Abstract

The short- and long-term effects of probe contact pressure on in vivo diffuse reflectance and fluorescence spectroscopy were investigated using an animal model. Elevation in probe contact pressure induced major profile alterations in the diffuse reflectance spectra between 400 and 650 nm, and led to significant intensity increases in the fluorescence spectra. The pressure threshold that was required to induce statistically significant spectral alterations was dependent upon the type of tissue. The observed spectral alterations may be attributed to decreases in local blood volume, blood oxygenation, and tissue metabolism, resulting from high probe contact pressure.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. J. Bigio and S. G. Bown, "Spectroscopic sensing of cancer and cancer therapy: current status of translational research," Cancer Biol. Ther. 3, 259-267 (2004).
    [CrossRef] [PubMed]
  2. C. R. Buttemere, R. S. Chari, C. D. Anderson, M. K. Washington, A. Mahadevan-Jansen, and W. C. Lin, "In vivo assessment of thermal damage in the liver using optical spectroscopy," J. Biomed. Opt. 9, 1018-1027 (2004).
    [CrossRef] [PubMed]
  3. K. A. Horvath, K. T. Schomacker, C. C. Lee, and L. H. Cohn, "Intraoperative myocardial ischemia detection with laser-induced fluorescence," J. Thorac. Cardiovasc. Surg. 107, 220-225 (1994).
    [PubMed]
  4. G. E. Kochiadakis, S. I. Chrysostomakis, M. D. Kalebubas, G. M. Filippidis, I. G. Zacharakis, T. G. Papazoglou, and P. E. Vardas, "The role of laser-induced fluorescence in myocardial tissue characterization: an experimental in vitro study," Chest 120, 233-239 (2001).
    [CrossRef] [PubMed]
  5. G. D. Luker and K. E. Luker, "Optical imaging: current applications and future directions," J. Nucl. Med. 49, 1-4 (2008).
    [CrossRef]
  6. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
    [CrossRef] [PubMed]
  7. N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000).
    [CrossRef] [PubMed]
  8. K. Sokolov, M. Follen, and R. Richards-Kortum, "Optical spectroscopy for detection of neoplasia," Curr. Opin. Chem. Biol. 6, 651-658 (2002).
    [CrossRef] [PubMed]
  9. G. Strangman, D. A. Boas, and J. P. Sutton, "Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002).
    [CrossRef] [PubMed]
  10. W. C. Lin, A. Mahadevan-Jansen, M. D. Johnson, R. J. Weil, and S. A. Toms, "In vivo optical spectroscopy detects radiation damage in brain tissue," Neurosurgery 57, 518-525; discussion 518-525 (2005).
    [CrossRef] [PubMed]
  11. U. Mahmood and R. Weissleder, "Near-infrared optical imaging of proteases in cancer," Mol. Cancer. Ther. 2, 489-496 (2003).
    [PubMed]
  12. T. Papaioannou, N. W. Preyer, Q. Fang, A. Brightwell, M. Carnohan, G. Cottone, R. Ross, L. R. Jones, and L. Marcu, "Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm," Appl. Opt. 43, 2846-2860 (2004).
    [CrossRef] [PubMed]
  13. U. Utzinger and R. R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003).
    [CrossRef] [PubMed]
  14. E. K. Chan, B. Sorg, D. Protsenko, Oapos, M. Neil, M. Motamedi, and A. J. Welch, "Effects of compression on soft tissue optical properties," IEEE J. Sel. Top. Quantum Electron. 2, 943-950 (1996).
    [CrossRef]
  15. W. Chen, R. Liu, K. Xu, and R. K. Wang, "Influence of contact state on NIR diffuse reflectance spectroscopy in vivo," J. Phys. D 38, 2691-2695 (2005).
    [CrossRef]
  16. A. Murray and D. Marjanovic, "Optical assessment of recovery of tissue blood supply after removal of externally applied pressure," Med. Biol. Eng. Comput. 35, 425-427 (1997).
    [CrossRef] [PubMed]
  17. A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, "Effect of probe pressure on cervical fluorescence spectroscopy measurements," J. Biomed. Opt. 9, 523-533 (2004).
    [CrossRef] [PubMed]
  18. K. Rivoire, A. Nath, D. Cox, E. N. Atkinson, R. Richards-Kortum, and M. Follen, "The effects of repeated spectroscopic pressure measurements on fluorescence intensity in the cervix," Am. J. Obstet. Gynecol. 191, 1606-1617 (2004).
    [CrossRef] [PubMed]
  19. M. G. Shim, L.-M. Wong Kee Song, N. E. Marcon, and B. C. Wilson, "In vivo Near-infrared Raman Spectroscopy: Demonstration of Feasibility during Clinical Gastrointestinal Endoscopy and Para," Photochem. Photobiol. 72, 146-150 (2000).
    [PubMed]
  20. W. C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy; an in vitro study," J. Biomed. Opt. 5, 214-220 (2000).
    [CrossRef] [PubMed]
  21. W. J. Bowen, "The absorption spectra and extinction coefficients of myoglobin," J. Biol. Chem. 179, 235-245 (1949).
    [PubMed]
  22. R. Junowicz-Kocholaty and T. R. Hogness, "The spectroscopic determination of cytochrome c and its distribution in some mammalian tissues," J. Biol. Chem. 129, 569-574 (1939).
  23. R. N. Pittman, "In vivo photometric analysis of hemoglobin," Ann. Biomed. Eng. 14, 119-137 (1986).
    [CrossRef] [PubMed]
  24. S. Prahl, "Optical absorption of hemoglobin" (1999), retrieved http://omlc.ogi.edu/spectra/hemoglobin/index.html.
  25. A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
    [CrossRef] [PubMed]
  26. R. S. DaCosta, H. Andersson, and B. C. Wilson, "Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy," Photochem. Photobiol. 78, 384-392 (2003).
    [CrossRef] [PubMed]
  27. D. Voet and J. Voet, Biochemistry, 3rd ed., (John Wiley and Sons, Hoboken, NJ, 2004), Vol. 1.
  28. B. Chance, "Mitochondrial NADH redox state, monitoring discovery and deployment in tissue," Methods Enzymol. 385, 361-370 (2004).
    [CrossRef] [PubMed]
  29. B. Chance, S. Nioka, W. Warren, and G. Yurtsever, "Mitochondrial NADH as the bellwether of tissue O2 delivery," Adv. Exp. Med. Biol. 566, 231-242 (2005).
    [CrossRef]
  30. A. Mayevsky and B. Chance, "Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer," Science 217, 537-540 (1982).
    [CrossRef] [PubMed]
  31. A. Mayevsky and G. G. Rogatsky, "Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies," Am. J. Physiol.-Cell Physiol. 292, C615-640 (2007).
    [CrossRef]
  32. H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, "Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy," J. Biol. Chem. 280, 25119-25126 (2005).
    [CrossRef] [PubMed]
  33. B. Chance, "Spectrophotometric and kinetic studies of flavoproteins in tissues, cell suspensions, mitochondria and their fragments," in Flavins and flavoproteins, S. EC, ed., (Elsevier, New York, 1996), pp. 496-510.
  34. J. Wu, M. S. Feld, and R. P. Rava, "Analytical model for extracting intrinsic fluoresence in a turbid medium," Appl. Opt. 32, 3585 (1993).
    [CrossRef] [PubMed]
  35. Q. Zhang, M. Muller, J. Wu, and M. Feld, "Turbity-free fluorescence spectroscopy of biological tissue," Opt. Lett. 25, 1451-1453 (2000).
    [CrossRef]
  36. Y. C. Fung, Biomechanics : mechanical properties of living tissues, 2nd ed. (Springer-Verlag, New York, 1993), pp. 53, p. 568 .
  37. W. C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001).
    [CrossRef] [PubMed]
  38. S. A. Toms, W.-C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative Optical Spectroscopy Identifies Infiltrating Glioma Margins with High Sensitivity," Neurosurgery 57, 382-391 (2005).
    [CrossRef] [PubMed]

