Abstract

Optical coherence tomography (OCT) in the spectral domain is demonstrated simultaneously at two wavelength bands centered at 800 nm and 1250 nm. A novel commercial supercontinuum laser is applied as a single low coherence broadband light source. The emission spectrum of the source is shaped by optical and spatial filtering in order to achieve an adequate double peak spectrum containing the wavelength bands 700 - 900 nm and 1100 - 1400 nm for dual-band OCT imaging and thus reducing the radiation exposure of the sample. Each wavelength band is analyzed with an individual spectrometer at an A-scan rate of about 12 kHz which enables real-time imaging for the examination of moving samples. A common path optical setup optimized for both spectral regions with a separate single fiber-based scanning unit was realized which facilitates flexible handling and easy access to the measurement area. The free-space axial resolutions were measured to be less than 4.5 µm and 7 µm at 800 nm and 1250 nm, respectively. Three-dimensional imaging ten times faster than previously reported with a signal-to-noise-ratio of above 90 dB is achieved simultaneously in both wavelength bands. Spectral domain dual-band OCT combines real-time imaging with high resolution at 800 nm and enhanced penetration depth at 1250 nm and therefore provides a well suited tool for in vivo vasodynamic measurements. Further, spatially resolved spectral features of the sample are obtained by means of comparing the backscattering properties at two different wavelength bands. The ability of dual-band OCT to enhance tissue contrast and the sensitivity of this imaging modality to wavelength-dependent sample birefringence is demonstrated.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
    [CrossRef] [PubMed]
  2. G. Maguluri, M. Mujat, B. H. Park, K. H. Kim, W. Sun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, T. C. Chen, and J. F. de Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Express 15(25), 16808–16817 (2007).
    [CrossRef] [PubMed]
  3. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
    [CrossRef] [PubMed]
  4. T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14(8), 3238–3246 (2006).
    [CrossRef] [PubMed]
  5. R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mum wavelength,” Opt. Express 15(18), 11402–11412 (2007).
    [CrossRef] [PubMed]
  6. T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12(10), 2112–2119 (2004).
    [CrossRef] [PubMed]
  7. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21(22), 1839–1841 (1996).
    [CrossRef] [PubMed]
  8. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
    [CrossRef]
  9. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004).
    [CrossRef] [PubMed]
  10. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002).
    [CrossRef]
  11. A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14(3), 1145–1160 (2006).
    [CrossRef] [PubMed]
  12. H. Wang and A. M. Rollins, “Optimization of dual-band continuum light source for ultrahigh-resolution optical coherence tomography,” Appl. Opt. 46(10), 1787–1794 (2007).
    [CrossRef] [PubMed]
  13. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
    [CrossRef] [PubMed]
  14. Y. Pan and D. L. Farkas, “Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt. 3(4), 446–455 (1998).
    [CrossRef]
  15. F. Feldchtein, V. Gelikonov, R. Iksanov, G. Gelikonov, R. Kuranov, A. Sergeev, N. Gladkova, M. Ourutina, D. Reitze, and J. Warren, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Express 3(6), 239–250 (1998).
    [CrossRef] [PubMed]
  16. M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
    [CrossRef] [PubMed]
  17. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Differential absorption imaging with optical coherence tomography,” J. Opt. Soc. Am. 15(9), 2288–2296 (1998).
    [CrossRef]
  18. M. Pircher, E. Götzinger, R. Leitgeb, A. Fercher, and C. Hitzenberger, “Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography,” Opt. Express 11(18), 2190–2197 (2003).
    [CrossRef] [PubMed]
  19. F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express 15(17), 10832–10841 (2007).
    [CrossRef] [PubMed]
  20. D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Opt. Express 16(24), 19434–19446 (2008).
    [CrossRef] [PubMed]
  21. S. Kray, F. Spöler, M. Först, and H. Kurz, “High-resolution simultaneous dual-band spectral domain optical coherence tomography,” Opt. Lett. 34(13), 1970–1972 (2009).
    [CrossRef] [PubMed]
  22. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  23. R. Cernat, G. M. Dobre, I. Trifanov, L. Neagu, A. Bradu, M. Hughes, and A. Gh, “Podoleanu, “Investigations of OCT imaging performance using a unique source providing several spectral wavebands,” Proc. SPIE 6847, 68470U (2008).
    [CrossRef]
  24. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express 11(26), 3598–3604 (2003).
    [CrossRef] [PubMed]
  25. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
    [CrossRef] [PubMed]
  26. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
    [CrossRef] [PubMed]
  27. I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39(4), 604–609 (2002).
    [CrossRef] [PubMed]
  28. M. Mogensen, J. B. Thomsen, L. T. Skovgaard, and G. B. E. Jemec, “Nail thickness measurements using optical coherence tomography and 20-MHz ultrasonography,” Br. J. Dermatol. 157(5), 894–900 (2007).
    [CrossRef] [PubMed]
  29. B. Park, M. Pierce, B. Cense, and J. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11(7), 782–793 (2003).
    [CrossRef] [PubMed]
  30. S. Meissner, G. Müller, J. Walther, H. Morawietz, and E. Koch, “In-vivo Fourier domain optical coherence tomography as a new tool for investigation of vasodynamics in the mouse model,” J. Biomed. Opt. 14(3), 034027 (2009).
    [CrossRef] [PubMed]
  31. J. Walther, G. Mueller, H. Morawietz, and E. Koch, “Analysis of in vitro and in vivo bidirectional flow velocities by phase-resolved Doppler Fourier-domain OCT,” Sens. Actuators A Phys. in press.
  32. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
    [CrossRef]
  33. D. Adler, T. Ko, P. Herz, and J. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express 12(22), 5487–5501 (2004).
    [CrossRef] [PubMed]
  34. A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16(21), 17082–17091 (2008).
    [CrossRef] [PubMed]

