Abstract

We present a three-color multiplex coherent anti-Stokes Raman scattering (CARS) setup that facilitates a prompt recording of broadband CARS spectra along with a fast CARS imaging. With separate narrowband Stokes and probe beams being introduced in the near IR, we are able to incorporate a stable, wideband Ti:sapphire femtosecond laser as a pump beam that covers the full range of Raman shift for CHn stretching vibrational modes. Experimentally, high-resolution multiplex CARS signals are allowed to investigate molecular vibrations over the range of 2650 cm-1–3050 cm-1, which are spectrally integrated to construct lipid-sensitive images. It is demonstrated that the proposed implementation promises a particular benefit on CARS imaging of lipid-rich tissue structures by providing detailed information on CHn Raman-active vibrations at points of interest on the CARS images that can be obtained at high frame rates.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibration imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
    [CrossRef]
  2. J.-X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, "Laser-scanning Coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502-509 (2002).
    [CrossRef] [PubMed]
  3. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
    [CrossRef] [PubMed]
  4. T. Hellerer, C. Ax¨ang, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 104, 14658-14663 (2007).
    [CrossRef] [PubMed]
  5. H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, "Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering," J. Biomed. Opt. 11, 050502 (2006).
    [CrossRef] [PubMed]
  6. A. H. Chau, J. T. Motz, J. A. Gardecki, S. Waxman, B. E. Bouma, and G. J. Terney "Fingerprint and highwavenumber Raman spectroscopy in a human-swine coronary xenograft in vivo," J. Biomed. Opt. 13, 040501 (2008).
    [CrossRef] [PubMed]
  7. M. Müller and J. M. Schins, "Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy," J. Phys. Chem. B 106, 3715-3723 (2002).
    [CrossRef]
  8. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles," J. Phys. Chem. B 106, 8493-8498 (2002).
    [CrossRef]
  9. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
  10. M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, "Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared," Opt. Lett. 33, 923-925 (2008).
    [CrossRef] [PubMed]
  11. T. W. Kee and M. T. Cicerone, "Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 29, 2701-2703 (2004).
    [CrossRef] [PubMed]
  12. H. Kano and H. Hamaguchi, "Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy," Opt. Express 13, 1322-1327 (2005).
    [CrossRef] [PubMed]
  13. S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, "Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths," Opt. Express 15, 4848-4856 (2007).
    [CrossRef]
  14. E. R. Andresen, V. Birkedal, J. Thøgersen, and S. R. Keiding, "Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift," Opt. Lett. 31, 1328-1330 (2006).
    [CrossRef] [PubMed]
  15. C. Heinrich, A. Hofer, A. Ritsch, C. Ciardi, S. Bernet, and M. Ritsch-Marte, "Selective imaging of saturated and unsaturated lipids by wide-field CARS-microscopy," Opt. Express 16, 2699-2708 (2008).
    [CrossRef] [PubMed]
  16. G. Socrates, Infrared and Raman characteristic group frequencies, 3rd/ed., (John Wiley & Sons, New York, 2001), Chap. 23.
  17. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, "Optimizing the laser-pulse configuration for coherent Raman spectroscopy," Science 316, 265-268 (2007).
    [CrossRef] [PubMed]
  18. Y. J. Lee, Y. Liu, and M. T. Cicerone, "Characterization of three-color CARS in a two-color broadband CARS spectrum," Opt. Lett. 32, 3370-3372 (2007).
    [CrossRef] [PubMed]
  19. F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, "Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 31, 1292-1294 (2006).
    [CrossRef] [PubMed]
  20. N. Dudovich, D. Oron, and Y. Siberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
    [CrossRef] [PubMed]
  21. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Narrow-band coherent anti-Stokes Raman signals from broad-band pulses," Phys. Rev. Lett. 88, 063004 (2002).
    [CrossRef] [PubMed]
  22. S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, "Application of spectral phase shaping to high resolution CARS spectroscopy," Opt. Express 16, 7985-7996 (2008).
    [CrossRef] [PubMed]
  23. Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, "Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy," Opt. Express 14, 3942-3951 (2006).
    [CrossRef]
  24. T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J.-X. Cheng, "Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy," J. Biomed. Opt. 12, 054007 (2007).
    [CrossRef] [PubMed]
  25. H.-W. Wang, I. M. Langohr, M. Sturek, and J.-X. Cheng, "Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy," Arterioscler. Thromb. Vasc. Biol. 29, 1342-1348 (2009).
    [CrossRef] [PubMed]
  26. D. M. Small, "George Lyman Duff memorial lecture - Progression and regression of atherosclerotic lesions: Insights from lipid physical biochemistry," Arterioscler. Thromb. Vasc. Biol. 8, 103-129 (1988).
    [CrossRef]
  27. B. Lundberg B, "Chemical composition and physical state of lipid deposits ina therosclerosis," Atherosclerosis 56, 93-110(1985).
    [CrossRef] [PubMed]
  28. R. Virmani, a. P. Burke, A. Farb, and F. D. Kolodgie, "Pathology of the vulnerable plaque," J. Am. Coll. Cardiol. 47(C), C13-18 (2006).
    [CrossRef]
  29. G. S. Abela and K. Aziz, "Cholesterol crystals cause mechanical damage to biological membranes: a proposed mechanism of plaque rupture and erosion leading to arterial thrombosis," Clin. Cardiol. 28, 413-420 (2005).
    [CrossRef] [PubMed]
  30. R. K. Tangirala, W. G. Jerome, N. L. Jones, D. M. Small, W. J. Johnson, J. M. Glick, F. H. Mahlberg, and G. H. Rothblat, "Formation of cholesterol monohydrate crystals in macrophage-derived foam cells," J. Lipid Res. 35, 93-104 (1994).
    [PubMed]