2008 (1)

G. D. Luker and K. E. Luker, "Optical imaging: current applications and future directions," J. Nucl. Med. 49, 1-4 (2008).
[CrossRef]

2007 (1)

A. Mayevsky and G. G. Rogatsky, "Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies," Am. J. Physiol.-Cell Physiol. 292, C615-640 (2007).
[CrossRef]

2005 (5)

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, "Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy," J. Biol. Chem. 280, 25119-25126 (2005).
[CrossRef] [PubMed]

W. Chen, R. Liu, K. Xu, and R. K. Wang, "Influence of contact state on NIR diffuse reflectance spectroscopy in vivo," J. Phys. D 38, 2691-2695 (2005).
[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

B. Chance, S. Nioka, W. Warren, and G. Yurtsever, "Mitochondrial NADH as the bellwether of tissue O2 delivery," Adv. Exp. Med. Biol. 566, 231-242 (2005).
[CrossRef]

S. A. Toms, W.-C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative Optical Spectroscopy Identifies Infiltrating Glioma Margins with High Sensitivity," Neurosurgery 57, 382-391 (2005).
[CrossRef] [PubMed]

2004 (6)

T. Papaioannou, N. W. Preyer, Q. Fang, A. Brightwell, M. Carnohan, G. Cottone, R. Ross, L. R. Jones, and L. Marcu, "Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm," Appl. Opt. 43, 2846-2860 (2004).
[CrossRef] [PubMed]

