Abstract

Mechanical and thermodynamic responses of biomaterials after impulsive heat deposition through vibrational excitations (IHDVE) are investigated and discussed. Specifically, we demonstrate highly efficient ablation of healthy tooth enamel using 55 ps infrared laser pulses tuned to the vibrational transition of interstitial water and hydroxyapatite around 2.95 µm. The peak intensity at 13 GW/cm2 was well below the plasma generation threshold and the applied fluence 0.75 J/cm2 was significantly smaller than the typical ablation thresholds observed with nanosecond and microsecond pulses from Er:YAG lasers operating at the same wavelength. The ablation was performed without adding any superficial water layer at the enamel surface. The total energy deposited per ablated volume was several times smaller than previously reported for non-resonant ultrafast plasma driven ablation with similar pulse durations. No micro-cracking of the ablated surface was observed with a scanning electron microscope. The highly efficient ablation is attributed to an enhanced photomechanical effect due to ultrafast vibrational relaxation into heat and the scattering of powerful ultrafast acoustic transients with random phases off the mesoscopic heterogeneous tissue structures.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. R. Solon, R. Aronson, and G. Gould, “Physiological implications of laser beams,” Science 134(3489), 1506–1508 (1961).
    [CrossRef] [PubMed]
  2. J. D. Murray, Mathematical Biology, (Springer, New York, 2008).
  3. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
    [CrossRef] [PubMed]
  4. M. H. Niemz, Laser-Tissue Interactions, Fundamentals and Applications, (Springer-Verlag, Berlin Heidelberg, 2007).
  5. G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103(2), 487–518 (2003).
    [CrossRef] [PubMed]
  6. A. J. Welch and M. J. C. van Gemert, eds., Optical-Thermal Response of Laser-Irradiated Tissue, (Plenum Press, New York, 1995).
  7. A. G. Doukas and T. J. Flotte, “Physical characteristics and biological effects of laser-induced stress waves,” Ultrasound Med. Biol. 22(2), 151–164 (1996).
    [CrossRef] [PubMed]
  8. A. G. Doukas and N. Kollias, “Transdermal drug delivery with a pressure wave,” Adv. Drug Deliv. Rev. 56(5), 559–579 (2004).
    [CrossRef] [PubMed]
  9. G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. Oday, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
    [CrossRef] [PubMed]
  10. M. S. Hutson, B. Ivanov, A. Jayasinghe, G. Adunas, Y. W. Xiao, M. S. Guo, and J. Kozub, “Interplay of wavelength, fluence and spot-size in free-electron laser ablation of cornea,” Opt. Express 17(12), 9840–9850 (2009).
    [CrossRef] [PubMed]
  11. T. Juhasz, R. Kurtz, C. Horvath, C. Suarez, F. Raksi, and G. Spooner, “The femtosecond blade: Applications in corneal surgery,” Opt. Photonics News 13, 24–29 (2002).
    [CrossRef]
  12. B. Girard, M. Cloutier, D. J. Wilson, C. M. L. Clokie, R. J. D. Miller, and B. C. Wilson, “Microtomographic analysis of healing of femtosecond laser bone calvarial wounds compared to mechanical instruments in mice with and without application of BMP-7,” Lasers Surg. Med. 39(5), 458–467 (2007).
    [CrossRef] [PubMed]
  13. R. S. Dingus and R. J. Scammon, “Gruneisen-Stress Induced Ablation of Biological Tissue,” Proc. SPIE 1427, 45–54 (1991).
    [CrossRef]
  14. J. Black and G. Hastings, eds., Handbook of Biomaterial Properties, (Chapman & Hall, London, 1998).
  15. F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, “Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: Experiment and model,” IEEE J. Quantum Electron. 32(10), 1717–1722 (1996).
    [CrossRef]
  16. R. Hibst and U. Keller, “Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate,” Lasers Surg. Med. 9(4), 338–344 (1989).
    [CrossRef] [PubMed]
  17. R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ=2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 959–970 (2001).
    [CrossRef]
  18. D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127(1-2), 852–856 (1998).
    [CrossRef]
  19. D. Fried, R. Shori, and C. Duhn, “Backspallation due to ablative recoil generated during Q-switched Er:YAG ablation of dental hard tissue,” Proc. SPIE 3248, 78–85 (1998).
    [CrossRef]
  20. M. H. Niemz, “Cavity preparation with the Nd:YLF picosecond laser,” J. Dent. Res. 74(5), 1194–1199 (1995).
    [CrossRef] [PubMed]
  21. A. Nitzan, Chemical Dynamics in Condensed Phases, (Oxford University Press, New York, 2006).
  22. R. J. D. Miller, “Vibrational energy relaxation and structural dynamics of heme proteins,” Annu. Rev. Phys. Chem. 42(1), 581–614 (1991).
    [CrossRef] [PubMed]
  23. M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
    [CrossRef] [PubMed]
  24. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [CrossRef]
  25. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302(5649), 1382–1385 (2003).
    [CrossRef] [PubMed]
  26. P. H. L. Sit, C. Bellin, B. Barbiellini, D. Testemale, J. L. Hazemann, T. Buslaps, N. Marzari, and A. Shukla, “Hydrogen bonding and coordination in normal and supercritical water from X-ray inelastic scattering,” Phys. Rev. B 76(24), 245413 (2007).
    [CrossRef]
  27. A. G. Kalinichev, “Molecular simulations of liquid and supercritical water: thermodynamics, structure, and hydrogen bonding,” Rev. Mineral. Geochem. 42, 83–129 (2001).
    [CrossRef]
  28. K. L. Vodopyanov, M. E. Karasev, L. A. Kulevskii, A. V. Lukashev, and G. R. Toker, “Dynamics of Interaction of λ=2.94 μm Laser-Emission with Thin-Layer of Liquid Water,” Pis'ma Zh. Tekh. Fiz. 14, 324–329 (1988).
  29. K. L. Vodopyanov, “Saturation studies of H2O and HDO Near 3400 cm–1 using intense picosecond laser pulses,” J. Chem. Phys. 94(8), 5389–5393 (1991).
    [CrossRef]
  30. T. Schäfer, J. Lindner, P. Vöhringer, and D. Schwarzer, “OD stretch vibrational relaxation of HOD in liquid to supercritical H(2)O,” J. Chem. Phys. 130(22), 224502 (2009).
    [CrossRef] [PubMed]
  31. K. L. Vodopyanov, L. A. Kulevsky, V. G. Mikhalevich, and A. M. Rodin, “Laser-Induced Generation of Subnanosecond Sound Pulses in Liquids,” Zh. Eksp. Teor. Fiz. 91, 114–121 (1986).
  32. U. Störkel, K. L. Vodopyanov, and W. Grill, “GHz ultrasound wave packets in water generated by an Er laser,” J. Phys. D 31(18), 2258–2263 (1998).
    [CrossRef]
  33. W. Wagner and A. Pruss, “The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use,” J. Phys. Chem. Ref. Data 31(2), 387–535 (1999).
    [CrossRef]
  34. K. Franjic, F. Talbot, and R. J. D. Miller, (to be submitted)
  35. R. O. Esenaliev, A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Laser-Ablation of Aqueous-Solutions with Spatially Homogeneous and Heterogeneous Absorption,” Appl. Phys. B 59(1), 73–81 (1994).
    [CrossRef]
  36. S. L. Jacques, A. A. Oraevsky, R. Thompson, and B. S. Gerstman, “A Working Theory and Experiments on Photomechanical Disruption of Melanosomes to Explain the Threshold for Minimal Visible Retinal Lesions for Sub-ns Laser-Pulses,” Proc. SPIE 2134, 54–65 (1994).
  37. S. Meng and E. Kaxiras, “Mechanisms for ultrafast nonradiative relaxation in electronically excited eumelanin constituents,” Biophys. J. 95(9), 4396–4402 (2008).
    [CrossRef] [PubMed]
  38. G. Paltauf and H. Schmidt-Kloiber, “Photoacoustic cavitation in spherical and cylindrical absorbers,” Appl. Phys.Mater. Sci . 68, 525–531 (1999).
    [CrossRef]
  39. M. I. Khan, T. Sun, and G. J. Diebold, “Photoacoustic Waves Generated by Absorption of Laser-Radiation in Optically Thin Cylinders,” J. Acoust. Soc. Am. 94(2), 931–940 (1993).
    [CrossRef]
  40. J. M. Sun and B. S. Gerstman, “Photoacoustic generation for a spherical absorber with impedance mismatch with the surrounding media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(55 Pt B), 5772–5789 (1999).
    [CrossRef] [PubMed]
  41. A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).
  42. A. Nanci, and A. Ten Cate, Ten Cate's oral histology: development, structure, and function, (Mosby, St. Louis, 2003).
  43. G. H. Dibdin, “The Water in Human Dental Enamel and Its Diffusional Exchange Measured by Clearance of Tritiated Water from Enamel Slabs of Varying Thickness,” Caries Res. 27(2), 81–86 (1993).
    [CrossRef] [PubMed]
  44. E. Persson and B. Halle, “Cell water dynamics on multiple time scales,” Proc. Natl. Acad. Sci. U.S.A. 105(17), 6266–6271 (2008).
    [CrossRef] [PubMed]
  45. I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The Thermoelastic Basis of Short Pulsed Laser Ablation of Biological Tissue,” Proc. Natl. Acad. Sci. U.S.A. 92(6), 1960–1964 (1995).
    [CrossRef] [PubMed]
  46. A. D. Yablon, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, “Physical mechanisms of pulsed infrared laser ablation of biological tissues,” Proc. SPIE 3343, 69–77 (1998).
    [CrossRef]
  47. M. H. Niemz, L. Eisenmann, and T. Pioch, Vergleich von drei Lasersystemen zur Abtragung von Zahnschmelz 103, 1252–1256 (1993).
  48. A. V. Verde, M. M. D. Ramos, and A. M. Stoneham, “The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation,” Phys. Med. Biol. 52(10), 2703–2717 (2007).
    [CrossRef] [PubMed]
  49. M. A. Mackanos, J. A. Kozub, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics,” Phys. Med. Biol. 50(8), 1871–1883 (2005).
    [CrossRef] [PubMed]
  50. H. Peterlik, P. Roschger, K. Klaushofer, and P. Fratzl, “From brittle to ductile fracture of bone,” Nat. Mater. 5(1), 52–55 (2006).
    [CrossRef] [PubMed]
  51. K. K. Shung and G. A. Thieme, Ultrasonic Scattering in Biological Tissues, (CRC, Boca Raton, 1993).
  52. K. K. Shung, “Ultrasound and Tissue Interaction,” in Encyclopedia of Biomaterials and Biomedical Engineering, G. E. Wnek and G. L. Bowlin, eds., (Informa HealthCare, 2008).
  53. G. W. C. Kaye, and T. H. Laby, Tables of Physical and Chemical Constants: And Some Mathematical Functions, (Longman, 1995).
  54. C. M. Sehgal, “Quantitative relationship between tissue composition and scattering of ultrasound,” J. Acoust. Soc. Am. 94(4), 1944–1952 (1993).
    [CrossRef] [PubMed]
  55. T. D. Mast, L. P. Souriau, D. L. D. Liu, M. Tabei, A. I. Nachman, and R. C. Waag, “A k-space method for large-scale models of wave propagation in tissue,” IEEE T. Ultrason. Ferr. 48(2), 341–354 (2001).
    [CrossRef]
  56. B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
    [CrossRef] [PubMed]
  57. A. D. Pierce, “The wave theory of sound,” in Acoustics: An Introduction to Its Physical Principles and Applications, (Acoustical Society of America, Woodbury, NY, 1989).
  58. B. Cox, Department of Medical Physics and Bioengineering, University College London, UK, (personal communication, 2009).
  59. J. Ge, F. Z. Cui, X. M. Wang, and H. L. Feng, “Property variations in the prism and the organic sheath within enamel by nanoindentation,” Biomaterials 26(16), 3333–3339 (2005).
    [CrossRef] [PubMed]
  60. N. Meredith, D. J. Setchell, and S. A. V. Swanson, “The application of thermoelastic analysis to study stresses in human teeth,” J. Oral Rehabil. 24(11), 813–822 (1997).
    [CrossRef] [PubMed]
  61. D. E. Grenoble, J. L. Katz, K. L. Dunn, K. L. Murty, and R. S. Gilmore, “The Elastic Properties of Hard Tissues and Apatites,” J. Biomed. Mater. Res. 6(3), 221–233 (1972).
    [CrossRef] [PubMed]
  62. M. Giannini, C. J. Soares, and R. M. de Carvalho, “Ultimate tensile strength of tooth structures,” Dent. Mater. 20(4), 322–329 (2004).
    [CrossRef] [PubMed]
  63. L. A. Chernov, Wave propagation in a random medium, (Dover Publications, 1967).
  64. K. Franjic, F. Talbot, and R. J. D. Miller, (to be submitted)
  65. B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
    [CrossRef] [PubMed]
  66. D. Kraemer, M. L. Cowan, R. Z. Hua, K. Franjic, and R. D. Miller, “High-power femtosecond infrared laser source based on noncollinear optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 24(4), 813–818 (2007).
    [CrossRef]