2009

S. Meissner, G. Müller, J. Walther, H. Morawietz, and E. Koch, “In-vivo Fourier domain optical coherence tomography as a new tool for investigation of vasodynamics in the mouse model,” J. Biomed. Opt. 14(3), 034027 (2009).
[CrossRef] [PubMed]

S. Kray, F. Spöler, M. Först, and H. Kurz, “High-resolution simultaneous dual-band spectral domain optical coherence tomography,” Opt. Lett. 34(13), 1970–1972 (2009).
[CrossRef] [PubMed]

2008

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16(21), 17082–17091 (2008).
[CrossRef] [PubMed]

D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Opt. Express 16(24), 19434–19446 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

R. Cernat, G. M. Dobre, I. Trifanov, L. Neagu, A. Bradu, M. Hughes, and A. Gh, “Podoleanu, “Investigations of OCT imaging performance using a unique source providing several spectral wavebands,” Proc. SPIE 6847, 68470U (2008).
[CrossRef]

2007

2006

2004

2003

2002

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39(4), 604–609 (2002).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002).
[CrossRef]

2000

1999

1998

F. Feldchtein, V. Gelikonov, R. Iksanov, G. Gelikonov, R. Kuranov, A. Sergeev, N. Gladkova, M. Ourutina, D. Reitze, and J. Warren, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Express 3(6), 239–250 (1998).
[CrossRef] [PubMed]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Differential absorption imaging with optical coherence tomography,” J. Opt. Soc. Am. 15(9), 2288–2296 (1998).
[CrossRef]

Y. Pan and D. L. Farkas, “Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt. 3(4), 446–455 (1998).
[CrossRef]

1996

1994

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

Adler, D.

Adler, D. C.

Aguirre, A.

Apolonski, A.

Aretz, H. T.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39(4), 604–609 (2002).
[CrossRef] [PubMed]

Bajraszewski, T.

Bilinsky, I. P.

Bizheva, K.

Boccara, C.

Boppart, S. A.

Bornemann, J.

Bouma, B.

Bouma, B. E.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39(4), 604–609 (2002).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21(22), 1839–1841 (1996).
[CrossRef] [PubMed]

Bradu, A.