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, "Effect of probe pressure on cervical fluorescence spectroscopy measurements," J. Biomed. Opt. 9, 523-533 (2004).
[CrossRef] [PubMed]

K. Rivoire, A. Nath, D. Cox, E. N. Atkinson, R. Richards-Kortum, and M. Follen, "The effects of repeated spectroscopic pressure measurements on fluorescence intensity in the cervix," Am. J. Obstet. Gynecol. 191, 1606-1617 (2004).
[CrossRef] [PubMed]

I. J. Bigio and S. G. Bown, "Spectroscopic sensing of cancer and cancer therapy: current status of translational research," Cancer Biol. Ther. 3, 259-267 (2004).
[CrossRef] [PubMed]

C. R. Buttemere, R. S. Chari, C. D. Anderson, M. K. Washington, A. Mahadevan-Jansen, and W. C. Lin, "In vivo assessment of thermal damage in the liver using optical spectroscopy," J. Biomed. Opt. 9, 1018-1027 (2004).
[CrossRef] [PubMed]

B. Chance, "Mitochondrial NADH redox state, monitoring discovery and deployment in tissue," Methods Enzymol. 385, 361-370 (2004).
[CrossRef] [PubMed]

2003 (3)

R. S. DaCosta, H. Andersson, and B. C. Wilson, "Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy," Photochem. Photobiol. 78, 384-392 (2003).
[CrossRef] [PubMed]

U. Utzinger and R. R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003).
[CrossRef] [PubMed]

U. Mahmood and R. Weissleder, "Near-infrared optical imaging of proteases in cancer," Mol. Cancer. Ther. 2, 489-496 (2003).
[PubMed]

2002 (2)

K. Sokolov, M. Follen, and R. Richards-Kortum, "Optical spectroscopy for detection of neoplasia," Curr. Opin. Chem. Biol. 6, 651-658 (2002).
[CrossRef] [PubMed]

G. Strangman, D. A. Boas, and J. P. Sutton, "Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002).
[CrossRef] [PubMed]

2001 (2)

W. C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001).
[CrossRef] [PubMed]

G. E. Kochiadakis, S. I. Chrysostomakis, M. D. Kalebubas, G. M. Filippidis, I. G. Zacharakis, T. G. Papazoglou, and P. E. Vardas, "The role of laser-induced fluorescence in myocardial tissue characterization: an experimental in vitro study," Chest 120, 233-239 (2001).
[CrossRef] [PubMed]

2000 (4)

Q. Zhang, M. Muller, J. Wu, and M. Feld, "Turbity-free fluorescence spectroscopy of biological tissue," Opt. Lett. 25, 1451-1453 (2000).
[CrossRef]

N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000).
[CrossRef] [PubMed]

M. G. Shim, L.-M. Wong Kee Song, N. E. Marcon, and B. C. Wilson, "In vivo Near-infrared Raman Spectroscopy: Demonstration of Feasibility during Clinical Gastrointestinal Endoscopy and Para," Photochem. Photobiol. 72, 146-150 (2000).
[PubMed]

W. C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy; an in vitro study," J. Biomed. Opt. 5, 214-220 (2000).
[CrossRef] [PubMed]

1997 (2)

A. Murray and D. Marjanovic, "Optical assessment of recovery of tissue blood supply after removal of externally applied pressure," Med. Biol. Eng. Comput. 35, 425-427 (1997).
[CrossRef] [PubMed]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

1996 (1)

E. K. Chan, B. Sorg, D. Protsenko, Oapos, M. Neil, M. Motamedi, and A. J. Welch, "Effects of compression on soft tissue optical properties," IEEE J. Sel. Top. Quantum Electron. 2, 943-950 (1996).
[CrossRef]

1994 (1)

K. A. Horvath, K. T. Schomacker, C. C. Lee, and L. H. Cohn, "Intraoperative myocardial ischemia detection with laser-induced fluorescence," J. Thorac. Cardiovasc. Surg. 107, 220-225 (1994).
[PubMed]

1993 (1)

1986 (1)

R. N. Pittman, "In vivo photometric analysis of hemoglobin," Ann. Biomed. Eng. 14, 119-137 (1986).
[CrossRef] [PubMed]

1982 (1)

A. Mayevsky and B. Chance, "Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer," Science 217, 537-540 (1982).
[CrossRef] [PubMed]

1949 (1)

W. J. Bowen, "The absorption spectra and extinction coefficients of myoglobin," J. Biol. Chem. 179, 235-245 (1949).
[PubMed]

1939 (1)

R. Junowicz-Kocholaty and T. R. Hogness, "The spectroscopic determination of cytochrome c and its distribution in some mammalian tissues," J. Biol. Chem. 129, 569-574 (1939).