2009

T. Schäfer, J. Lindner, P. Vöhringer, and D. Schwarzer, “OD stretch vibrational relaxation of HOD in liquid to supercritical H(2)O,” J. Chem. Phys. 130(22), 224502 (2009).
[CrossRef] [PubMed]

M. S. Hutson, B. Ivanov, A. Jayasinghe, G. Adunas, Y. W. Xiao, M. S. Guo, and J. Kozub, “Interplay of wavelength, fluence and spot-size in free-electron laser ablation of cornea,” Opt. Express 17(12), 9840–9850 (2009).
[CrossRef] [PubMed]

2008

S. Meng and E. Kaxiras, “Mechanisms for ultrafast nonradiative relaxation in electronically excited eumelanin constituents,” Biophys. J. 95(9), 4396–4402 (2008).
[CrossRef] [PubMed]

E. Persson and B. Halle, “Cell water dynamics on multiple time scales,” Proc. Natl. Acad. Sci. U.S.A. 105(17), 6266–6271 (2008).
[CrossRef] [PubMed]

2007

A. V. Verde, M. M. D. Ramos, and A. M. Stoneham, “The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation,” Phys. Med. Biol. 52(10), 2703–2717 (2007).
[CrossRef] [PubMed]

P. H. L. Sit, C. Bellin, B. Barbiellini, D. Testemale, J. L. Hazemann, T. Buslaps, N. Marzari, and A. Shukla, “Hydrogen bonding and coordination in normal and supercritical water from X-ray inelastic scattering,” Phys. Rev. B 76(24), 245413 (2007).
[CrossRef]

B. Girard, M. Cloutier, D. J. Wilson, C. M. L. Clokie, R. J. D. Miller, and B. C. Wilson, “Microtomographic analysis of healing of femtosecond laser bone calvarial wounds compared to mechanical instruments in mice with and without application of BMP-7,” Lasers Surg. Med. 39(5), 458–467 (2007).
[CrossRef] [PubMed]

D. Kraemer, M. L. Cowan, R. Z. Hua, K. Franjic, and R. D. Miller, “High-power femtosecond infrared laser source based on noncollinear optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 24(4), 813–818 (2007).
[CrossRef]

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[CrossRef] [PubMed]

2006

H. Peterlik, P. Roschger, K. Klaushofer, and P. Fratzl, “From brittle to ductile fracture of bone,” Nat. Mater. 5(1), 52–55 (2006).
[CrossRef] [PubMed]

2005

M. A. Mackanos, J. A. Kozub, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics,” Phys. Med. Biol. 50(8), 1871–1883 (2005).
[CrossRef] [PubMed]

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

J. Ge, F. Z. Cui, X. M. Wang, and H. L. Feng, “Property variations in the prism and the organic sheath within enamel by nanoindentation,” Biomaterials 26(16), 3333–3339 (2005).
[CrossRef] [PubMed]

2004

M. Giannini, C. J. Soares, and R. M. de Carvalho, “Ultimate tensile strength of tooth structures,” Dent. Mater. 20(4), 322–329 (2004).
[CrossRef] [PubMed]

A. G. Doukas and N. Kollias, “Transdermal drug delivery with a pressure wave,” Adv. Drug Deliv. Rev. 56(5), 559–579 (2004).
[CrossRef] [PubMed]

2003

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[CrossRef] [PubMed]

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103(2), 487–518 (2003).
[CrossRef] [PubMed]

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302(5649), 1382–1385 (2003).
[CrossRef] [PubMed]

2002

T. Juhasz, R. Kurtz, C. Horvath, C. Suarez, F. Raksi, and G. Spooner, “The femtosecond blade: Applications in corneal surgery,” Opt. Photonics News 13, 24–29 (2002).
[CrossRef]

2001

A. G. Kalinichev, “Molecular simulations of liquid and supercritical water: thermodynamics, structure, and hydrogen bonding,” Rev. Mineral. Geochem. 42, 83–129 (2001).
[CrossRef]

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ=2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 959–970 (2001).
[CrossRef]

T. D. Mast, L. P. Souriau, D. L. D. Liu, M. Tabei, A. I. Nachman, and R. C. Waag, “A k-space method for large-scale models of wave propagation in tissue,” IEEE T. Ultrason. Ferr. 48(2), 341–354 (2001).
[CrossRef]

1999

J. M. Sun and B. S. Gerstman, “Photoacoustic generation for a spherical absorber with impedance mismatch with the surrounding media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(55 Pt B), 5772–5789 (1999).
[CrossRef] [PubMed]

G. Paltauf and H. Schmidt-Kloiber, “Photoacoustic cavitation in spherical and cylindrical absorbers,” Appl. Phys.Mater. Sci . 68, 525–531 (1999).
[CrossRef]

W. Wagner and A. Pruss, “The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use,” J. Phys. Chem. Ref. Data 31(2), 387–535 (1999).
[CrossRef]

1998

U. Störkel, K. L. Vodopyanov, and W. Grill, “GHz ultrasound wave packets in water generated by an Er laser,” J. Phys. D 31(18), 2258–2263 (1998).
[CrossRef]

A. D. Yablon, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, “Physical mechanisms of pulsed infrared laser ablation of biological tissues,” Proc. SPIE 3343, 69–77 (1998).
[CrossRef]

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127(1-2), 852–856 (1998).
[CrossRef]

D. Fried, R. Shori, and C. Duhn, “Backspallation due to ablative recoil generated during Q-switched Er:YAG ablation of dental hard tissue,” Proc. SPIE 3248, 78–85 (1998).
[CrossRef]

1997

N. Meredith, D. J. Setchell, and S. A. V. Swanson, “The application of thermoelastic analysis to study stresses in human teeth,” J. Oral Rehabil. 24(11), 813–822 (1997).
[CrossRef] [PubMed]

B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
[CrossRef] [PubMed]

1996

A. G. Doukas and T. J. Flotte, “Physical characteristics and biological effects of laser-induced stress waves,” Ultrasound Med. Biol. 22(2), 151–164 (1996).
[CrossRef] [PubMed]

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, “Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: Experiment and model,” IEEE J. Quantum Electron. 32(10), 1717–1722 (1996).
[CrossRef]

A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).