2009

H.-W. Wang, I. M. Langohr, M. Sturek, and J.-X. Cheng, "Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy," Arterioscler. Thromb. Vasc. Biol. 29, 1342-1348 (2009).
[CrossRef] [PubMed]

2008

2007

S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, "Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths," Opt. Express 15, 4848-4856 (2007).
[CrossRef]

Y. J. Lee, Y. Liu, and M. T. Cicerone, "Characterization of three-color CARS in a two-color broadband CARS spectrum," Opt. Lett. 32, 3370-3372 (2007).
[CrossRef] [PubMed]

T. Hellerer, C. Ax¨ang, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 104, 14658-14663 (2007).
[CrossRef] [PubMed]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, "Optimizing the laser-pulse configuration for coherent Raman spectroscopy," Science 316, 265-268 (2007).
[CrossRef] [PubMed]

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J.-X. Cheng, "Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy," J. Biomed. Opt. 12, 054007 (2007).
[CrossRef] [PubMed]

2006

R. Virmani, a. P. Burke, A. Farb, and F. D. Kolodgie, "Pathology of the vulnerable plaque," J. Am. Coll. Cardiol. 47(C), C13-18 (2006).
[CrossRef]

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, "Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering," J. Biomed. Opt. 11, 050502 (2006).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).

F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, "Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 31, 1292-1294 (2006).
[CrossRef] [PubMed]

E. R. Andresen, V. Birkedal, J. Thøgersen, and S. R. Keiding, "Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift," Opt. Lett. 31, 1328-1330 (2006).
[CrossRef] [PubMed]

Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, "Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy," Opt. Express 14, 3942-3951 (2006).
[CrossRef]

2005

H. Kano and H. Hamaguchi, "Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy," Opt. Express 13, 1322-1327 (2005).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef] [PubMed]

G. S. Abela and K. Aziz, "Cholesterol crystals cause mechanical damage to biological membranes: a proposed mechanism of plaque rupture and erosion leading to arterial thrombosis," Clin. Cardiol. 28, 413-420 (2005).
[CrossRef] [PubMed]

2004

2002

N. Dudovich, D. Oron, and Y. Siberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Narrow-band coherent anti-Stokes Raman signals from broad-band pulses," Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

M. Müller and J. M. Schins, "Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy," J. Phys. Chem. B 106, 3715-3723 (2002).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles," J. Phys. Chem. B 106, 8493-8498 (2002).
[CrossRef]

J.-X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, "Laser-scanning Coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502-509 (2002).
[CrossRef] [PubMed]