Anderson, C. D.

C. R. Buttemere, R. S. Chari, C. D. Anderson, M. K. Washington, A. Mahadevan-Jansen, and W. C. Lin, "In vivo assessment of thermal damage in the liver using optical spectroscopy," J. Biomed. Opt. 9, 1018-1027 (2004).
[CrossRef] [PubMed]

Andersson, H.

R. S. DaCosta, H. Andersson, and B. C. Wilson, "Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy," Photochem. Photobiol. 78, 384-392 (2003).
[CrossRef] [PubMed]

Atkinson, E. N.

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, "Effect of probe pressure on cervical fluorescence spectroscopy measurements," J. Biomed. Opt. 9, 523-533 (2004).
[CrossRef] [PubMed]

K. Rivoire, A. Nath, D. Cox, E. N. Atkinson, R. Richards-Kortum, and M. Follen, "The effects of repeated spectroscopic pressure measurements on fluorescence intensity in the cervix," Am. J. Obstet. Gynecol. 191, 1606-1617 (2004).
[CrossRef] [PubMed]

Bigio, I. J.

I. J. Bigio and S. G. Bown, "Spectroscopic sensing of cancer and cancer therapy: current status of translational research," Cancer Biol. Ther. 3, 259-267 (2004).
[CrossRef] [PubMed]

Boas, D. A.

G. Strangman, D. A. Boas, and J. P. Sutton, "Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002).
[CrossRef] [PubMed]

Bowen, W. J.

W. J. Bowen, "The absorption spectra and extinction coefficients of myoglobin," J. Biol. Chem. 179, 235-245 (1949).
[PubMed]

Bown, S. G.

I. J. Bigio and S. G. Bown, "Spectroscopic sensing of cancer and cancer therapy: current status of translational research," Cancer Biol. Ther. 3, 259-267 (2004).
[CrossRef] [PubMed]

Brightwell, A.

Buttemere, C. R.

C. R. Buttemere, R. S. Chari, C. D. Anderson, M. K. Washington, A. Mahadevan-Jansen, and W. C. Lin, "In vivo assessment of thermal damage in the liver using optical spectroscopy," J. Biomed. Opt. 9, 1018-1027 (2004).
[CrossRef] [PubMed]

Carnohan, M.

Chan, E.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

Chan, E. K.

E. K. Chan, B. Sorg, D. Protsenko, Oapos, M. Neil, M. Motamedi, and A. J. Welch, "Effects of compression on soft tissue optical properties," IEEE J. Sel. Top. Quantum Electron. 2, 943-950 (1996).
[CrossRef]

Chance, B.

B. Chance, S. Nioka, W. Warren, and G. Yurtsever, "Mitochondrial NADH as the bellwether of tissue O2 delivery," Adv. Exp. Med. Biol. 566, 231-242 (2005).
[CrossRef]

B. Chance, "Mitochondrial NADH redox state, monitoring discovery and deployment in tissue," Methods Enzymol. 385, 361-370 (2004).
[CrossRef] [PubMed]

A. Mayevsky and B. Chance, "Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer," Science 217, 537-540 (1982).
[CrossRef] [PubMed]

Chang, S.

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, "Effect of probe pressure on cervical fluorescence spectroscopy measurements," J. Biomed. Opt. 9, 523-533 (2004).
[CrossRef] [PubMed]

Chari, R. S.

C. R. Buttemere, R. S. Chari, C. D. Anderson, M. K. Washington, A. Mahadevan-Jansen, and W. C. Lin, "In vivo assessment of thermal damage in the liver using optical spectroscopy," J. Biomed. Opt. 9, 1018-1027 (2004).
[CrossRef] [PubMed]

Chen, W.

W. Chen, R. Liu, K. Xu, and R. K. Wang, "Influence of contact state on NIR diffuse reflectance spectroscopy in vivo," J. Phys. D 38, 2691-2695 (2005).
[CrossRef]

Chrysostomakis, S. I.

G. E. Kochiadakis, S. I. Chrysostomakis, M. D. Kalebubas, G. M. Filippidis, I. G. Zacharakis, T. G. Papazoglou, and P. E. Vardas, "The role of laser-induced fluorescence in myocardial tissue characterization: an experimental in vitro study," Chest 120, 233-239 (2001).
[CrossRef] [PubMed]

Cohn, L. H.

K. A. Horvath, K. T. Schomacker, C. C. Lee, and L. H. Cohn, "Intraoperative myocardial ischemia detection with laser-induced fluorescence," J. Thorac. Cardiovasc. Surg. 107, 220-225 (1994).
[PubMed]

Cottone, G.

Cox, D.