1995

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The Thermoelastic Basis of Short Pulsed Laser Ablation of Biological Tissue,” Proc. Natl. Acad. Sci. U.S.A. 92(6), 1960–1964 (1995).
[CrossRef] [PubMed]

M. H. Niemz, “Cavity preparation with the Nd:YLF picosecond laser,” J. Dent. Res. 74(5), 1194–1199 (1995).
[CrossRef] [PubMed]

1994

R. O. Esenaliev, A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Laser-Ablation of Aqueous-Solutions with Spatially Homogeneous and Heterogeneous Absorption,” Appl. Phys. B 59(1), 73–81 (1994).
[CrossRef]

S. L. Jacques, A. A. Oraevsky, R. Thompson, and B. S. Gerstman, “A Working Theory and Experiments on Photomechanical Disruption of Melanosomes to Explain the Threshold for Minimal Visible Retinal Lesions for Sub-ns Laser-Pulses,” Proc. SPIE 2134, 54–65 (1994).

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. Oday, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

1993

M. I. Khan, T. Sun, and G. J. Diebold, “Photoacoustic Waves Generated by Absorption of Laser-Radiation in Optically Thin Cylinders,” J. Acoust. Soc. Am. 94(2), 931–940 (1993).
[CrossRef]

G. H. Dibdin, “The Water in Human Dental Enamel and Its Diffusional Exchange Measured by Clearance of Tritiated Water from Enamel Slabs of Varying Thickness,” Caries Res. 27(2), 81–86 (1993).
[CrossRef] [PubMed]

M. H. Niemz, L. Eisenmann, and T. Pioch, Vergleich von drei Lasersystemen zur Abtragung von Zahnschmelz 103, 1252–1256 (1993).

C. M. Sehgal, “Quantitative relationship between tissue composition and scattering of ultrasound,” J. Acoust. Soc. Am. 94(4), 1944–1952 (1993).
[CrossRef] [PubMed]

1991

R. J. D. Miller, “Vibrational energy relaxation and structural dynamics of heme proteins,” Annu. Rev. Phys. Chem. 42(1), 581–614 (1991).
[CrossRef] [PubMed]

R. S. Dingus and R. J. Scammon, “Gruneisen-Stress Induced Ablation of Biological Tissue,” Proc. SPIE 1427, 45–54 (1991).
[CrossRef]

K. L. Vodopyanov, “Saturation studies of H2O and HDO Near 3400 cm–1 using intense picosecond laser pulses,” J. Chem. Phys. 94(8), 5389–5393 (1991).
[CrossRef]

1989

R. Hibst and U. Keller, “Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate,” Lasers Surg. Med. 9(4), 338–344 (1989).
[CrossRef] [PubMed]

1988

K. L. Vodopyanov, M. E. Karasev, L. A. Kulevskii, A. V. Lukashev, and G. R. Toker, “Dynamics of Interaction of λ=2.94 μm Laser-Emission with Thin-Layer of Liquid Water,” Pis'ma Zh. Tekh. Fiz. 14, 324–329 (1988).

1986

K. L. Vodopyanov, L. A. Kulevsky, V. G. Mikhalevich, and A. M. Rodin, “Laser-Induced Generation of Subnanosecond Sound Pulses in Liquids,” Zh. Eksp. Teor. Fiz. 91, 114–121 (1986).

1972

D. E. Grenoble, J. L. Katz, K. L. Dunn, K. L. Murty, and R. S. Gilmore, “The Elastic Properties of Hard Tissues and Apatites,” J. Biomed. Mater. Res. 6(3), 221–233 (1972).
[CrossRef] [PubMed]

1961

L. R. Solon, R. Aronson, and G. Gould, “Physiological implications of laser beams,” Science 134(3489), 1506–1508 (1961).
[CrossRef] [PubMed]

Adunas, G.

Albagli, D.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The Thermoelastic Basis of Short Pulsed Laser Ablation of Biological Tissue,” Proc. Natl. Acad. Sci. U.S.A. 92(6), 1960–1964 (1995).
[CrossRef] [PubMed]

Aronson, R.

L. R. Solon, R. Aronson, and G. Gould, “Physiological implications of laser beams,” Science 134(3489), 1506–1508 (1961).
[CrossRef] [PubMed]

Arridge, S. R.

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[CrossRef] [PubMed]

Barbiellini, B.

P. H. L. Sit, C. Bellin, B. Barbiellini, D. Testemale, J. L. Hazemann, T. Buslaps, N. Marzari, and A. Shukla, “Hydrogen bonding and coordination in normal and supercritical water from X-ray inelastic scattering,” Phys. Rev. B 76(24), 245413 (2007).
[CrossRef]

Beard, P. C.

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[CrossRef] [PubMed]

Bellin, C.

P. H. L. Sit, C. Bellin, B. Barbiellini, D. Testemale, J. L. Hazemann, T. Buslaps, N. Marzari, and A. Shukla, “Hydrogen bonding and coordination in normal and supercritical water from X-ray inelastic scattering,” Phys. Rev. B 76(24), 245413 (2007).
[CrossRef]

Bille, J. F.

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, “Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: Experiment and model,” IEEE J. Quantum Electron. 32(10), 1717–1722 (1996).
[CrossRef]

Braun, B.

Bruner, B. D.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

Buslaps, T.

P. H. L. Sit, C. Bellin, B. Barbiellini, D. Testemale, J. L. Hazemann, T. Buslaps, N. Marzari, and A. Shukla, “Hydrogen bonding and coordination in normal and supercritical water from X-ray inelastic scattering,” Phys. Rev. B 76(24), 245413 (2007).
[CrossRef]

Chugh, B.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

Clokie, C. M. L.

B. Girard, M. Cloutier, D. J. Wilson, C. M. L. Clokie, R. J. D. Miller, and B. C. Wilson, “Microtomographic analysis of healing of femtosecond laser bone calvarial wounds compared to mechanical instruments in mice with and without application of BMP-7,” Lasers Surg. Med. 39(5), 458–467 (2007).
[CrossRef] [PubMed]

Cloutier, M.

B. Girard, M. Cloutier, D. J. Wilson, C. M. L. Clokie, R. J. D. Miller, and B. C. Wilson, “Microtomographic analysis of healing of femtosecond laser bone calvarial wounds compared to mechanical instruments in mice with and without application of BMP-7,” Lasers Surg. Med. 39(5), 458–467 (2007).
[CrossRef] [PubMed]

Copeland, M.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. Oday, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Cowan, M. L.

D. Kraemer, M. L. Cowan, R. Z. Hua, K. Franjic, and R. D. Miller, “High-power femtosecond infrared laser source based on noncollinear optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 24(4), 813–818 (2007).
[CrossRef]

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

Cox, B. T.

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[CrossRef] [PubMed]

Cui, F. Z.

J. Ge, F. Z. Cui, X. M. Wang, and H. L. Feng, “Property variations in the prism and the organic sheath within enamel by nanoindentation,” Biomaterials 26(16), 3333–3339 (2005).
[CrossRef] [PubMed]

Dark, M. L.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The Thermoelastic Basis of Short Pulsed Laser Ablation of Biological Tissue,” Proc. Natl. Acad. Sci. U.S.A. 92(6), 1960–1964 (1995).
[CrossRef] [PubMed]

Davidson, J.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. Oday, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

de Carvalho, R. M.

M. Giannini, C. J. Soares, and R. M. de Carvalho, “Ultimate tensile strength of tooth structures,” Dent. Mater. 20(4), 322–329 (2004).
[CrossRef] [PubMed]

Dibdin, G. H.

G. H. Dibdin, “The Water in Human Dental Enamel and Its Diffusional Exchange Measured by Clearance of Tritiated Water from Enamel Slabs of Varying Thickness,” Caries Res. 27(2), 81–86 (1993).
[CrossRef] [PubMed]

Diebold, G. J.

M. I. Khan, T. Sun, and G. J. Diebold, “Photoacoustic Waves Generated by Absorption of Laser-Radiation in Optically Thin Cylinders,” J. Acoust. Soc. Am. 94(2), 931–940 (1993).
[CrossRef]

Dingus, R. S.

R. S. Dingus and R. J. Scammon, “Gruneisen-Stress Induced Ablation of Biological Tissue,” Proc. SPIE 1427, 45–54 (1991).
[CrossRef]

Doukas, A. G.