1999

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibration imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

1994

R. K. Tangirala, W. G. Jerome, N. L. Jones, D. M. Small, W. J. Johnson, J. M. Glick, F. H. Mahlberg, and G. H. Rothblat, "Formation of cholesterol monohydrate crystals in macrophage-derived foam cells," J. Lipid Res. 35, 93-104 (1994).
[PubMed]

1988

D. M. Small, "George Lyman Duff memorial lecture - Progression and regression of atherosclerotic lesions: Insights from lipid physical biochemistry," Arterioscler. Thromb. Vasc. Biol. 8, 103-129 (1988).
[CrossRef]

1985

B. Lundberg B, "Chemical composition and physical state of lipid deposits ina therosclerosis," Atherosclerosis 56, 93-110(1985).
[CrossRef] [PubMed]

Abela, G. S.

G. S. Abela and K. Aziz, "Cholesterol crystals cause mechanical damage to biological membranes: a proposed mechanism of plaque rupture and erosion leading to arterial thrombosis," Clin. Cardiol. 28, 413-420 (2005).
[CrossRef] [PubMed]

Andresen, E. R.

Anis, H.

Ariunbold, G. O.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, "Optimizing the laser-pulse configuration for coherent Raman spectroscopy," Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Ax¨ang, C.

T. Hellerer, C. Ax¨ang, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 104, 14658-14663 (2007).
[CrossRef] [PubMed]

Aziz, K.

G. S. Abela and K. Aziz, "Cholesterol crystals cause mechanical damage to biological membranes: a proposed mechanism of plaque rupture and erosion leading to arterial thrombosis," Clin. Cardiol. 28, 413-420 (2005).
[CrossRef] [PubMed]

Bernet, S.

Birkedal, V.

Bonn, M.

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, "Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering," J. Biomed. Opt. 11, 050502 (2006).
[CrossRef] [PubMed]

Book, L. D.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles," J. Phys. Chem. B 106, 8493-8498 (2002).
[CrossRef]

Bouma, B. E.

A. H. Chau, J. T. Motz, J. A. Gardecki, S. Waxman, B. E. Bouma, and G. J. Terney "Fingerprint and highwavenumber Raman spectroscopy in a human-swine coronary xenograft in vivo," J. Biomed. Opt. 13, 040501 (2008).
[CrossRef] [PubMed]

Brackmann, C.

T. Hellerer, C. Ax¨ang, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 104, 14658-14663 (2007).
[CrossRef] [PubMed]

Brideau, C.

Carrasco, S.

Chau, A. H.

A. H. Chau, J. T. Motz, J. A. Gardecki, S. Waxman, B. E. Bouma, and G. J. Terney "Fingerprint and highwavenumber Raman spectroscopy in a human-swine coronary xenograft in vivo," J. Biomed. Opt. 13, 040501 (2008).
[CrossRef] [PubMed]

Cheng, J.-X.

H.-W. Wang, I. M. Langohr, M. Sturek, and J.-X. Cheng, "Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy," Arterioscler. Thromb. Vasc. Biol. 29, 1342-1348 (2009).
[CrossRef] [PubMed]

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J.-X. Cheng, "Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy," J. Biomed. Opt. 12, 054007 (2007).
[CrossRef] [PubMed]

Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, "Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy," Opt. Express 14, 3942-3951 (2006).
[CrossRef]

J.-X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, "Laser-scanning Coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502-509 (2002).
[CrossRef] [PubMed]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles," J. Phys. Chem. B 106, 8493-8498 (2002).
[CrossRef]

Ciardi, C.

Cicerone, M. T.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).

Cote, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Couderc, V.

Dogariu, A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, "Optimizing the laser-pulse configuration for coherent Raman spectroscopy," Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).

Dudovich, N.

N. Dudovich, D. Oron, and Y. Siberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Narrow-band coherent anti-Stokes Raman signals from broad-band pulses," Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

Enejder, A.

T. Hellerer, C. Ax¨ang, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 104, 14658-14663 (2007).
[CrossRef] [PubMed]

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Fu, Y.

Ganikhanov, F.

Gardecki, J. A.