R. Cernat, G. M. Dobre, I. Trifanov, L. Neagu, A. Bradu, M. Hughes, and A. Gh, “Podoleanu, “Investigations of OCT imaging performance using a unique source providing several spectral wavebands,” Proc. SPIE 6847, 68470U (2008).
[CrossRef]

Brenner, M.

Cense, B.

Cernat, R.

R. Cernat, G. M. Dobre, I. Trifanov, L. Neagu, A. Bradu, M. Hughes, and A. Gh, “Podoleanu, “Investigations of OCT imaging performance using a unique source providing several spectral wavebands,” Proc. SPIE 6847, 68470U (2008).
[CrossRef]

Chen, T.

Chen, T. C.

Chen, Z.

Choi, K. B.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39(4), 604–609 (2002).
[CrossRef] [PubMed]

de Boer, J.

de Boer, J. F.

Dobre, G. M.

R. Cernat, G. M. Dobre, I. Trifanov, L. Neagu, A. Bradu, M. Hughes, and A. Gh, “Podoleanu, “Investigations of OCT imaging performance using a unique source providing several spectral wavebands,” Proc. SPIE 6847, 68470U (2008).
[CrossRef]

Drexler, W.

Dubois, A.

Eckhaus, M. A.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

Farkas, D. L.

Y. Pan and D. L. Farkas, “Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt. 3(4), 446–455 (1998).
[CrossRef]

Feldchtein, F.

Fercher, A.

Fercher, A. F.

Ferguson, R. D.

Först, M.

Fujimoto, J.

Fujimoto, J. G.

Gelikonov, G.

Gelikonov, V.

Georges, P.

Gh, A.

R. Cernat, G. M. Dobre, I. Trifanov, L. Neagu, A. Bradu, M. Hughes, and A. Gh, “Podoleanu, “Investigations of OCT imaging performance using a unique source providing several spectral wavebands,” Proc. SPIE 6847, 68470U (2008).
[CrossRef]

Gladkova, N.

Golubovic, B.

Götzinger, E.

M. Pircher, E. Götzinger, R. Leitgeb, A. Fercher, and C. Hitzenberger, “Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography,” Opt. Express 11(18), 2190–2197 (2003).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[CrossRef] [PubMed]

Grychtol, P.

Guo, S.

Hammer, D. X.

Hermann, B.

Hermes, B.

Herz, P.

Hitzenberger, C.

Hitzenberger, C. K.

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[CrossRef] [PubMed]

Houser, S. L.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39(4), 604–609 (2002).
[CrossRef] [PubMed]

Huber, R.

Hughes, M.

R. Cernat, G. M. Dobre, I. Trifanov, L. Neagu, A. Bradu, M. Hughes, and A. Gh, “Podoleanu, “Investigations of OCT imaging performance using a unique source providing several spectral wavebands,” Proc. SPIE 6847, 68470U (2008).
[CrossRef]

Hurst, S.

Iftimia, N. V.

Iksanov, R.

Ippen, E. P.

Jang, I. K.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39(4), 604–609 (2002).
[CrossRef] [PubMed]

Jemec, G. B. E.

M. Mogensen, J. B. Thomsen, L. T. Skovgaard, and G. B. E. Jemec, “Nail thickness measurements using optical coherence tomography and 20-MHz ultrasonography,” Br. J. Dermatol. 157(5), 894–900 (2007).
[CrossRef] [PubMed]

Kang, D. H.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39(4), 604–609 (2002).
[CrossRef] [PubMed]

Kärtner, F. X.

Kim, K. H.

Knight, J. C.

Knüttel, A.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

Ko, T.

Ko, T. H.

Koch, E.

S. Meissner, G. Müller, J. Walther, H. Morawietz, and E. Koch, “In-vivo Fourier domain optical coherence tomography as a new tool for investigation of vasodynamics in the mouse model,” J. Biomed. Opt. 14(3), 034027 (2009).
[CrossRef] [PubMed]

J. Walther, G. Mueller, H. Morawietz, and E. Koch, “Analysis of in vitro and in vivo bidirectional flow velocities by phase-resolved Doppler Fourier-domain OCT,” Sens. Actuators A Phys. in press.