A. G. Doukas and N. Kollias, “Transdermal drug delivery with a pressure wave,” Adv. Drug Deliv. Rev. 56(5), 559–579 (2004).
[CrossRef] [PubMed]

A. G. Doukas and T. J. Flotte, “Physical characteristics and biological effects of laser-induced stress waves,” Ultrasound Med. Biol. 22(2), 151–164 (1996).
[CrossRef] [PubMed]

Duhn, C.

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127(1-2), 852–856 (1998).
[CrossRef]

D. Fried, R. Shori, and C. Duhn, “Backspallation due to ablative recoil generated during Q-switched Er:YAG ablation of dental hard tissue,” Proc. SPIE 3248, 78–85 (1998).
[CrossRef]

Dunn, K. L.

D. E. Grenoble, J. L. Katz, K. L. Dunn, K. L. Murty, and R. S. Gilmore, “The Elastic Properties of Hard Tissues and Apatites,” J. Biomed. Mater. Res. 6(3), 221–233 (1972).
[CrossRef] [PubMed]

Dwyer, J. R.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302(5649), 1382–1385 (2003).
[CrossRef] [PubMed]

Dyer, P. E.

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103(2), 487–518 (2003).
[CrossRef] [PubMed]

Edwards, G.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. Oday, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Eisenmann, L.

M. H. Niemz, L. Eisenmann, and T. Pioch, Vergleich von drei Lasersystemen zur Abtragung von Zahnschmelz 103, 1252–1256 (1993).

Elsaesser, T.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

Esenaliev, R. O.

R. O. Esenaliev, A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Laser-Ablation of Aqueous-Solutions with Spatially Homogeneous and Heterogeneous Absorption,” Appl. Phys. B 59(1), 73–81 (1994).
[CrossRef]

Featherstone, J. D. B.

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127(1-2), 852–856 (1998).
[CrossRef]

Feld, M. S.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The Thermoelastic Basis of Short Pulsed Laser Ablation of Biological Tissue,” Proc. Natl. Acad. Sci. U.S.A. 92(6), 1960–1964 (1995).
[CrossRef] [PubMed]

Feng, H. L.

J. Ge, F. Z. Cui, X. M. Wang, and H. L. Feng, “Property variations in the prism and the organic sheath within enamel by nanoindentation,” Biomaterials 26(16), 3333–3339 (2005).
[CrossRef] [PubMed]

Flotte, T. J.

A. G. Doukas and T. J. Flotte, “Physical characteristics and biological effects of laser-induced stress waves,” Ultrasound Med. Biol. 22(2), 151–164 (1996).
[CrossRef] [PubMed]

Franjic, K.

Fratzl, P.

H. Peterlik, P. Roschger, K. Klaushofer, and P. Fratzl, “From brittle to ductile fracture of bone,” Nat. Mater. 5(1), 52–55 (2006).
[CrossRef] [PubMed]

Fried, D.

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ=2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 959–970 (2001).
[CrossRef]

D. Fried, R. Shori, and C. Duhn, “Backspallation due to ablative recoil generated during Q-switched Er:YAG ablation of dental hard tissue,” Proc. SPIE 3248, 78–85 (1998).
[CrossRef]

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127(1-2), 852–856 (1998).
[CrossRef]

Ge, J.

J. Ge, F. Z. Cui, X. M. Wang, and H. L. Feng, “Property variations in the prism and the organic sheath within enamel by nanoindentation,” Biomaterials 26(16), 3333–3339 (2005).
[CrossRef] [PubMed]

Gerstman, B. S.

J. M. Sun and B. S. Gerstman, “Photoacoustic generation for a spherical absorber with impedance mismatch with the surrounding media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(55 Pt B), 5772–5789 (1999).
[CrossRef] [PubMed]

S. L. Jacques, A. A. Oraevsky, R. Thompson, and B. S. Gerstman, “A Working Theory and Experiments on Photomechanical Disruption of Melanosomes to Explain the Threshold for Minimal Visible Retinal Lesions for Sub-ns Laser-Pulses,” Proc. SPIE 2134, 54–65 (1994).

Giannini, M.

M. Giannini, C. J. Soares, and R. M. de Carvalho, “Ultimate tensile strength of tooth structures,” Dent. Mater. 20(4), 322–329 (2004).
[CrossRef] [PubMed]

Gilmore, R. S.

D. E. Grenoble, J. L. Katz, K. L. Dunn, K. L. Murty, and R. S. Gilmore, “The Elastic Properties of Hard Tissues and Apatites,” J. Biomed. Mater. Res. 6(3), 221–233 (1972).
[CrossRef] [PubMed]

Girard, B.

B. Girard, M. Cloutier, D. J. Wilson, C. M. L. Clokie, R. J. D. Miller, and B. C. Wilson, “Microtomographic analysis of healing of femtosecond laser bone calvarial wounds compared to mechanical instruments in mice with and without application of BMP-7,” Lasers Surg. Med. 39(5), 458–467 (2007).
[CrossRef] [PubMed]

Gould, G.

L. R. Solon, R. Aronson, and G. Gould, “Physiological implications of laser beams,” Science 134(3489), 1506–1508 (1961).
[CrossRef] [PubMed]

Grenoble, D. E.

D. E. Grenoble, J. L. Katz, K. L. Dunn, K. L. Murty, and R. S. Gilmore, “The Elastic Properties of Hard Tissues and Apatites,” J. Biomed. Mater. Res. 6(3), 221–233 (1972).
[CrossRef] [PubMed]

Grill, W.

U. Störkel, K. L. Vodopyanov, and W. Grill, “GHz ultrasound wave packets in water generated by an Er laser,” J. Phys. D 31(18), 2258–2263 (1998).
[CrossRef]

Guo, M. S.

Halle, B.

E. Persson and B. Halle, “Cell water dynamics on multiple time scales,” Proc. Natl. Acad. Sci. U.S.A. 105(17), 6266–6271 (2008).
[CrossRef] [PubMed]

Hazemann, J. L.

P. H. L. Sit, C. Bellin, B. Barbiellini, D. Testemale, J. L. Hazemann, T. Buslaps, N. Marzari, and A. Shukla, “Hydrogen bonding and coordination in normal and supercritical water from X-ray inelastic scattering,” Phys. Rev. B 76(24), 245413 (2007).
[CrossRef]

Hibst, R.

R. Hibst and U. Keller, “Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate,” Lasers Surg. Med. 9(4), 338–344 (1989).
[CrossRef] [PubMed]

Horvath, C.

T. Juhasz, R. Kurtz, C. Horvath, C. Suarez, F. Raksi, and G. Spooner, “The femtosecond blade: Applications in corneal surgery,” Opt. Photonics News 13, 24–29 (2002).
[CrossRef]

Hua, R. Z.

Huse, N.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

Hutson, M. S.

Huttman, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Itzkan, I.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The Thermoelastic Basis of Short Pulsed Laser Ablation of Biological Tissue,” Proc. Natl. Acad. Sci. U.S.A. 92(6), 1960–1964 (1995).
[CrossRef] [PubMed]

Ivanov, B.

Jacques, S. L.

S. L. Jacques, A. A. Oraevsky, R. Thompson, and B. S. Gerstman, “A Working Theory and Experiments on Photomechanical Disruption of Melanosomes to Explain the Threshold for Minimal Visible Retinal Lesions for Sub-ns Laser-Pulses,” Proc. SPIE 2134, 54–65 (1994).

Jansen, E. D.

M. A. Mackanos, J. A. Kozub, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics,” Phys. Med. Biol. 50(8), 1871–1883 (2005).
[CrossRef] [PubMed]

Jayasinghe, A.

Johnson, B.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. Oday, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Jordan, R. E.

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302(5649), 1382–1385 (2003).
[CrossRef] [PubMed]

Juhasz, T.

T. Juhasz, R. Kurtz, C. Horvath, C. Suarez, F. Raksi, and G. Spooner, “The femtosecond blade: Applications in corneal surgery,” Opt. Photonics News 13, 24–29 (2002).
[CrossRef]

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, “Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: Experiment and model,” IEEE J. Quantum Electron. 32(10), 1717–1722 (1996).
[CrossRef]

Kalinichev, A. G.

A. G. Kalinichev, “Molecular simulations of liquid and supercritical water: thermodynamics, structure, and hydrogen bonding,” Rev. Mineral. Geochem. 42, 83–129 (2001).
[CrossRef]

Kara, S.

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[CrossRef] [PubMed]

Karabutov, A. A.

A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).

R. O. Esenaliev, A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Laser-Ablation of Aqueous-Solutions with Spatially Homogeneous and Heterogeneous Absorption,” Appl. Phys. B 59(1), 73–81 (1994).
[CrossRef]

Karasev, M. E.

K. L. Vodopyanov, M. E. Karasev, L. A. Kulevskii, A. V. Lukashev, and G. R. Toker, “Dynamics of Interaction of λ=2.94 μm Laser-Emission with Thin-Layer of Liquid Water,” Pis'ma Zh. Tekh. Fiz. 14, 324–329 (1988).

Kärtner, F. X.

Katz, J. L.

D. E. Grenoble, J. L. Katz, K. L. Dunn, K. L. Murty, and R. S. Gilmore, “The Elastic Properties of Hard Tissues and Apatites,” J. Biomed. Mater. Res. 6(3), 221–233 (1972).
[CrossRef] [PubMed]

Kaxiras, E.