A. H. Chau, J. T. Motz, J. A. Gardecki, S. Waxman, B. E. Bouma, and G. J. Terney "Fingerprint and highwavenumber Raman spectroscopy in a human-swine coronary xenograft in vivo," J. Biomed. Opt. 13, 040501 (2008).
[CrossRef] [PubMed]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).

Glick, J. M.

R. K. Tangirala, W. G. Jerome, N. L. Jones, D. M. Small, W. J. Johnson, J. M. Glick, F. H. Mahlberg, and G. H. Rothblat, "Formation of cholesterol monohydrate crystals in macrophage-derived foam cells," J. Lipid Res. 35, 93-104 (1994).
[PubMed]

Gross, P.

Hamaguchi, H.

Heinrich, C.

Hellerer, T.

T. Hellerer, C. Ax¨ang, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 104, 14658-14663 (2007).
[CrossRef] [PubMed]

Herek, J. L.

Hillertz, P.

T. Hellerer, C. Ax¨ang, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 104, 14658-14663 (2007).
[CrossRef] [PubMed]

Hofer, A.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibration imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Huang, Y.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, "Optimizing the laser-pulse configuration for coherent Raman spectroscopy," Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Jerome, W. G.

R. K. Tangirala, W. G. Jerome, N. L. Jones, D. M. Small, W. J. Johnson, J. M. Glick, F. H. Mahlberg, and G. H. Rothblat, "Formation of cholesterol monohydrate crystals in macrophage-derived foam cells," J. Lipid Res. 35, 93-104 (1994).
[PubMed]

Jia, Y. K.

J.-X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, "Laser-scanning Coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502-509 (2002).
[CrossRef] [PubMed]

Johnson, W. J.

R. K. Tangirala, W. G. Jerome, N. L. Jones, D. M. Small, W. J. Johnson, J. M. Glick, F. H. Mahlberg, and G. H. Rothblat, "Formation of cholesterol monohydrate crystals in macrophage-derived foam cells," J. Lipid Res. 35, 93-104 (1994).
[PubMed]

Jones, N. L.

R. K. Tangirala, W. G. Jerome, N. L. Jones, D. M. Small, W. J. Johnson, J. M. Glick, F. H. Mahlberg, and G. H. Rothblat, "Formation of cholesterol monohydrate crystals in macrophage-derived foam cells," J. Lipid Res. 35, 93-104 (1994).
[PubMed]

Kano, H.

Katz, M.

Kee, T. W.

Keiding, S. R.

Kopf, D.

Korterik, J. P.

Langohr, I. M.

H.-W. Wang, I. M. Langohr, M. Sturek, and J.-X. Cheng, "Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy," Arterioscler. Thromb. Vasc. Biol. 29, 1342-1348 (2009).
[CrossRef] [PubMed]

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J.-X. Cheng, "Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy," J. Biomed. Opt. 12, 054007 (2007).
[CrossRef] [PubMed]

Le, T. T.

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J.-X. Cheng, "Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy," J. Biomed. Opt. 12, 054007 (2007).
[CrossRef] [PubMed]

Lee, Y. J.

Leproux, P.

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Liu, Y.

Locker, M. J.

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J.-X. Cheng, "Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy," J. Biomed. Opt. 12, 054007 (2007).
[CrossRef] [PubMed]

Mahlberg, F. H.

R. K. Tangirala, W. G. Jerome, N. L. Jones, D. M. Small, W. J. Johnson, J. M. Glick, F. H. Mahlberg, and G. H. Rothblat, "Formation of cholesterol monohydrate crystals in macrophage-derived foam cells," J. Lipid Res. 35, 93-104 (1994).
[PubMed]

Motz, J. T.

A. H. Chau, J. T. Motz, J. A. Gardecki, S. Waxman, B. E. Bouma, and G. J. Terney "Fingerprint and highwavenumber Raman spectroscopy in a human-swine coronary xenograft in vivo," J. Biomed. Opt. 13, 040501 (2008).
[CrossRef] [PubMed]

Müller, M.