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, "Effect of probe pressure on cervical fluorescence spectroscopy measurements," J. Biomed. Opt. 9, 523-533 (2004).
[CrossRef] [PubMed]

K. Rivoire, A. Nath, D. Cox, E. N. Atkinson, R. Richards-Kortum, and M. Follen, "The effects of repeated spectroscopic pressure measurements on fluorescence intensity in the cervix," Am. J. Obstet. Gynecol. 191, 1606-1617 (2004).
[CrossRef] [PubMed]

Criswell, G.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

DaCosta, R. S.

R. S. DaCosta, H. Andersson, and B. C. Wilson, "Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy," Photochem. Photobiol. 78, 384-392 (2003).
[CrossRef] [PubMed]

Fang, Q.

Feld, M.

Feld, M. S.

Filippidis, G. M.

G. E. Kochiadakis, S. I. Chrysostomakis, M. D. Kalebubas, G. M. Filippidis, I. G. Zacharakis, T. G. Papazoglou, and P. E. Vardas, "The role of laser-induced fluorescence in myocardial tissue characterization: an experimental in vitro study," Chest 120, 233-239 (2001).
[CrossRef] [PubMed]

Follen, M.

K. Rivoire, A. Nath, D. Cox, E. N. Atkinson, R. Richards-Kortum, and M. Follen, "The effects of repeated spectroscopic pressure measurements on fluorescence intensity in the cervix," Am. J. Obstet. Gynecol. 191, 1606-1617 (2004).
[CrossRef] [PubMed]

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, "Effect of probe pressure on cervical fluorescence spectroscopy measurements," J. Biomed. Opt. 9, 523-533 (2004).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, and R. Richards-Kortum, "Optical spectroscopy for detection of neoplasia," Curr. Opin. Chem. Biol. 6, 651-658 (2002).
[CrossRef] [PubMed]

Gardner, C.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

Heikal, A. A.

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, "Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy," J. Biol. Chem. 280, 25119-25126 (2005).
[CrossRef] [PubMed]

Hogness, T. R.

R. Junowicz-Kocholaty and T. R. Hogness, "The spectroscopic determination of cytochrome c and its distribution in some mammalian tissues," J. Biol. Chem. 129, 569-574 (1939).

Horvath, K. A.

K. A. Horvath, K. T. Schomacker, C. C. Lee, and L. H. Cohn, "Intraoperative myocardial ischemia detection with laser-induced fluorescence," J. Thorac. Cardiovasc. Surg. 107, 220-225 (1994).
[PubMed]

Jansen, E. D.

S. A. Toms, W.-C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative Optical Spectroscopy Identifies Infiltrating Glioma Margins with High Sensitivity," Neurosurgery 57, 382-391 (2005).
[CrossRef] [PubMed]

W. C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001).
[CrossRef] [PubMed]

W. C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy; an in vitro study," J. Biomed. Opt. 5, 214-220 (2000).
[CrossRef] [PubMed]

Johnson, M.

W. C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001).
[CrossRef] [PubMed]

Johnson, M. D.

S. A. Toms, W.-C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative Optical Spectroscopy Identifies Infiltrating Glioma Margins with High Sensitivity," Neurosurgery 57, 382-391 (2005).
[CrossRef] [PubMed]

Jones, L. R.

Junowicz-Kocholaty, R.

R. Junowicz-Kocholaty and T. R. Hogness, "The spectroscopic determination of cytochrome c and its distribution in some mammalian tissues," J. Biol. Chem. 129, 569-574 (1939).

Kalebubas, M. D.

G. E. Kochiadakis, S. I. Chrysostomakis, M. D. Kalebubas, G. M. Filippidis, I. G. Zacharakis, T. G. Papazoglou, and P. E. Vardas, "The role of laser-induced fluorescence in myocardial tissue characterization: an experimental in vitro study," Chest 120, 233-239 (2001).
[CrossRef] [PubMed]

Kasischke, K. A.

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, "Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy," J. Biol. Chem. 280, 25119-25126 (2005).
[CrossRef] [PubMed]

Kochiadakis, G. E.

G. E. Kochiadakis, S. I. Chrysostomakis, M. D. Kalebubas, G. M. Filippidis, I. G. Zacharakis, T. G. Papazoglou, and P. E. Vardas, "The role of laser-induced fluorescence in myocardial tissue characterization: an experimental in vitro study," Chest 120, 233-239 (2001).
[CrossRef] [PubMed]

Lee, C. C.

K. A. Horvath, K. T. Schomacker, C. C. Lee, and L. H. Cohn, "Intraoperative myocardial ischemia detection with laser-induced fluorescence," J. Thorac. Cardiovasc. Surg. 107, 220-225 (1994).
[PubMed]

Lin, W. C.

