] [PubMed]

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13(6), 060505 (2008).
[CrossRef] [PubMed]

Levinson, C. J.

D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
[CrossRef]

Lin, W. C.

Liu, F. W. H.

D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
[CrossRef]

Liu, Q.

Lo, J. Y.

J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express 17(3), 1372–1384 (2009).
[CrossRef] [PubMed]

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13(6), 060505 (2008).
[CrossRef] [PubMed]

Macknet, M. R.

M. R. Macknet, P. Kimball-Jones, R. Applegate, and M. Allard, “Continuous non-invasive measurement of hemoglobin via pulse CO-oximetry during liver transplantation, a case report,” Anesth. Analg. 104, S-31 (2007).

M. R. Macknet, S. Norton, P. Kimball-Jones, and R. Applegate, “Continuous noninvasive measurement of hemoglobin via pulse CO-oximetry,” Anesth. Analg. 104, S-32 (2007).

McMurdy, J. W.

J. W. McMurdy, G. D. Jay, S. Suner, and G. Crawford, “Noninvasive optical, electrical, and acoustic methods of total hemoglobin determination,” Clin. Chem. 54(2), 264–272 (2008).
[CrossRef] [PubMed]

J. W. McMurdy, G. D. Jay, S. Suner, F. M. Trespalacios, and G. P. Crawford, “Diffuse reflectance spectra of the palpebral conjunctiva and its utility as a noninvasive indicator of total hemoglobin,” J. Biomed. Opt. 11(1), 014019 (2006).
[CrossRef] [PubMed]

Moore, L. K.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE T. Biomed. Eng. (N.Y.) 56(4), 960–968 (2009).
[CrossRef]

Motamedi, M.

E. Chan, B. Sorg, D. Protsenko, M. O'Neil, M. Motamedi, and A. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quant. 2(4), 943–950 (1996).
[CrossRef]

Murphy, A. L.

D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
[CrossRef]

Mythen, M. G.

M. G. Mythen and A. R. Webb, “Intra-operative gut mucosal hypoperfusion is associated with increased post-operative complications and cost,” Intensive Care Med. 20(2), 99–104 (1994).
[CrossRef] [PubMed]

Nadeau, R. G.

R. G. Nadeau and W. Groner, “The role of a new noninvasive imaging technology in the diagnosis of anemia,” J. Nutr. 131(5), 1610S–1614S (2001).
[PubMed]

Norton, S.

M. R. Macknet, S. Norton, P. Kimball-Jones, and R. Applegate, “Continuous noninvasive measurement of hemoglobin via pulse CO-oximetry,” Anesth. Analg. 104, S-32 (2007).

Nowicki, A.

W. Secomski, A. Nowicki, P. Tortoli, and R. Olszewski, “Multigate Doppler measurements of ultrasonic attenuation and blood hematocrit in human arteries,” Ultrasound Med. Biol. 35(2), 230–236 (2009).
[CrossRef] [PubMed]

Olszewski, R.

W. Secomski, A. Nowicki, P. Tortoli, and R. Olszewski, “Multigate Doppler measurements of ultrasonic attenuation and blood hematocrit in human arteries,” Ultrasound Med. Biol. 35(2), 230–236 (2009).
[CrossRef] [PubMed]

O'Neil, M.

E. Chan, B. Sorg, D. Protsenko, M. O'Neil, M. Motamedi, and A. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quant. 2(4), 943–950 (1996).
[CrossRef]

Otten, D. M.

D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
[CrossRef]

Palmer, G. M.

Parachikov, I. H.

D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
[CrossRef]

Perras, K.

Petrov, Y. Y.

Price, J. W.

D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
[CrossRef]

Protsenko, D.

E. Chan, B. Sorg, D. Protsenko, M. O'Neil, M. Motamedi, and A. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quant. 2(4), 943–950 (1996).
[CrossRef]

Prough, D. S.

Ramanujam, N.

J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express 17(3), 1372–1384 (2009).
[CrossRef] [PubMed]

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[CrossRef] [PubMed]

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE T. Biomed. Eng. (N.Y.) 56(4), 960–968 (2009).
[CrossRef]

K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11(9), 889–900 (2009).
[PubMed]

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13(6), 060505 (2008).
[CrossRef] [PubMed]

Q. Liu and N. Ramanujam, “Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media,” J. Opt. Soc. Am. A 24(4), 1011–1025 (2007).
[CrossRef]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis,” Appl. Opt. 45(5), 1072–1078 (2006).
[CrossRef] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
[CrossRef] [PubMed]

Reif, R.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

Rubinsky, B. E.

D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
[CrossRef]

Schroeder, T.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[CrossRef] [PubMed]

Secomski, W.

W. Secomski, A. Nowicki, P. Tortoli, and R. Olszewski, “Multigate Doppler measurements of ultrasonic attenuation and blood hematocrit in human arteries,” Ultrasound Med. Biol. 35(2), 230–236 (2009).
[CrossRef] [PubMed]

Singh, S. K.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

Soller, B. R.