Kopf, D.

Kowalczyk, A.

Kray, S.

Kuranov, R.

Kurz, H.

Le, T.

Lederer, M.

Leitgeb, R.

Li, X. D.

Maguluri, G.

Makita, S.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

Mamedov, D.

Meissner, S.

S. Meissner, G. Müller, J. Walther, H. Morawietz, and E. Koch, “In-vivo Fourier domain optical coherence tomography as a new tool for investigation of vasodynamics in the mouse model,” J. Biomed. Opt. 14(3), 034027 (2009).
[CrossRef] [PubMed]

Miura, M.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

Mogensen, M.

M. Mogensen, J. B. Thomsen, L. T. Skovgaard, and G. B. E. Jemec, “Nail thickness measurements using optical coherence tomography and 20-MHz ultrasonography,” Br. J. Dermatol. 157(5), 894–900 (2007).
[CrossRef] [PubMed]

Morawietz, H.

S. Meissner, G. Müller, J. Walther, H. Morawietz, and E. Koch, “In-vivo Fourier domain optical coherence tomography as a new tool for investigation of vasodynamics in the mouse model,” J. Biomed. Opt. 14(3), 034027 (2009).
[CrossRef] [PubMed]

J. Walther, G. Mueller, H. Morawietz, and E. Koch, “Analysis of in vitro and in vivo bidirectional flow velocities by phase-resolved Doppler Fourier-domain OCT,” Sens. Actuators A Phys. in press.

Moreau, J.

Morgner, U.

Mueller, G.

J. Walther, G. Mueller, H. Morawietz, and E. Koch, “Analysis of in vitro and in vivo bidirectional flow velocities by phase-resolved Doppler Fourier-domain OCT,” Sens. Actuators A Phys. in press.

Mujat, M.

Mukai, D.

Müller, G.

S. Meissner, G. Müller, J. Walther, H. Morawietz, and E. Koch, “In-vivo Fourier domain optical coherence tomography as a new tool for investigation of vasodynamics in the mouse model,” J. Biomed. Opt. 14(3), 034027 (2009).
[CrossRef] [PubMed]

Nassif, N.

Neagu, L.

R. Cernat, G. M. Dobre, I. Trifanov, L. Neagu, A. Bradu, M. Hughes, and A. Gh, “Podoleanu, “Investigations of OCT imaging performance using a unique source providing several spectral wavebands,” Proc. SPIE 6847, 68470U (2008).
[CrossRef]

Nishizawa, N.

Ourutina, M.

Pan, Y.

Y. Pan and D. L. Farkas, “Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt. 3(4), 446–455 (1998).
[CrossRef]

Park, B.

Park, B. H.

Park, S. J.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39(4), 604–609 (2002).
[CrossRef] [PubMed]

Park, S. W.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39(4), 604–609 (2002).
[CrossRef] [PubMed]

Pierce, M.

Pircher, M.

M. Pircher, E. Götzinger, R. Leitgeb, A. Fercher, and C. Hitzenberger, “Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography,” Opt. Express 11(18), 2190–2197 (2003).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[CrossRef] [PubMed]

Pitris, C.

Pomerantsev, E.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39(4), 604–609 (2002).
[CrossRef] [PubMed]

Povazay, B.

Prokhorov, V.

Reitze, D.

Rollins, A. M.

Russell, P. St. J.

Sacchet, D.

Sattmann, H.

Scherzer, E.

Schlendorf, K.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39(4), 604–609 (2002).
[CrossRef] [PubMed]

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Differential absorption imaging with optical coherence tomography,” J. Opt. Soc. Am. 15(9), 2288–2296 (1998).
[CrossRef]

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

Seitz, W.

Sergeev, A.

Seung, K. B.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39(4), 604–609 (2002).
[CrossRef] [PubMed]

Shidlovski, V.

Shishkov, M.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39(4), 604–609 (2002).
[CrossRef] [PubMed]

Skovgaard, L. T.