C. R. Buttemere, R. S. Chari, C. D. Anderson, M. K. Washington, A. Mahadevan-Jansen, and W. C. Lin, "In vivo assessment of thermal damage in the liver using optical spectroscopy," J. Biomed. Opt. 9, 1018-1027 (2004).
[CrossRef] [PubMed]

W. C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001).
[CrossRef] [PubMed]

W. C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy; an in vitro study," J. Biomed. Opt. 5, 214-220 (2000).
[CrossRef] [PubMed]

Lin, W.-C.

S. A. Toms, W.-C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative Optical Spectroscopy Identifies Infiltrating Glioma Margins with High Sensitivity," Neurosurgery 57, 382-391 (2005).
[CrossRef] [PubMed]

Liu, R.

W. Chen, R. Liu, K. Xu, and R. K. Wang, "Influence of contact state on NIR diffuse reflectance spectroscopy in vivo," J. Phys. D 38, 2691-2695 (2005).
[CrossRef]

Luker, G. D.

G. D. Luker and K. E. Luker, "Optical imaging: current applications and future directions," J. Nucl. Med. 49, 1-4 (2008).
[CrossRef]

Luker, K. E.

G. D. Luker and K. E. Luker, "Optical imaging: current applications and future directions," J. Nucl. Med. 49, 1-4 (2008).
[CrossRef]

Mahadevan-Jansen, A.

S. A. Toms, W.-C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative Optical Spectroscopy Identifies Infiltrating Glioma Margins with High Sensitivity," Neurosurgery 57, 382-391 (2005).
[CrossRef] [PubMed]

C. R. Buttemere, R. S. Chari, C. D. Anderson, M. K. Washington, A. Mahadevan-Jansen, and W. C. Lin, "In vivo assessment of thermal damage in the liver using optical spectroscopy," J. Biomed. Opt. 9, 1018-1027 (2004).
[CrossRef] [PubMed]

W. C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001).
[CrossRef] [PubMed]

W. C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy; an in vitro study," J. Biomed. Opt. 5, 214-220 (2000).
[CrossRef] [PubMed]

Mahmood, U.

U. Mahmood and R. Weissleder, "Near-infrared optical imaging of proteases in cancer," Mol. Cancer. Ther. 2, 489-496 (2003).
[PubMed]

Marcon, N. E.

M. G. Shim, L.-M. Wong Kee Song, N. E. Marcon, and B. C. Wilson, "In vivo Near-infrared Raman Spectroscopy: Demonstration of Feasibility during Clinical Gastrointestinal Endoscopy and Para," Photochem. Photobiol. 72, 146-150 (2000).
[PubMed]

Marcu, L.

Marjanovic, D.

A. Murray and D. Marjanovic, "Optical assessment of recovery of tissue blood supply after removal of externally applied pressure," Med. Biol. Eng. Comput. 35, 425-427 (1997).
[CrossRef] [PubMed]

Mayevsky, A.

A. Mayevsky and G. G. Rogatsky, "Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies," Am. J. Physiol.-Cell Physiol. 292, C615-640 (2007).
[CrossRef]

A. Mayevsky and B. Chance, "Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer," Science 217, 537-540 (1982).
[CrossRef] [PubMed]

Motamedi, M.

W. C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy; an in vitro study," J. Biomed. Opt. 5, 214-220 (2000).
[CrossRef] [PubMed]

Muller, M.

Murray, A.

A. Murray and D. Marjanovic, "Optical assessment of recovery of tissue blood supply after removal of externally applied pressure," Med. Biol. Eng. Comput. 35, 425-427 (1997).
[CrossRef] [PubMed]

Nath, A.

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, "Effect of probe pressure on cervical fluorescence spectroscopy measurements," J. Biomed. Opt. 9, 523-533 (2004).
[CrossRef] [PubMed]

K. Rivoire, A. Nath, D. Cox, E. N. Atkinson, R. Richards-Kortum, and M. Follen, "The effects of repeated spectroscopic pressure measurements on fluorescence intensity in the cervix," Am. J. Obstet. Gynecol. 191, 1606-1617 (2004).
[CrossRef] [PubMed]

Nioka, S.

B. Chance, S. Nioka, W. Warren, and G. Yurtsever, "Mitochondrial NADH as the bellwether of tissue O2 delivery," Adv. Exp. Med. Biol. 566, 231-242 (2005).
[CrossRef]

Ntziachristos, V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Oapos, D.

E. K. Chan, B. Sorg, D. Protsenko, Oapos, M. Neil, M. Motamedi, and A. J. Welch, "Effects of compression on soft tissue optical properties," IEEE J. Sel. Top. Quantum Electron. 2, 943-950 (1996).
[CrossRef]

Papaioannou, T.

Papazoglou, T. G.