Sorg, B.

E. Chan, B. Sorg, D. Protsenko, M. O'Neil, M. Motamedi, and A. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quant. 2(4), 943–950 (1996).
[CrossRef]

Suner, S.

J. W. McMurdy, G. D. Jay, S. Suner, and G. Crawford, “Noninvasive optical, electrical, and acoustic methods of total hemoglobin determination,” Clin. Chem. 54(2), 264–272 (2008).
[CrossRef] [PubMed]

J. W. McMurdy, G. D. Jay, S. Suner, F. M. Trespalacios, and G. P. Crawford, “Diffuse reflectance spectra of the palpebral conjunctiva and its utility as a noninvasive indicator of total hemoglobin,” J. Biomed. Opt. 11(1), 014019 (2006).
[CrossRef] [PubMed]

Talmi, Y.

D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
[CrossRef]

Ti, Y.

Tortoli, P.

W. Secomski, A. Nowicki, P. Tortoli, and R. Olszewski, “Multigate Doppler measurements of ultrasonic attenuation and blood hematocrit in human arteries,” Ultrasound Med. Biol. 35(2), 230–236 (2009).
[CrossRef] [PubMed]

Trespalacios, F. M.

J. W. McMurdy, G. D. Jay, S. Suner, F. M. Trespalacios, and G. P. Crawford, “Diffuse reflectance spectra of the palpebral conjunctiva and its utility as a noninvasive indicator of total hemoglobin,” J. Biomed. Opt. 11(1), 014019 (2006).
[CrossRef] [PubMed]

Vandersalm, T. J.

Vishwanath, K.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[CrossRef] [PubMed]

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE T. Biomed. Eng. (N.Y.) 56(4), 960–968 (2009).
[CrossRef]

K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11(9), 889–900 (2009).
[PubMed]

Webb, A. R.

M. G. Mythen and A. R. Webb, “Intra-operative gut mucosal hypoperfusion is associated with increased post-operative complications and cost,” Intensive Care Med. 20(2), 99–104 (1994).
[CrossRef] [PubMed]

Weersing, J. P.

D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
[CrossRef]

Welch, A.

E. Chan, B. Sorg, D. Protsenko, M. O'Neil, M. Motamedi, and A. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quant. 2(4), 943–950 (1996).
[CrossRef]

Wu, X.

X. Wu, S. Yeh, T. W. Jeng, and O. S. Khalil, “Noninvasive determination of hemoglobin and hematocrit using a temperature-controlled localized reflectance tissue photometer,” Anal. Biochem. 287(2), 284–293 (2000).
[CrossRef] [PubMed]

Xu, F.

Yeh, S.

X. Wu, S. Yeh, T. W. Jeng, and O. S. Khalil, “Noninvasive determination of hemoglobin and hematocrit using a temperature-controlled localized reflectance tissue photometer,” Anal. Biochem. 287(2), 284–293 (2000).
[CrossRef] [PubMed]

Yu, B.

J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express 17(3), 1372–1384 (2009).
[CrossRef] [PubMed]

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13(6), 060505 (2008).
[CrossRef] [PubMed]

Yuan, H.

K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11(9), 889–900 (2009).
[PubMed]

Zhang, S.

Zhu, C.

Am. J. Physiol.

R. D. Braun, M. W. Dewhirst, and D. L. Hatchell, “Quantification of erythrocyte flow in the choroid of the albino rat,” Am. J. Physiol. 272(3 Pt 2), H1444–H1453 (1997).
[PubMed]

Anal. Biochem.

X. Wu, S. Yeh, T. W. Jeng, and O. S. Khalil, “Noninvasive determination of hemoglobin and hematocrit using a temperature-controlled localized reflectance tissue photometer,” Anal. Biochem. 287(2), 284–293 (2000).
[CrossRef] [PubMed]

Anesth. Analg.

M. R. Macknet, S. Norton, P. Kimball-Jones, and R. Applegate, “Continuous noninvasive measurement of hemoglobin via pulse CO-oximetry,” Anesth. Analg. 104, S-32 (2007).

M. R. Macknet, P. Kimball-Jones, R. Applegate, and M. Allard, “Continuous non-invasive measurement of hemoglobin via pulse CO-oximetry during liver transplantation, a case report,” Anesth. Analg. 104, S-31 (2007).

Anesthesiology

American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies, “Practice guidelines for perioperative blood transfusion and adjuvant therapies: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies,” Anesthesiology 105(1), 198–208 (2006).
[PubMed]

Appl. Opt.

Appl. Spectrosc.

Clin. Chem.

J. W. McMurdy, G. D. Jay, S. Suner, and G. Crawford, “Noninvasive optical, electrical, and acoustic methods of total hemoglobin determination,” Clin. Chem. 54(2), 264–272 (2008).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quant.

E. Chan, B. Sorg, D. Protsenko, M. O'Neil, M. Motamedi, and A. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quant. 2(4), 943–950 (1996).
[CrossRef]

IEEE T. Biomed. Eng. (N.Y.)