S. Meng and E. Kaxiras, “Mechanisms for ultrafast nonradiative relaxation in electronically excited eumelanin constituents,” Biophys. J. 95(9), 4396–4402 (2008).
[CrossRef] [PubMed]

Keller, U.

B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
[CrossRef] [PubMed]

R. Hibst and U. Keller, “Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate,” Lasers Surg. Med. 9(4), 338–344 (1989).
[CrossRef] [PubMed]

Khan, M. I.

M. I. Khan, T. Sun, and G. J. Diebold, “Photoacoustic Waves Generated by Absorption of Laser-Radiation in Optically Thin Cylinders,” J. Acoust. Soc. Am. 94(2), 931–940 (1993).
[CrossRef]

Klaushofer, K.

H. Peterlik, P. Roschger, K. Klaushofer, and P. Fratzl, “From brittle to ductile fracture of bone,” Nat. Mater. 5(1), 52–55 (2006).
[CrossRef] [PubMed]

Kollias, N.

A. G. Doukas and N. Kollias, “Transdermal drug delivery with a pressure wave,” Adv. Drug Deliv. Rev. 56(5), 559–579 (2004).
[CrossRef] [PubMed]

Kozub, J.

Kozub, J. A.

M. A. Mackanos, J. A. Kozub, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics,” Phys. Med. Biol. 50(8), 1871–1883 (2005).
[CrossRef] [PubMed]

Kraemer, D.

Kulevskii, L. A.

K. L. Vodopyanov, M. E. Karasev, L. A. Kulevskii, A. V. Lukashev, and G. R. Toker, “Dynamics of Interaction of λ=2.94 μm Laser-Emission with Thin-Layer of Liquid Water,” Pis'ma Zh. Tekh. Fiz. 14, 324–329 (1988).

Kulevsky, L. A.

K. L. Vodopyanov, L. A. Kulevsky, V. G. Mikhalevich, and A. M. Rodin, “Laser-Induced Generation of Subnanosecond Sound Pulses in Liquids,” Zh. Eksp. Teor. Fiz. 91, 114–121 (1986).

Kurtz, R.

T. Juhasz, R. Kurtz, C. Horvath, C. Suarez, F. Raksi, and G. Spooner, “The femtosecond blade: Applications in corneal surgery,” Opt. Photonics News 13, 24–29 (2002).
[CrossRef]

Letokhov, V. S.

A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).

R. O. Esenaliev, A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Laser-Ablation of Aqueous-Solutions with Spatially Homogeneous and Heterogeneous Absorption,” Appl. Phys. B 59(1), 73–81 (1994).
[CrossRef]

Lindner, J.

T. Schäfer, J. Lindner, P. Vöhringer, and D. Schwarzer, “OD stretch vibrational relaxation of HOD in liquid to supercritical H(2)O,” J. Chem. Phys. 130(22), 224502 (2009).
[CrossRef] [PubMed]

Liu, D. L. D.

T. D. Mast, L. P. Souriau, D. L. D. Liu, M. Tabei, A. I. Nachman, and R. C. Waag, “A k-space method for large-scale models of wave propagation in tissue,” IEEE T. Ultrason. Ferr. 48(2), 341–354 (2001).
[CrossRef]

Loesel, F. H.

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, “Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: Experiment and model,” IEEE J. Quantum Electron. 32(10), 1717–1722 (1996).
[CrossRef]

Logan, R.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. Oday, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Lukashev, A. V.

K. L. Vodopyanov, M. E. Karasev, L. A. Kulevskii, A. V. Lukashev, and G. R. Toker, “Dynamics of Interaction of λ=2.94 μm Laser-Emission with Thin-Layer of Liquid Water,” Pis'ma Zh. Tekh. Fiz. 14, 324–329 (1988).

Maciunas, R.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. Oday, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Mackanos, M. A.

M. A. Mackanos, J. A. Kozub, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics,” Phys. Med. Biol. 50(8), 1871–1883 (2005).
[CrossRef] [PubMed]

Marzari, N.

P. H. L. Sit, C. Bellin, B. Barbiellini, D. Testemale, J. L. Hazemann, T. Buslaps, N. Marzari, and A. Shukla, “Hydrogen bonding and coordination in normal and supercritical water from X-ray inelastic scattering,” Phys. Rev. B 76(24), 245413 (2007).
[CrossRef]

Mast, T. D.

T. D. Mast, L. P. Souriau, D. L. D. Liu, M. Tabei, A. I. Nachman, and R. C. Waag, “A k-space method for large-scale models of wave propagation in tissue,” IEEE T. Ultrason. Ferr. 48(2), 341–354 (2001).
[CrossRef]

McCormack, S. M.

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127(1-2), 852–856 (1998).
[CrossRef]

Mendenhall, M.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. Oday, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Meng, S.

S. Meng and E. Kaxiras, “Mechanisms for ultrafast nonradiative relaxation in electronically excited eumelanin constituents,” Biophys. J. 95(9), 4396–4402 (2008).
[CrossRef] [PubMed]

Meredith, N.

N. Meredith, D. J. Setchell, and S. A. V. Swanson, “The application of thermoelastic analysis to study stresses in human teeth,” J. Oral Rehabil. 24(11), 813–822 (1997).
[CrossRef] [PubMed]

Mikhalevich, V. G.

K. L. Vodopyanov, L. A. Kulevsky, V. G. Mikhalevich, and A. M. Rodin, “Laser-Induced Generation of Subnanosecond Sound Pulses in Liquids,” Zh. Eksp. Teor. Fiz. 91, 114–121 (1986).

Mikic, B. B.

A. D. Yablon, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, “Physical mechanisms of pulsed infrared laser ablation of biological tissues,” Proc. SPIE 3343, 69–77 (1998).
[CrossRef]

Miller, R. D.

Miller, R. J. D.

B. Girard, M. Cloutier, D. J. Wilson, C. M. L. Clokie, R. J. D. Miller, and B. C. Wilson, “Microtomographic analysis of healing of femtosecond laser bone calvarial wounds compared to mechanical instruments in mice with and without application of BMP-7,” Lasers Surg. Med. 39(5), 458–467 (2007).
[CrossRef] [PubMed]

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302(5649), 1382–1385 (2003).
[CrossRef] [PubMed]

R. J. D. Miller, “Vibrational energy relaxation and structural dynamics of heme proteins,” Annu. Rev. Phys. Chem. 42(1), 581–614 (1991).
[CrossRef] [PubMed]

Moser, M.

Murty, K. L.

D. E. Grenoble, J. L. Katz, K. L. Dunn, K. L. Murty, and R. S. Gilmore, “The Elastic Properties of Hard Tissues and Apatites,” J. Biomed. Mater. Res. 6(3), 221–233 (1972).
[CrossRef] [PubMed]

Nachman, A. I.

T. D. Mast, L. P. Souriau, D. L. D. Liu, M. Tabei, A. I. Nachman, and R. C. Waag, “A k-space method for large-scale models of wave propagation in tissue,” IEEE T. Ultrason. Ferr. 48(2), 341–354 (2001).
[CrossRef]

Nibbering, E. T. J.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

Niemz, M. H.

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, “Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: Experiment and model,” IEEE J. Quantum Electron. 32(10), 1717–1722 (1996).
[CrossRef]

M. H. Niemz, “Cavity preparation with the Nd:YLF picosecond laser,” J. Dent. Res. 74(5), 1194–1199 (1995).
[CrossRef] [PubMed]

M. H. Niemz, L. Eisenmann, and T. Pioch, Vergleich von drei Lasersystemen zur Abtragung von Zahnschmelz 103, 1252–1256 (1993).

Nishioka, N. S.

A. D. Yablon, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, “Physical mechanisms of pulsed infrared laser ablation of biological tissues,” Proc. SPIE 3343, 69–77 (1998).
[CrossRef]

Noack, J.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Oday, D.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. Oday, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Oraevsky, A. A.

S. L. Jacques, A. A. Oraevsky, R. Thompson, and B. S. Gerstman, “A Working Theory and Experiments on Photomechanical Disruption of Melanosomes to Explain the Threshold for Minimal Visible Retinal Lesions for Sub-ns Laser-Pulses,” Proc. SPIE 2134, 54–65 (1994).

Ossoff, R.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. Oday, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103(2), 487–518 (2003).
[CrossRef] [PubMed]

G. Paltauf and H. Schmidt-Kloiber, “Photoacoustic cavitation in spherical and cylindrical absorbers,” Appl. Phys.Mater. Sci . 68, 525–531 (1999).
[CrossRef]

Perelman, L. T.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The Thermoelastic Basis of Short Pulsed Laser Ablation of Biological Tissue,” Proc. Natl. Acad. Sci. U.S.A. 92(6), 1960–1964 (1995).
[CrossRef] [PubMed]

Persson, E.

E. Persson and B. Halle, “Cell water dynamics on multiple time scales,” Proc. Natl. Acad. Sci. U.S.A. 105(17), 6266–6271 (2008).
[CrossRef] [PubMed]

Peterlik, H.

H. Peterlik, P. Roschger, K. Klaushofer, and P. Fratzl, “From brittle to ductile fracture of bone,” Nat. Mater. 5(1), 52–55 (2006).
[CrossRef] [PubMed]

Pioch, T.