G. E. Kochiadakis, S. I. Chrysostomakis, M. D. Kalebubas, G. M. Filippidis, I. G. Zacharakis, T. G. Papazoglou, and P. E. Vardas, "The role of laser-induced fluorescence in myocardial tissue characterization: an experimental in vitro study," Chest 120, 233-239 (2001).
[CrossRef] [PubMed]

Pfefer, J.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

Pittman, R. N.

R. N. Pittman, "In vivo photometric analysis of hemoglobin," Ann. Biomed. Eng. 14, 119-137 (1986).
[CrossRef] [PubMed]

Preyer, N. W.

Protsenko, D.

E. K. Chan, B. Sorg, D. Protsenko, Oapos, M. Neil, M. Motamedi, and A. J. Welch, "Effects of compression on soft tissue optical properties," IEEE J. Sel. Top. Quantum Electron. 2, 943-950 (1996).
[CrossRef]

Ramanujam, N.

N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000).
[CrossRef] [PubMed]

Rava, R. P.

Richards-Kortum, R.

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, "Effect of probe pressure on cervical fluorescence spectroscopy measurements," J. Biomed. Opt. 9, 523-533 (2004).
[CrossRef] [PubMed]

K. Rivoire, A. Nath, D. Cox, E. N. Atkinson, R. Richards-Kortum, and M. Follen, "The effects of repeated spectroscopic pressure measurements on fluorescence intensity in the cervix," Am. J. Obstet. Gynecol. 191, 1606-1617 (2004).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, and R. Richards-Kortum, "Optical spectroscopy for detection of neoplasia," Curr. Opin. Chem. Biol. 6, 651-658 (2002).
[CrossRef] [PubMed]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

Richards-Kortum, R. R.

U. Utzinger and R. R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003).
[CrossRef] [PubMed]

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Rivoire, K.

K. Rivoire, A. Nath, D. Cox, E. N. Atkinson, R. Richards-Kortum, and M. Follen, "The effects of repeated spectroscopic pressure measurements on fluorescence intensity in the cervix," Am. J. Obstet. Gynecol. 191, 1606-1617 (2004).
[CrossRef] [PubMed]

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, "Effect of probe pressure on cervical fluorescence spectroscopy measurements," J. Biomed. Opt. 9, 523-533 (2004).
[CrossRef] [PubMed]

Rogatsky, G. G.

A. Mayevsky and G. G. Rogatsky, "Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies," Am. J. Physiol.-Cell Physiol. 292, C615-640 (2007).
[CrossRef]

Ross, R.

Schomacker, K. T.

K. A. Horvath, K. T. Schomacker, C. C. Lee, and L. H. Cohn, "Intraoperative myocardial ischemia detection with laser-induced fluorescence," J. Thorac. Cardiovasc. Surg. 107, 220-225 (1994).
[PubMed]

Shim, M. G.

M. G. Shim, L.-M. Wong Kee Song, N. E. Marcon, and B. C. Wilson, "In vivo Near-infrared Raman Spectroscopy: Demonstration of Feasibility during Clinical Gastrointestinal Endoscopy and Para," Photochem. Photobiol. 72, 146-150 (2000).
[PubMed]

Sokolov, K.

K. Sokolov, M. Follen, and R. Richards-Kortum, "Optical spectroscopy for detection of neoplasia," Curr. Opin. Chem. Biol. 6, 651-658 (2002).
[CrossRef] [PubMed]

Sorg, B.

E. K. Chan, B. Sorg, D. Protsenko, Oapos, M. Neil, M. Motamedi, and A. J. Welch, "Effects of compression on soft tissue optical properties," IEEE J. Sel. Top. Quantum Electron. 2, 943-950 (1996).
[CrossRef]

Strangman, G.

G. Strangman, D. A. Boas, and J. P. Sutton, "Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002).
[CrossRef] [PubMed]

Sutton, J. P.

G. Strangman, D. A. Boas, and J. P. Sutton, "Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002).
[CrossRef] [PubMed]

Toms, S. A.

S. A. Toms, W.-C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative Optical Spectroscopy Identifies Infiltrating Glioma Margins with High Sensitivity," Neurosurgery 57, 382-391 (2005).
[CrossRef] [PubMed]

W. C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001).
[CrossRef] [PubMed]

W. C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy; an in vitro study," J. Biomed. Opt. 5, 214-220 (2000).
[CrossRef] [PubMed]

Utzinger, U.

U. Utzinger and R. R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003).
[CrossRef] [PubMed]

Vardas, P. E.

G. E. Kochiadakis, S. I. Chrysostomakis, M. D. Kalebubas, G. M. Filippidis, I. G. Zacharakis, T. G. Papazoglou, and P. E. Vardas, "The role of laser-induced fluorescence in myocardial tissue characterization: an experimental in vitro study," Chest 120, 233-239 (2001).
[CrossRef] [PubMed]

Vishwasrao, H. D.