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, "Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering," J. Biomed. Opt. 11, 050502 (2006).
[CrossRef] [PubMed]

M. Müller and J. M. Schins, "Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy," J. Phys. Chem. B 106, 3715-3723 (2002).
[CrossRef]

Murawski, R. K.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, "Optimizing the laser-pulse configuration for coherent Raman spectroscopy," Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Murugkar, S.

Naji, M.

Offerhaus, H. L.

Okuno, M.

Oron, D.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Narrow-band coherent anti-Stokes Raman signals from broad-band pulses," Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Siberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Pestov, D.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, "Optimizing the laser-pulse configuration for coherent Raman spectroscopy," Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Pilon, M.

T. Hellerer, C. Ax¨ang, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 104, 14658-14663 (2007).
[CrossRef] [PubMed]

Postma, S.

Potma, E. O.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Ridsdale, A.

Rinia, H. A.

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, "Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering," J. Biomed. Opt. 11, 050502 (2006).
[CrossRef] [PubMed]

Ritsch, A.

Ritsch-Marte, M.

Rostovtsev, Y. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, "Optimizing the laser-pulse configuration for coherent Raman spectroscopy," Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Rothblat, G. H.

R. K. Tangirala, W. G. Jerome, N. L. Jones, D. M. Small, W. J. Johnson, J. M. Glick, F. H. Mahlberg, and G. H. Rothblat, "Formation of cholesterol monohydrate crystals in macrophage-derived foam cells," J. Lipid Res. 35, 93-104 (1994).
[PubMed]

Sautenkov, V. A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, "Optimizing the laser-pulse configuration for coherent Raman spectroscopy," Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Schaffer, C. B.

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, "Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering," J. Biomed. Opt. 11, 050502 (2006).
[CrossRef] [PubMed]

Schins, J. M.

M. Müller and J. M. Schins, "Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy," J. Phys. Chem. B 106, 3715-3723 (2002).
[CrossRef]

Scully, M. O.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, "Optimizing the laser-pulse configuration for coherent Raman spectroscopy," Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Seitz, W.

Shi, R.

Siberberg, Y.

N. Dudovich, D. Oron, and Y. Siberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Silberberg, Y.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Narrow-band coherent anti-Stokes Raman signals from broad-band pulses," Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

Small, D. M.

R. K. Tangirala, W. G. Jerome, N. L. Jones, D. M. Small, W. J. Johnson, J. M. Glick, F. H. Mahlberg, and G. H. Rothblat, "Formation of cholesterol monohydrate crystals in macrophage-derived foam cells," J. Lipid Res. 35, 93-104 (1994).
[PubMed]

D. M. Small, "George Lyman Duff memorial lecture - Progression and regression of atherosclerotic lesions: Insights from lipid physical biochemistry," Arterioscler. Thromb. Vasc. Biol. 8, 103-129 (1988).
[CrossRef]

Sokolov, A. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, "Optimizing the laser-pulse configuration for coherent Raman spectroscopy," Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Sturek, M.

H.-W. Wang, I. M. Langohr, M. Sturek, and J.-X. Cheng, "Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy," Arterioscler. Thromb. Vasc. Biol. 29, 1342-1348 (2009).
[CrossRef] [PubMed]

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J.-X. Cheng, "Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy," J. Biomed. Opt. 12, 054007 (2007).
[CrossRef] [PubMed]

Stys, P. K.

Tangirala, R. K.

R. K. Tangirala, W. G. Jerome, N. L. Jones, D. M. Small, W. J. Johnson, J. M. Glick, F. H. Mahlberg, and G. H. Rothblat, "Formation of cholesterol monohydrate crystals in macrophage-derived foam cells," J. Lipid Res. 35, 93-104 (1994).
[PubMed]

Terney, G. J.

A. H. Chau, J. T. Motz, J. A. Gardecki, S. Waxman, B. E. Bouma, and G. J. Terney "Fingerprint and highwavenumber Raman spectroscopy in a human-swine coronary xenograft in vivo," J. Biomed. Opt. 13, 040501 (2008).
[CrossRef] [PubMed]

Thøgersen, J.

van Rhijn, A. C. W.

Vartiainen, E. M.

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, "Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering," J. Biomed. Opt. 11, 050502 (2006).
[CrossRef] [PubMed]

Virmani, R.