M. H. Niemz, L. Eisenmann, and T. Pioch, Vergleich von drei Lasersystemen zur Abtragung von Zahnschmelz 103, 1252–1256 (1993).

Podymova, N. B.

A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).

R. O. Esenaliev, A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Laser-Ablation of Aqueous-Solutions with Spatially Homogeneous and Heterogeneous Absorption,” Appl. Phys. B 59(1), 73–81 (1994).
[CrossRef]

Pruss, A.

W. Wagner and A. Pruss, “The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use,” J. Phys. Chem. Ref. Data 31(2), 387–535 (1999).
[CrossRef]

Raksi, F.

T. Juhasz, R. Kurtz, C. Horvath, C. Suarez, F. Raksi, and G. Spooner, “The femtosecond blade: Applications in corneal surgery,” Opt. Photonics News 13, 24–29 (2002).
[CrossRef]

Ramos, M. M. D.

A. V. Verde, M. M. D. Ramos, and A. M. Stoneham, “The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation,” Phys. Med. Biol. 52(10), 2703–2717 (2007).
[CrossRef] [PubMed]

Reinisch, L.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. Oday, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Rodin, A. M.

K. L. Vodopyanov, L. A. Kulevsky, V. G. Mikhalevich, and A. M. Rodin, “Laser-Induced Generation of Subnanosecond Sound Pulses in Liquids,” Zh. Eksp. Teor. Fiz. 91, 114–121 (1986).

Roschger, P.

H. Peterlik, P. Roschger, K. Klaushofer, and P. Fratzl, “From brittle to ductile fracture of bone,” Nat. Mater. 5(1), 52–55 (2006).
[CrossRef] [PubMed]

Scammon, R. J.

R. S. Dingus and R. J. Scammon, “Gruneisen-Stress Induced Ablation of Biological Tissue,” Proc. SPIE 1427, 45–54 (1991).
[CrossRef]

Schäfer, T.

T. Schäfer, J. Lindner, P. Vöhringer, and D. Schwarzer, “OD stretch vibrational relaxation of HOD in liquid to supercritical H(2)O,” J. Chem. Phys. 130(22), 224502 (2009).
[CrossRef] [PubMed]

Schmidt-Kloiber, H.

G. Paltauf and H. Schmidt-Kloiber, “Photoacoustic cavitation in spherical and cylindrical absorbers,” Appl. Phys.Mater. Sci . 68, 525–531 (1999).
[CrossRef]

Schwarzer, D.

T. Schäfer, J. Lindner, P. Vöhringer, and D. Schwarzer, “OD stretch vibrational relaxation of HOD in liquid to supercritical H(2)O,” J. Chem. Phys. 130(22), 224502 (2009).
[CrossRef] [PubMed]

Sehgal, C. M.

C. M. Sehgal, “Quantitative relationship between tissue composition and scattering of ultrasound,” J. Acoust. Soc. Am. 94(4), 1944–1952 (1993).
[CrossRef] [PubMed]

Seka, W.

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127(1-2), 852–856 (1998).
[CrossRef]

Setchell, D. J.

N. Meredith, D. J. Setchell, and S. A. V. Swanson, “The application of thermoelastic analysis to study stresses in human teeth,” J. Oral Rehabil. 24(11), 813–822 (1997).
[CrossRef] [PubMed]

Shori, R.

D. Fried, R. Shori, and C. Duhn, “Backspallation due to ablative recoil generated during Q-switched Er:YAG ablation of dental hard tissue,” Proc. SPIE 3248, 78–85 (1998).
[CrossRef]

Shori, R. K.

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ=2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 959–970 (2001).
[CrossRef]

Shukla, A.

P. H. L. Sit, C. Bellin, B. Barbiellini, D. Testemale, J. L. Hazemann, T. Buslaps, N. Marzari, and A. Shukla, “Hydrogen bonding and coordination in normal and supercritical water from X-ray inelastic scattering,” Phys. Rev. B 76(24), 245413 (2007).
[CrossRef]

Sit, P. H. L.

P. H. L. Sit, C. Bellin, B. Barbiellini, D. Testemale, J. L. Hazemann, T. Buslaps, N. Marzari, and A. Shukla, “Hydrogen bonding and coordination in normal and supercritical water from X-ray inelastic scattering,” Phys. Rev. B 76(24), 245413 (2007).
[CrossRef]

Siwick, B. J.

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302(5649), 1382–1385 (2003).
[CrossRef] [PubMed]

Soares, C. J.

M. Giannini, C. J. Soares, and R. M. de Carvalho, “Ultimate tensile strength of tooth structures,” Dent. Mater. 20(4), 322–329 (2004).
[CrossRef] [PubMed]

Solon, L. R.

L. R. Solon, R. Aronson, and G. Gould, “Physiological implications of laser beams,” Science 134(3489), 1506–1508 (1961).
[CrossRef] [PubMed]

Souriau, L. P.

T. D. Mast, L. P. Souriau, D. L. D. Liu, M. Tabei, A. I. Nachman, and R. C. Waag, “A k-space method for large-scale models of wave propagation in tissue,” IEEE T. Ultrason. Ferr. 48(2), 341–354 (2001).
[CrossRef]

Spooner, G.

T. Juhasz, R. Kurtz, C. Horvath, C. Suarez, F. Raksi, and G. Spooner, “The femtosecond blade: Applications in corneal surgery,” Opt. Photonics News 13, 24–29 (2002).
[CrossRef]

Stafsudd, O. M.

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ=2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 959–970 (2001).
[CrossRef]

Stoneham, A. M.

A. V. Verde, M. M. D. Ramos, and A. M. Stoneham, “The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation,” Phys. Med. Biol. 52(10), 2703–2717 (2007).
[CrossRef] [PubMed]

Störkel, U.

U. Störkel, K. L. Vodopyanov, and W. Grill, “GHz ultrasound wave packets in water generated by an Er laser,” J. Phys. D 31(18), 2258–2263 (1998).
[CrossRef]

Suarez, C.

T. Juhasz, R. Kurtz, C. Horvath, C. Suarez, F. Raksi, and G. Spooner, “The femtosecond blade: Applications in corneal surgery,” Opt. Photonics News 13, 24–29 (2002).
[CrossRef]

Sun, J. M.

J. M. Sun and B. S. Gerstman, “Photoacoustic generation for a spherical absorber with impedance mismatch with the surrounding media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(55 Pt B), 5772–5789 (1999).
[CrossRef] [PubMed]

Sun, T.

M. I. Khan, T. Sun, and G. J. Diebold, “Photoacoustic Waves Generated by Absorption of Laser-Radiation in Optically Thin Cylinders,” J. Acoust. Soc. Am. 94(2), 931–940 (1993).
[CrossRef]

Swanson, S. A. V.

N. Meredith, D. J. Setchell, and S. A. V. Swanson, “The application of thermoelastic analysis to study stresses in human teeth,” J. Oral Rehabil. 24(11), 813–822 (1997).
[CrossRef] [PubMed]

Tabei, M.

T. D. Mast, L. P. Souriau, D. L. D. Liu, M. Tabei, A. I. Nachman, and R. C. Waag, “A k-space method for large-scale models of wave propagation in tissue,” IEEE T. Ultrason. Ferr. 48(2), 341–354 (2001).
[CrossRef]

Testemale, D.

P. H. L. Sit, C. Bellin, B. Barbiellini, D. Testemale, J. L. Hazemann, T. Buslaps, N. Marzari, and A. Shukla, “Hydrogen bonding and coordination in normal and supercritical water from X-ray inelastic scattering,” Phys. Rev. B 76(24), 245413 (2007).
[CrossRef]

Thompson, R.

S. L. Jacques, A. A. Oraevsky, R. Thompson, and B. S. Gerstman, “A Working Theory and Experiments on Photomechanical Disruption of Melanosomes to Explain the Threshold for Minimal Visible Retinal Lesions for Sub-ns Laser-Pulses,” Proc. SPIE 2134, 54–65 (1994).

Toker, G. R.

K. L. Vodopyanov, M. E. Karasev, L. A. Kulevskii, A. V. Lukashev, and G. R. Toker, “Dynamics of Interaction of λ=2.94 μm Laser-Emission with Thin-Layer of Liquid Water,” Pis'ma Zh. Tekh. Fiz. 14, 324–329 (1988).

Tribble, J.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. Oday, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[CrossRef] [PubMed]

A. D. Yablon, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, “Physical mechanisms of pulsed infrared laser ablation of biological tissues,” Proc. SPIE 3343, 69–77 (1998).
[CrossRef]

Verde, A. V.

A. V. Verde, M. M. D. Ramos, and A. M. Stoneham, “The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation,” Phys. Med. Biol. 52(10), 2703–2717 (2007).
[CrossRef] [PubMed]

Vodopyanov, K. L.

U. Störkel, K. L. Vodopyanov, and W. Grill, “GHz ultrasound wave packets in water generated by an Er laser,” J. Phys. D 31(18), 2258–2263 (1998).
[CrossRef]

K. L. Vodopyanov, “Saturation studies of H2O and HDO Near 3400 cm–1 using intense picosecond laser pulses,” J. Chem. Phys. 94(8), 5389–5393 (1991).
[CrossRef]

K. L. Vodopyanov, M. E. Karasev, L. A. Kulevskii, A. V. Lukashev, and G. R. Toker, “Dynamics of Interaction of λ=2.94 μm Laser-Emission with Thin-Layer of Liquid Water,” Pis'ma Zh. Tekh. Fiz. 14, 324–329 (1988).