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE T. Biomed. Eng. (N.Y.) 56(4), 960–968 (2009).
[CrossRef]

Intensive Care Med.

M. G. Mythen and A. R. Webb, “Intra-operative gut mucosal hypoperfusion is associated with increased post-operative complications and cost,” Intensive Care Med. 20(2), 99–104 (1994).
[CrossRef] [PubMed]

J. Biomed. Opt.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

D. A. Benaron, I. H. Parachikov, W.-F. Cheong, S. Friedland, B. E. Rubinsky, D. M. Otten, F. W. H. Liu, C. J. Levinson, A. L. Murphy, J. W. Price, Y. Talmi, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, and E. L. Kermit, “Design of a visible-light spectroscopy clinical tissue oximeter,” J. Biomed. Opt. 10(4), 044005 (2005).
[CrossRef]

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[CrossRef] [PubMed]

J. W. McMurdy, G. D. Jay, S. Suner, F. M. Trespalacios, and G. P. Crawford, “Diffuse reflectance spectra of the palpebral conjunctiva and its utility as a noninvasive indicator of total hemoglobin,” J. Biomed. Opt. 11(1), 014019 (2006).
[CrossRef] [PubMed]

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13(6), 060505 (2008).
[CrossRef] [PubMed]

J. Nutr.

R. G. Nadeau and W. Groner, “The role of a new noninvasive imaging technology in the diagnosis of anemia,” J. Nutr. 131(5), 1610S–1614S (2001).
[PubMed]

J. Opt. Soc. Am. A

Neoplasia

K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11(9), 889–900 (2009).
[PubMed]

News Physiol. Sci.

B. R. Duling and C. Desjardins, “Capillary hematocrit – what does it mean?” News Physiol. Sci. 2, 66–69 (1987).

Opt. Express

Ultrasound Med. Biol.

W. Secomski, A. Nowicki, P. Tortoli, and R. Olszewski, “Multigate Doppler measurements of ultrasonic attenuation and blood hematocrit in human arteries,” Ultrasound Med. Biol. 35(2), 230–236 (2009).
[CrossRef] [PubMed]

Other

B. I. Whitaker, J. Green, M. R. King, L. L. Leibeg, S. N. Mathew, K. S. Schlumpf, and G. B. Schreiber, “The 2007 Nationwide Blood Collection and Utilization Survey Report,” (US Department of Health and Human Services, 2007). http://www.dhhs.gov/ophs/bloodsafety/2007nbcus_survey.pdf .

T. Ahrens, and K. Rutherford, Essentials of oxygenation, 1 ed. (Jones & Bartlett Publishers, Boston, MA, 1993).

M. J. Rathbone, Oral Mucosal Drug Delivery. (Marcel Dekker, Inc., New York, NY, 1996).

S. Prahl, “Optical Properties Spectra,” (Oregon Medical Laser Center, 2003). http://omlc.ogi.edu/spectra/index.html .

G. A. Thibodeau, and K. T. Patton, Anatomy and Physiology, 5 ed. (Mosby, Inc., St. Louis, MO, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calibrated diffuse reflectance from patient #3 with corresponding ABG Hb values.

Fig. 2
Fig. 2

Grid of r values (absolute value) for (a) non-delta and (b) delta reflectance ratios for all patients.

Fig. 3
Fig. 3

Correlations of (a) non-delta 529/500, (b) delta 529/500, (c) non-delta 520/509, and (d) delta 520/509 nm with ABG Hb.

Fig. 4
Fig. 4

(a) Optical monitoring of the 529/500 nm reflectance ratio over time for patient #3. The ratio is shown as negative because of the negative correlation between ABG Hb and the ratio; comparison between (b) delta 529/500 nm and (c) delta 520/509 nm reflectance ratios and delta ABG Hb for the same patient.

Fig. 5
Fig. 5

(a1,a2) Diffuse reflectance from the first measurement of Right 1; (b1,b2) 529/500 nm reflectance ratio and (c1,c2) 520/509 nm reflectance ratio per volunteer; colors correspond to sites. Per site, there were three qualitative pressures: light, medium, and high, shown for Right 1. Measurements were made in duplicate per pressure per site.

Fig. 6
Fig. 6

Reflectance ratio at 529/500 nm versus (top) total Hb concentration and (bottom) Hb saturation.

Fig. 7
Fig. 7

Reflectance ratio of 529/500 nm versus total Hb concentration, as a function of different μs’(500):μs’(529).

Tables (3)

Tables Icon

Table 1 Overview of surgery type, number of ABG and optical measurements during the time the probe was in place and range of ABG Hb (Hgb) levels

Tables Icon

Table 2 Wavelength-dependent 90% sensing depth calculated using absorption (µa) and reduced scattering (µs’) coefficients shown below

Tables Icon

Table 3 Concentrations of oxy- and deoxy-Hb and corresponding Hb saturations used in the simulations

Metrics