R. Virmani, a. P. Burke, A. Farb, and F. D. Kolodgie, "Pathology of the vulnerable plaque," J. Am. Coll. Cardiol. 47(C), C13-18 (2006).
[CrossRef]

Volkmer, A.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles," J. Phys. Chem. B 106, 8493-8498 (2002).
[CrossRef]

Wang, H.

Wang, H.-W.

H.-W. Wang, I. M. Langohr, M. Sturek, and J.-X. Cheng, "Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy," Arterioscler. Thromb. Vasc. Biol. 29, 1342-1348 (2009).
[CrossRef] [PubMed]

Wang, X.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, "Optimizing the laser-pulse configuration for coherent Raman spectroscopy," Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Waxman, S.

A. H. Chau, J. T. Motz, J. A. Gardecki, S. Waxman, B. E. Bouma, and G. J. Terney "Fingerprint and highwavenumber Raman spectroscopy in a human-swine coronary xenograft in vivo," J. Biomed. Opt. 13, 040501 (2008).
[CrossRef] [PubMed]

Xie, X. S.

F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, "Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 31, 1292-1294 (2006).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef] [PubMed]

J.-X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, "Laser-scanning Coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502-509 (2002).
[CrossRef] [PubMed]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles," J. Phys. Chem. B 106, 8493-8498 (2002).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibration imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Yelin, D.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Narrow-band coherent anti-Stokes Raman signals from broad-band pulses," Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

Zheng, G. F.

J.-X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, "Laser-scanning Coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502-509 (2002).
[CrossRef] [PubMed]

Zhi, M.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, "Optimizing the laser-pulse configuration for coherent Raman spectroscopy," Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibration imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Arterioscler. Thromb. Vasc. Biol.

H.-W. Wang, I. M. Langohr, M. Sturek, and J.-X. Cheng, "Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy," Arterioscler. Thromb. Vasc. Biol. 29, 1342-1348 (2009).
[CrossRef] [PubMed]

D. M. Small, "George Lyman Duff memorial lecture - Progression and regression of atherosclerotic lesions: Insights from lipid physical biochemistry," Arterioscler. Thromb. Vasc. Biol. 8, 103-129 (1988).
[CrossRef]

Atherosclerosis

B. Lundberg B, "Chemical composition and physical state of lipid deposits ina therosclerosis," Atherosclerosis 56, 93-110(1985).
[CrossRef] [PubMed]

Biophys. J.

J.-X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, "Laser-scanning Coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502-509 (2002).
[CrossRef] [PubMed]

Clin. Cardiol.

G. S. Abela and K. Aziz, "Cholesterol crystals cause mechanical damage to biological membranes: a proposed mechanism of plaque rupture and erosion leading to arterial thrombosis," Clin. Cardiol. 28, 413-420 (2005).
[CrossRef] [PubMed]

J. Am. Coll. Cardiol.

R. Virmani, a. P. Burke, A. Farb, and F. D. Kolodgie, "Pathology of the vulnerable plaque," J. Am. Coll. Cardiol. 47(C), C13-18 (2006).
[CrossRef]

J. Biomed. Opt.

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, "Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering," J. Biomed. Opt. 11, 050502 (2006).
[CrossRef] [PubMed]

A. H. Chau, J. T. Motz, J. A. Gardecki, S. Waxman, B. E. Bouma, and G. J. Terney "Fingerprint and highwavenumber Raman spectroscopy in a human-swine coronary xenograft in vivo," J. Biomed. Opt. 13, 040501 (2008).
[CrossRef] [PubMed]

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J.-X. Cheng, "Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy," J. Biomed. Opt. 12, 054007 (2007).
[CrossRef] [PubMed]

J. Lipid Res.

R. K. Tangirala, W. G. Jerome, N. L. Jones, D. M. Small, W. J. Johnson, J. M. Glick, F. H. Mahlberg, and G. H. Rothblat, "Formation of cholesterol monohydrate crystals in macrophage-derived foam cells," J. Lipid Res. 35, 93-104 (1994).
[PubMed]

J. Phys. Chem. B

M. Müller and J. M. Schins, "Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy," J. Phys. Chem. B 106, 3715-3723 (2002).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles," J. Phys. Chem. B 106, 8493-8498 (2002).
[CrossRef]

Nature

N. Dudovich, D. Oron, and Y. Siberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Narrow-band coherent anti-Stokes Raman signals from broad-band pulses," Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibration imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. USA

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef] [PubMed]

T. Hellerer, C. Ax¨ang, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 104, 14658-14663 (2007).
[CrossRef] [PubMed]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).