M. Mogensen, J. B. Thomsen, L. T. Skovgaard, and G. B. E. Jemec, “Nail thickness measurements using optical coherence tomography and 20-MHz ultrasonography,” Br. J. Dermatol. 157(5), 894–900 (2007).
[CrossRef] [PubMed]

Spöler, F.

Stingl, A.

Sun, W.

Szkulmowska, A.

Szkulmowski, M.

Tearney, G.

Tearney, G. J.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39(4), 604–609 (2002).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21(22), 1839–1841 (1996).
[CrossRef] [PubMed]

Thomsen, J. B.

M. Mogensen, J. B. Thomsen, L. T. Skovgaard, and G. B. E. Jemec, “Nail thickness measurements using optical coherence tomography and 20-MHz ultrasonography,” Br. J. Dermatol. 157(5), 894–900 (2007).
[CrossRef] [PubMed]

Trifanov, I.

R. Cernat, G. M. Dobre, I. Trifanov, L. Neagu, A. Bradu, M. Hughes, and A. Gh, “Podoleanu, “Investigations of OCT imaging performance using a unique source providing several spectral wavebands,” Proc. SPIE 6847, 68470U (2008).
[CrossRef]

Unterhuber, A.

Vetterlein, M.

Wadsworth, W. J.

Walther, J.

S. Meissner, G. Müller, J. Walther, H. Morawietz, and E. Koch, “In-vivo Fourier domain optical coherence tomography as a new tool for investigation of vasodynamics in the mouse model,” J. Biomed. Opt. 14(3), 034027 (2009).
[CrossRef] [PubMed]

J. Walther, G. Mueller, H. Morawietz, and E. Koch, “Analysis of in vitro and in vivo bidirectional flow velocities by phase-resolved Doppler Fourier-domain OCT,” Sens. Actuators A Phys. in press.

Wang, H.

Wang, R. K.

Warren, J.

Wojtkowski, M.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Differential absorption imaging with optical coherence tomography,” J. Opt. Soc. Am. 15(9), 2288–2296 (1998).
[CrossRef]

Xie, T.

Yadlowsky, M.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

Yakubovich, S.

Yamanari, M.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

Yasuno, Y.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

Yatagai, T.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

Yun, S.

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Differential absorption imaging with optical coherence tomography,” J. Opt. Soc. Am. 15(9), 2288–2296 (1998).
[CrossRef]

Appl. Opt.

Br. J. Dermatol.

M. Mogensen, J. B. Thomsen, L. T. Skovgaard, and G. B. E. Jemec, “Nail thickness measurements using optical coherence tomography and 20-MHz ultrasonography,” Br. J. Dermatol. 157(5), 894–900 (2007).
[CrossRef] [PubMed]

J. Am. Coll. Cardiol.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39(4), 604–609 (2002).
[CrossRef] [PubMed]

J. Biomed. Opt.

Y. Pan and D. L. Farkas, “Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt. 3(4), 446–455 (1998).
[CrossRef]

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

S. Meissner, G. Müller, J. Walther, H. Morawietz, and E. Koch, “In-vivo Fourier domain optical coherence tomography as a new tool for investigation of vasodynamics in the mouse model,” J. Biomed. Opt. 14(3), 034027 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Differential absorption imaging with optical coherence tomography,” J. Opt. Soc. Am. 15(9), 2288–2296 (1998).
[CrossRef]

Nat. Biotechnol.

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
[CrossRef] [PubMed]

Opt. Express

F. Feldchtein, V. Gelikonov, R. Iksanov, G. Gelikonov, R. Kuranov, A. Sergeev, N. Gladkova, M. Ourutina, D. Reitze, and J. Warren, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Express 3(6), 239–250 (1998).
[CrossRef] [PubMed]

F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express 15(17), 10832–10841 (2007).
[CrossRef] [PubMed]

R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mum wavelength,” Opt. Express 15(18), 11402–11412 (2007).
[CrossRef] [PubMed]

G. Maguluri, M. Mujat, B. H. Park, K. H. Kim, W. Sun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, T. C. Chen, and J. F. de Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Express 15(25), 16808–16817 (2007).
[CrossRef] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16(21), 17082–17091 (2008).
[CrossRef] [PubMed]