K. L. Vodopyanov, L. A. Kulevsky, V. G. Mikhalevich, and A. M. Rodin, “Laser-Induced Generation of Subnanosecond Sound Pulses in Liquids,” Zh. Eksp. Teor. Fiz. 91, 114–121 (1986).

Vogel, A.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[CrossRef] [PubMed]

Vöhringer, P.

T. Schäfer, J. Lindner, P. Vöhringer, and D. Schwarzer, “OD stretch vibrational relaxation of HOD in liquid to supercritical H(2)O,” J. Chem. Phys. 130(22), 224502 (2009).
[CrossRef] [PubMed]

von Rosenberg, C.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The Thermoelastic Basis of Short Pulsed Laser Ablation of Biological Tissue,” Proc. Natl. Acad. Sci. U.S.A. 92(6), 1960–1964 (1995).
[CrossRef] [PubMed]

Waag, R. C.

T. D. Mast, L. P. Souriau, D. L. D. Liu, M. Tabei, A. I. Nachman, and R. C. Waag, “A k-space method for large-scale models of wave propagation in tissue,” IEEE T. Ultrason. Ferr. 48(2), 341–354 (2001).
[CrossRef]

Wagner, W.

W. Wagner and A. Pruss, “The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use,” J. Phys. Chem. Ref. Data 31(2), 387–535 (1999).
[CrossRef]

Walsh, J. T.

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ=2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 959–970 (2001).
[CrossRef]

Walston, A. A.

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ=2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 959–970 (2001).
[CrossRef]

Wang, X. M.

J. Ge, F. Z. Cui, X. M. Wang, and H. L. Feng, “Property variations in the prism and the organic sheath within enamel by nanoindentation,” Biomaterials 26(16), 3333–3339 (2005).
[CrossRef] [PubMed]

Werkhaven, J.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. Oday, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Wilson, B. C.

B. Girard, M. Cloutier, D. J. Wilson, C. M. L. Clokie, R. J. D. Miller, and B. C. Wilson, “Microtomographic analysis of healing of femtosecond laser bone calvarial wounds compared to mechanical instruments in mice with and without application of BMP-7,” Lasers Surg. Med. 39(5), 458–467 (2007).
[CrossRef] [PubMed]

Wilson, D. J.

B. Girard, M. Cloutier, D. J. Wilson, C. M. L. Clokie, R. J. D. Miller, and B. C. Wilson, “Microtomographic analysis of healing of femtosecond laser bone calvarial wounds compared to mechanical instruments in mice with and without application of BMP-7,” Lasers Surg. Med. 39(5), 458–467 (2007).
[CrossRef] [PubMed]

Xiao, Y. W.

Yablon, A. D.

A. D. Yablon, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, “Physical mechanisms of pulsed infrared laser ablation of biological tissues,” Proc. SPIE 3343, 69–77 (1998).
[CrossRef]

Zhang, G.

Zuerlein, M.

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127(1-2), 852–856 (1998).
[CrossRef]

Adv. Drug Deliv. Rev.

A. G. Doukas and N. Kollias, “Transdermal drug delivery with a pressure wave,” Adv. Drug Deliv. Rev. 56(5), 559–579 (2004).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem.

R. J. D. Miller, “Vibrational energy relaxation and structural dynamics of heme proteins,” Annu. Rev. Phys. Chem. 42(1), 581–614 (1991).
[CrossRef] [PubMed]

Appl. Phys. B

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

R. O. Esenaliev, A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Laser-Ablation of Aqueous-Solutions with Spatially Homogeneous and Heterogeneous Absorption,” Appl. Phys. B 59(1), 73–81 (1994).
[CrossRef]

A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).

Appl. Phys.Mater. Sci

G. Paltauf and H. Schmidt-Kloiber, “Photoacoustic cavitation in spherical and cylindrical absorbers,” Appl. Phys.Mater. Sci . 68, 525–531 (1999).
[CrossRef]

Appl. Surf. Sci.

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127(1-2), 852–856 (1998).
[CrossRef]

Biomaterials

J. Ge, F. Z. Cui, X. M. Wang, and H. L. Feng, “Property variations in the prism and the organic sheath within enamel by nanoindentation,” Biomaterials 26(16), 3333–3339 (2005).
[CrossRef] [PubMed]

Biophys. J.

S. Meng and E. Kaxiras, “Mechanisms for ultrafast nonradiative relaxation in electronically excited eumelanin constituents,” Biophys. J. 95(9), 4396–4402 (2008).
[CrossRef] [PubMed]

Caries Res.

G. H. Dibdin, “The Water in Human Dental Enamel and Its Diffusional Exchange Measured by Clearance of Tritiated Water from Enamel Slabs of Varying Thickness,” Caries Res. 27(2), 81–86 (1993).
[CrossRef] [PubMed]

Chem. Rev.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[CrossRef] [PubMed]

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103(2), 487–518 (2003).
[CrossRef] [PubMed]

Dent. Mater.

M. Giannini, C. J. Soares, and R. M. de Carvalho, “Ultimate tensile strength of tooth structures,” Dent. Mater. 20(4), 322–329 (2004).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, “Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: Experiment and model,” IEEE J. Quantum Electron. 32(10), 1717–1722 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ=2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 959–970 (2001).
[CrossRef]

IEEE T. Ultrason. Ferr.

T. D. Mast, L. P. Souriau, D. L. D. Liu, M. Tabei, A. I. Nachman, and R. C. Waag, “A k-space method for large-scale models of wave propagation in tissue,” IEEE T. Ultrason. Ferr. 48(2), 341–354 (2001).
[CrossRef]

J. Acoust. Soc. Am.

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[CrossRef] [PubMed]

C. M. Sehgal, “Quantitative relationship between tissue composition and scattering of ultrasound,” J. Acoust. Soc. Am. 94(4), 1944–1952 (1993).
[CrossRef] [PubMed]

M. I. Khan, T. Sun, and G. J. Diebold, “Photoacoustic Waves Generated by Absorption of Laser-Radiation in Optically Thin Cylinders,” J. Acoust. Soc. Am. 94(2), 931–940 (1993).
[CrossRef]

J. Biomed. Mater. Res.

D. E. Grenoble, J. L. Katz, K. L. Dunn, K. L. Murty, and R. S. Gilmore, “The Elastic Properties of Hard Tissues and Apatites,” J. Biomed. Mater. Res. 6(3), 221–233 (1972).
[CrossRef] [PubMed]

J. Chem. Phys.

K. L. Vodopyanov, “Saturation studies of H2O and HDO Near 3400 cm–1 using intense picosecond laser pulses,” J. Chem. Phys. 94(8), 5389–5393 (1991).
[CrossRef]

T. Schäfer, J. Lindner, P. Vöhringer, and D. Schwarzer, “OD stretch vibrational relaxation of HOD in liquid to supercritical H(2)O,” J. Chem. Phys. 130(22), 224502 (2009).
[CrossRef] [PubMed]

J. Dent. Res.

M. H. Niemz, “Cavity preparation with the Nd:YLF picosecond laser,” J. Dent. Res. 74(5), 1194–1199 (1995).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Oral Rehabil.

N. Meredith, D. J. Setchell, and S. A. V. Swanson, “The application of thermoelastic analysis to study stresses in human teeth,” J. Oral Rehabil. 24(11), 813–822 (1997).
[CrossRef] [PubMed]

J. Phys. Chem. Ref. Data

W. Wagner and A. Pruss, “The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use,” J. Phys. Chem. Ref. Data 31(2), 387–535 (1999).
[CrossRef]

J. Phys. D

U. Störkel, K. L. Vodopyanov, and W. Grill, “GHz ultrasound wave packets in water generated by an Er laser,” J. Phys. D 31(18), 2258–2263 (1998).
[CrossRef]

Lasers Surg. Med.

R. Hibst and U. Keller, “Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate,” Lasers Surg. Med. 9(4), 338–344 (1989).
[CrossRef] [PubMed]

B. Girard, M. Cloutier, D. J. Wilson, C. M. L. Clokie, R. J. D. Miller, and B. C. Wilson, “Microtomographic analysis of healing of femtosecond laser bone calvarial wounds compared to mechanical instruments in mice with and without application of BMP-7,” Lasers Surg. Med. 39(5), 458–467 (2007).
[CrossRef] [PubMed]

Nat. Mater.

H. Peterlik, P. Roschger, K. Klaushofer, and P. Fratzl, “From brittle to ductile fracture of bone,” Nat. Mater. 5(1), 52–55 (2006).
[CrossRef] [PubMed]

Nature

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. Oday, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Photonics News

T. Juhasz, R. Kurtz, C. Horvath, C. Suarez, F. Raksi, and G. Spooner, “The femtosecond blade: Applications in corneal surgery,” Opt. Photonics News 13, 24–29 (2002).
[CrossRef]

Phys. Med. Biol.