Science

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, "Optimizing the laser-pulse configuration for coherent Raman spectroscopy," Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Other

G. Socrates, Infrared and Raman characteristic group frequencies, 3rd/ed., (John Wiley & Sons, New York, 2001), Chap. 23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Spectral features of CARS preparation light pulses and the anti-Stokes output in multiplex CARS spectroscopy with (a) a broadband Stokes pulse inducing 2-color CARS process, (b) a broadband pump pulse inducing 2-color CARS process, and (c) a broadband pump pulse and a separate probe pulse for 3-color CARS process.

Fig. 2.
Fig. 2.

Schematic layout of the CARS imaging platform based on 3-color broadband multiplex CARS scheme. Fast 3D vibrational imaging and point-wise broadband multiplex CARS microspectroscopy can be performed and easily switched from each other.

Fig. 3.
Fig. 3.

Multiplex CARS spectra measured for several neat organic chemicals. From the top, spectral profiles are shown for balsam oil, acetone, ethanol, isopropyl alcohol, and methanol in the Raman shift region from 2600 cm-1 to 3100 cm-1. The nonresonant CARS spectrum (at the bottom) from a cover glass was used as the spectral function for normalizing the multiplex CARS spectra measured for the samples. For easy comparison, each curve was arbitrarily offset and scaled with respect to its peak intensity. The CARS spectrum was acquired in 90 ms.

Fig. 4.
Fig. 4.

Dependence of the 3-color broadband multiplex CARS spectra on the power of laser beams used for 3-color CARS excitation. The sample used was balsam oil spread on a microscope cover glass and the nominal power levels of the pump, Stokes, and probe beams were set as 14 mW, 7 mW, and 12 mW, respectively, in the variation of each excitation laser power. The CARS spectrum was acquired in 90 ms. (a) Multiplex CARS spectra obtained by changing the average power of pump beam as indicated by the figure legend. (b) Dependence of integrated multiplex CARS intensity (in arbitrary units) on the excitation power of individual pump (rectangle), Stokes (triangle), and probe (circle) beams. The spectral integration was performed within a window ranging from 2650 cm-1 to 3050 cm-1. Each curve was normalized by the input power of the two other excitation laser beams fixed in the nominal power.

Fig. 5.
Fig. 5.

Depth-sectioned en face CARS image slices showing the lipid morphology of a severely affected atherosclerotic lesion of an arterial tissue excised from an ApoE-/- knock-out mouse. Images were acquired from luminal views with 165×165 µm2 field of view in 512×512 pixels and displayed for every 4-µm depth from the top surface. The images were acquired in 2.5 s with the pixel dwell time of 9.5 µs/pixel. Scale bars: 30 µm.

Fig. 6.
Fig. 6.

Representative morphologies and multiplex CARS spectral profiles of the lipid accumulation observed in the atherosclerotic plaques: (a) lipid-laden foam cells, (b) extracellular lipid lumps and droplets, (c) stratified laminae lipid crystals, and (d) needle-shaped lipid crystals were clearly visualized (scale bar: 20 µm) and their corresponding CARS spectra were displayed on the right panel from (a’)–(d’), respectively. (e) Some large aggregation of fat deposits could be observed in the connective tissue around tunica adventitia, and (f) surrounding extracellular matrix (ECM) in unaffected part of the arterial tissue appeared as dark background in the lipid-sensitive CARS imaging because of its little lipid contents, whose CARS spectra were acquired as non-atherosclerotic lipid controls as (e’)–(f’), respectively. The images were acquired in 2.5 s with the pixel dwell time of 9.5 µs/pixel. The CARS spectra were recorded with integration time of 90 ms. Scale bars in the images denote 30 µm.

Metrics