D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Opt. Express 16(24), 19434–19446 (2008).
[CrossRef] [PubMed]

B. Park, M. Pierce, B. Cense, and J. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11(7), 782–793 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express 11(26), 3598–3604 (2003).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, A. Fercher, and C. Hitzenberger, “Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography,” Opt. Express 11(18), 2190–2197 (2003).
[CrossRef] [PubMed]

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12(10), 2112–2119 (2004).
[CrossRef] [PubMed]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004).
[CrossRef] [PubMed]

D. Adler, T. Ko, P. Herz, and J. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express 12(22), 5487–5501 (2004).
[CrossRef] [PubMed]

A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14(3), 1145–1160 (2006).
[CrossRef] [PubMed]

T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14(8), 3238–3246 (2006).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

Proc. SPIE

R. Cernat, G. M. Dobre, I. Trifanov, L. Neagu, A. Bradu, M. Hughes, and A. Gh, “Podoleanu, “Investigations of OCT imaging performance using a unique source providing several spectral wavebands,” Proc. SPIE 6847, 68470U (2008).
[CrossRef]

Sens. Actuators A Phys.

J. Walther, G. Mueller, H. Morawietz, and E. Koch, “Analysis of in vitro and in vivo bidirectional flow velocities by phase-resolved Doppler Fourier-domain OCT,” Sens. Actuators A Phys. in press.

Supplementary Material (2)

» Media 1: MOV (1556 KB)     
» Media 2: MOV (1764 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Prism-lens-sequence for spectral shaping shown in the side view and the top view: collimator of the SC source (C1), notch filter (NF) to block the pump peak at 1064 nm which is then reflected to the beam dump (BD), dispersion prism (DP), cylindrical lens (CL), aperture slit (AS) to block the upper and lower part of the spectrum and retro-reflector prism (RP). (b) Scanner head and spectrometers: beam splitter (BS1) to separate the incident and the returning beam from scanner head, collimator (C2) for fiber-coupling, scanning unit with internal collimator (C3), beam splitter (BS2), reference mirror (RM) and galvanometer scanner (GS). The returning light is sent to the spectrometers via beam expanding optics with a pinhole (PH) and a dichroic mirror (DM) to separate the wavelength bands. The bands are spectrally split up by reflective gratings (G1, G2) and focused on the corresponding Si (D1) and InGaAs (D2) line scan sensor.

Fig. 2
Fig. 2

(a) Emission spectrum of the SC laser measured after coupling into a 780 nm single mode fiber with and without spectral shaping by means of the prism-lens-sequence (the spectra were measured with a prism spectrometer at different camera settings in order to use the entire dynamic range of the image sensor). (b) Double peak spectrum after spectral shaping in a linear scale plotted in combination with the measured transmission curve of the dichroic mirror (angle of incidence: 45 degree) which separates the OCT bands 700 - 900 nm and 1100 - 1400 nm. The spectral range 900 - 1040 nm is currently not used for OCT imaging.

Fig. 3
Fig. 3

A-scans obtained from a −14 dB reflector at different axial positions at 800 nm (a) and 1250 nm (b). For deeper positions, partial aliasing as a result of fringe frequency chirping can be clearly identified. (c) Depth dependent sensitivity loss due to finite spectrometer resolution. The data is in a first step approximated by a parabolic function. The signals decay −13.3 dB at 800 nm and −11.7 dB at 1250 nm. (d) Measured free-space axial resolution (FWHM of A-scan peak) at 800 nm (≤ 4.5 µm) and 1250 nm (≤ 7 µm).

Fig. 4
Fig. 4

(a) A-scans at 800 nm (left scale, exposure time 84 µs) and 1250 nm (right scale, exposure time 80.2 µs) obtained from a mirror surface with attenuated sample arm power by means of neutral density filters. The damping of the filters amounts to −31 dB and −29 dB, respectively. The SNR of the system is calculated by adding the filter’s damping to the determined difference of A-scan peak to noise baseline. (b) Measured SNR for different reference arm power (PR) settings with a fixed sample arm power (PS) of 0.5 µW at 800 nm and 2 µW at 1250 nm returning to the spectrometers. At optimum power settings a SNR of 94 dB at 800 nm and 93 dB at 1250 nm is achieved.