A. V. Verde, M. M. D. Ramos, and A. M. Stoneham, “The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation,” Phys. Med. Biol. 52(10), 2703–2717 (2007).
[CrossRef] [PubMed]

M. A. Mackanos, J. A. Kozub, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics,” Phys. Med. Biol. 50(8), 1871–1883 (2005).
[CrossRef] [PubMed]

Phys. Rev. B

P. H. L. Sit, C. Bellin, B. Barbiellini, D. Testemale, J. L. Hazemann, T. Buslaps, N. Marzari, and A. Shukla, “Hydrogen bonding and coordination in normal and supercritical water from X-ray inelastic scattering,” Phys. Rev. B 76(24), 245413 (2007).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

J. M. Sun and B. S. Gerstman, “Photoacoustic generation for a spherical absorber with impedance mismatch with the surrounding media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(55 Pt B), 5772–5789 (1999).
[CrossRef] [PubMed]

Pis'ma Zh. Tekh. Fiz.

K. L. Vodopyanov, M. E. Karasev, L. A. Kulevskii, A. V. Lukashev, and G. R. Toker, “Dynamics of Interaction of λ=2.94 μm Laser-Emission with Thin-Layer of Liquid Water,” Pis'ma Zh. Tekh. Fiz. 14, 324–329 (1988).

Proc. Natl. Acad. Sci. U.S.A.

E. Persson and B. Halle, “Cell water dynamics on multiple time scales,” Proc. Natl. Acad. Sci. U.S.A. 105(17), 6266–6271 (2008).
[CrossRef] [PubMed]

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The Thermoelastic Basis of Short Pulsed Laser Ablation of Biological Tissue,” Proc. Natl. Acad. Sci. U.S.A. 92(6), 1960–1964 (1995).
[CrossRef] [PubMed]

Proc. SPIE

A. D. Yablon, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, “Physical mechanisms of pulsed infrared laser ablation of biological tissues,” Proc. SPIE 3343, 69–77 (1998).
[CrossRef]

S. L. Jacques, A. A. Oraevsky, R. Thompson, and B. S. Gerstman, “A Working Theory and Experiments on Photomechanical Disruption of Melanosomes to Explain the Threshold for Minimal Visible Retinal Lesions for Sub-ns Laser-Pulses,” Proc. SPIE 2134, 54–65 (1994).

D. Fried, R. Shori, and C. Duhn, “Backspallation due to ablative recoil generated during Q-switched Er:YAG ablation of dental hard tissue,” Proc. SPIE 3248, 78–85 (1998).
[CrossRef]

R. S. Dingus and R. J. Scammon, “Gruneisen-Stress Induced Ablation of Biological Tissue,” Proc. SPIE 1427, 45–54 (1991).
[CrossRef]

Rev. Mineral. Geochem.

A. G. Kalinichev, “Molecular simulations of liquid and supercritical water: thermodynamics, structure, and hydrogen bonding,” Rev. Mineral. Geochem. 42, 83–129 (2001).
[CrossRef]

Science

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302(5649), 1382–1385 (2003).
[CrossRef] [PubMed]

L. R. Solon, R. Aronson, and G. Gould, “Physiological implications of laser beams,” Science 134(3489), 1506–1508 (1961).
[CrossRef] [PubMed]

Ultrasound Med. Biol.

A. G. Doukas and T. J. Flotte, “Physical characteristics and biological effects of laser-induced stress waves,” Ultrasound Med. Biol. 22(2), 151–164 (1996).
[CrossRef] [PubMed]

Zh. Eksp. Teor. Fiz.

K. L. Vodopyanov, L. A. Kulevsky, V. G. Mikhalevich, and A. M. Rodin, “Laser-Induced Generation of Subnanosecond Sound Pulses in Liquids,” Zh. Eksp. Teor. Fiz. 91, 114–121 (1986).

Other

K. Franjic, F. Talbot, and R. J. D. Miller, (to be submitted)

M. H. Niemz, L. Eisenmann, and T. Pioch, Vergleich von drei Lasersystemen zur Abtragung von Zahnschmelz 103, 1252–1256 (1993).

A. Nanci, and A. Ten Cate, Ten Cate's oral histology: development, structure, and function, (Mosby, St. Louis, 2003).

A. Nitzan, Chemical Dynamics in Condensed Phases, (Oxford University Press, New York, 2006).

J. Black and G. Hastings, eds., Handbook of Biomaterial Properties, (Chapman & Hall, London, 1998).

A. J. Welch and M. J. C. van Gemert, eds., Optical-Thermal Response of Laser-Irradiated Tissue, (Plenum Press, New York, 1995).

J. D. Murray, Mathematical Biology, (Springer, New York, 2008).

M. H. Niemz, Laser-Tissue Interactions, Fundamentals and Applications, (Springer-Verlag, Berlin Heidelberg, 2007).

K. K. Shung and G. A. Thieme, Ultrasonic Scattering in Biological Tissues, (CRC, Boca Raton, 1993).

K. K. Shung, “Ultrasound and Tissue Interaction,” in Encyclopedia of Biomaterials and Biomedical Engineering, G. E. Wnek and G. L. Bowlin, eds., (Informa HealthCare, 2008).

G. W. C. Kaye, and T. H. Laby, Tables of Physical and Chemical Constants: And Some Mathematical Functions, (Longman, 1995).

L. A. Chernov, Wave propagation in a random medium, (Dover Publications, 1967).

K. Franjic, F. Talbot, and R. J. D. Miller, (to be submitted)

A. D. Pierce, “The wave theory of sound,” in Acoustics: An Introduction to Its Physical Principles and Applications, (Acoustical Society of America, Woodbury, NY, 1989).

B. Cox, Department of Medical Physics and Bioengineering, University College London, UK, (personal communication, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup (not in scale). The system’s numerical parameters are given in Section 2.2. The elements in the dashed rectangle were placed in the plane perpendicular to the one corresponding to the image. The galvo scanner GS steered the beam in the y-plane across the sample S while simultaneously the motorized stage MTS traveled in the x-plane. DBS-dichroic beam-splitter, L-lens, M-mirror, GF-germanium filter. (b) Image of a typical crater for fluences around 0.5 J/cm2 created by single pulse impacts. The highly irregular crater shape can be observed with feature sizes on the order of a few µm. (c) SEM image of a typical crater ablated using scanned laser beam with 330 µm diameter, 1 kHz repetition rate, and 0.75 J/cm2 pulse peak fluence. (d) Magnified detail of the crater’s top corner.

Fig. 2
Fig. 2

SEM images of a crater floor (left) and a crater wall perpendicular to the enamel rod axis recorded under 35 degree angle relative to the polished surface (right) at different levels of magnification. The applied laser fluence was 0.75 J/cm2. Uniform texture with roughness of around 1 µm can be observed in both directions with rod structure completely gone. No signs of melting or cracking could be detected.

Fig. 3
Fig. 3

The enamel tissue model consists of a single rod cross section made of water, interrod, rod, and sheath. The water is contained in small pores with 70-150 nm in diameter and randomly distributed mainly around the sheath. The simulation space size was 4.8×4.8 µm. The profile shown at the image was created after averaging and filtering to avoid aliasing.

Fig. 5
Fig. 5

(Color) Spatial domain spectra of stress field fluctuations were averaged over the simulation time, normalized to unity, and fitted to discrete points. For pulse durations less than 1 ns, the spectra rapidly broaden as a consequence of micro-stress confinement and heterogeneous distribution of vibrational chromophores.

Fig. 4
Fig. 4

(Color) Snapshots of the compressive stress fields created by depositing 50 ps FWHM long pulse with F=0.75 J/cm2 incidence fluence into the enamel model structure defined in Fig. 3 taken at 10 ps (a), 150 ps (b), 650 ps (c), and 800 ps (d) after the pulse peak arrival. Large localized positive and negative stress amplitudes appear within 1 ns after the pulse deposition with maximum tensile amplitudes greatly exceeding the static enamel UTS of –40 MPa.

Fig. 6
Fig. 6

(Color) Averaged and normalized time domain spectra of field fluctuations observed at 144 uniformly distributed spatial points and fitted to discrete points. The spectra roughly resample the spatial domain as expected through dispersion relations. Broadband high frequency transients become excited using the 50 ps pulse and are not excited with longer pulses.

Fig. 7
Fig. 7

Maximum tensile amplitude detected during the simulation time for different pulse durations. The maximum tensile amplitude rapidly increases as conditions for micro-stress confinement are approached.

Tables (2)

Tables Icon

Table 1 Pressure amplitude attenuation coefficients for common tissues.

Tables Icon

Table 2 Material parameters for the structural elements of the model enamel used in numerical simulations.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

F ( z ) = F 0 exp ( α z )
d = α 1 ln ( F 0 / F t h ) .
d σ = Γ     d q .
Γ = ( B β ) / ( ρ C v )
2 p ( x , t ) t 2 v s ( x ) 2 ρ ( x ) ( 1 ρ ( x ) p ( x , t ) ) = Γ ( x ) Ψ ( x , t ) t
Ψ ( x , t ) = H ( x ) d S ( t ) d t ;
H ( x ) = F I N C α ( x ) Δ y Δ y = F I N C α ( x )
h ( x , t ) = v S 0 2 v ( x ) 2 ρ ( x ) 1 2 Γ ( x ) H ( x , t )

Metrics