Fig. 5
Fig. 5

Simultaneous in vivo scans of murine saphenous artery (A), vein (V) and perivascular fat tissue (FT) at 800 nm (a) and 1250 nm (b) during the diastole, obtained by averaging the corresponding B-scans of 7 consecutive heart cycles. The scan at 1250 nm shows an increased imaging depth especially in the blood vessels while the scan at 800 nm shows a higher resolution in the superficial regions of the cross-section. (c) Frequency compounded image of (a) and (b). (d) Color-encoded differential image of (a) and (b): blue and orange represent enhanced scattering at 800 nm and 1250 nm, respectively.

Fig. 6
Fig. 6

Time- and spatial resolved simultaneous in vivo scans of the murine saphenous artery. At the red line in the frequency compounded image (a) the recorded B-scan stack is resliced and the obtained M-scans for the 800 nm-band (b), 1250 nm-band (c), compounded image (d) and color-encoded differential image (e) are plotted with threefold magnification. The signal-poor smooth muscle layer (SM) of the tunica media and the arterial lumen (L) can clearly be identified. The green arrows show the breathing motion and the red arrows indicate the heart beat which is represented by periodical fringe washout due to high flow velocities during the systole. The breathing rate amounts to 73 breaths per minute and the heart rate is 464 beats per minute. The frequency compounded images (f) and (g) show a transverse and a longitudinal cross-section of the artery obtained from a 3D scan. The longitudinal scan is useful to measure the Doppler angle for flow velocity determination.

Fig. 7
Fig. 7

Simultaneous in vivo scans of human skin at 800 nm (a) and 1250 nm (b) showing the stratum corneum (C), sweat gland ducts (D) and the stratum granulosum (G) located at the tip of the small finger. The images were obtained by averaging 5 adjacent B-scans of a three-dimensional stack resulting in a displayed cross-section thickness of 20 µm. (c) Frequency compounded image of (a) and (b). (d) Color-encoded differential image of (a) and (b): blue and orange represent enhanced scattering at 800 nm and 1250 nm, respectively. (e) Fly-through of color-encoded differential image stack (Media 1).

Fig. 8
Fig. 8

Three-dimensional frequency compounded scan from 800 nm and 1250 nm of the human finger tip in vivo (Media 2). The helix-like shape of the sweat gland ducts is clearly visible.

Fig. 9
Fig. 9

Simultaneous in vivo scans of a human fingernail at 800 nm (a) and 1250 nm (b) showing the nail plate (N), the nail bed (B) and the cuticle (C). The images were obtained by averaging 10 adjacent B-scans of a recorded three-dimensional stack resulting in a displayed cross-section thickness of 40 µm. (c) Frequency compounded image of (a) and (b). (d) Color-encoded differential image of (a) and (b).

Fig. 10
Fig. 10

Wavelength-dependent appearance of the layered structure of the human nail plate. The figure shows the OCT scan at 800 nm (a) identical to Fig. 9(a) with a selected region (red rectangle) that was imaged using 6 different wavelength bands: (b) 700 - 800 nm, (c) 750 - 850 nm, (d) 800 - 900 nm, (e) 1100 - 1250 nm, (f) 1175 - 1325 nm, (g) 1250 - 1400 nm. The white bars represent the distance between the signal-poor layers inside the nail plate.

Fig. 11
Fig. 11

Distance between dark layer structures in the human nail plate measured at six different spectral regions centered at 750 nm, 800 nm, 850 nm, 1175 nm, 1250 nm and 1325 nm (Fig. 10) using a fixed refractive index of n = 1.47. The error bars of the data points indicate the measurement quantization error of ± 1 pixel which represents ± 4 µm. By fitting a model represented by Eq. (2) to the data points a refractive index difference of Δn = 0.0057 is obtained for the nail plate.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δφ=2πΔndλ
d0=λ2Δn.

Metrics