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, "Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy," J. Biol. Chem. 280, 25119-25126 (2005).
[CrossRef] [PubMed]

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Wang, R. K.

W. Chen, R. Liu, K. Xu, and R. K. Wang, "Influence of contact state on NIR diffuse reflectance spectroscopy in vivo," J. Phys. D 38, 2691-2695 (2005).
[CrossRef]

Warren, S.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

Warren, W.

B. Chance, S. Nioka, W. Warren, and G. Yurtsever, "Mitochondrial NADH as the bellwether of tissue O2 delivery," Adv. Exp. Med. Biol. 566, 231-242 (2005).
[CrossRef]

Washington, M. K.

C. R. Buttemere, R. S. Chari, C. D. Anderson, M. K. Washington, A. Mahadevan-Jansen, and W. C. Lin, "In vivo assessment of thermal damage in the liver using optical spectroscopy," J. Biomed. Opt. 9, 1018-1027 (2004).
[CrossRef] [PubMed]

Webb, W. W.

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, "Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy," J. Biol. Chem. 280, 25119-25126 (2005).
[CrossRef] [PubMed]

Weil, R. J.

S. A. Toms, W.-C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative Optical Spectroscopy Identifies Infiltrating Glioma Margins with High Sensitivity," Neurosurgery 57, 382-391 (2005).
[CrossRef] [PubMed]

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

U. Mahmood and R. Weissleder, "Near-infrared optical imaging of proteases in cancer," Mol. Cancer. Ther. 2, 489-496 (2003).
[PubMed]

Welch, A. J.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

Wilson, B. C.

R. S. DaCosta, H. Andersson, and B. C. Wilson, "Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy," Photochem. Photobiol. 78, 384-392 (2003).
[CrossRef] [PubMed]

M. G. Shim, L.-M. Wong Kee Song, N. E. Marcon, and B. C. Wilson, "In vivo Near-infrared Raman Spectroscopy: Demonstration of Feasibility during Clinical Gastrointestinal Endoscopy and Para," Photochem. Photobiol. 72, 146-150 (2000).
[PubMed]

Wong Kee Song, L.-M.

M. G. Shim, L.-M. Wong Kee Song, N. E. Marcon, and B. C. Wilson, "In vivo Near-infrared Raman Spectroscopy: Demonstration of Feasibility during Clinical Gastrointestinal Endoscopy and Para," Photochem. Photobiol. 72, 146-150 (2000).
[PubMed]

Wu, J.

Xu, K.

W. Chen, R. Liu, K. Xu, and R. K. Wang, "Influence of contact state on NIR diffuse reflectance spectroscopy in vivo," J. Phys. D 38, 2691-2695 (2005).
[CrossRef]

Yurtsever, G.

B. Chance, S. Nioka, W. Warren, and G. Yurtsever, "Mitochondrial NADH as the bellwether of tissue O2 delivery," Adv. Exp. Med. Biol. 566, 231-242 (2005).
[CrossRef]

Zacharakis, I. G.

G. E. Kochiadakis, S. I. Chrysostomakis, M. D. Kalebubas, G. M. Filippidis, I. G. Zacharakis, T. G. Papazoglou, and P. E. Vardas, "The role of laser-induced fluorescence in myocardial tissue characterization: an experimental in vitro study," Chest 120, 233-239 (2001).
[CrossRef] [PubMed]

Zhang, Q.

Adv. Exp. Med. Biol. (1)

B. Chance, S. Nioka, W. Warren, and G. Yurtsever, "Mitochondrial NADH as the bellwether of tissue O2 delivery," Adv. Exp. Med. Biol. 566, 231-242 (2005).
[CrossRef]

Am. J. Obstet. Gynecol. (1)

K. Rivoire, A. Nath, D. Cox, E. N. Atkinson, R. Richards-Kortum, and M. Follen, "The effects of repeated spectroscopic pressure measurements on fluorescence intensity in the cervix," Am. J. Obstet. Gynecol. 191, 1606-1617 (2004).
[CrossRef] [PubMed]

Am. J. Physiol.-Cell Physiol. (1)

A. Mayevsky and G. G. Rogatsky, "Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies," Am. J. Physiol.-Cell Physiol. 292, C615-640 (2007).
[CrossRef]

Ann. Biomed. Eng. (1)

R. N. Pittman, "In vivo photometric analysis of hemoglobin," Ann. Biomed. Eng. 14, 119-137 (1986).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biol. Psychiatry (1)

G. Strangman, D. A. Boas, and J. P. Sutton, "Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002).
[CrossRef] [PubMed]

Cancer Biol. Ther. (1)

I. J. Bigio and S. G. Bown, "Spectroscopic sensing of cancer and cancer therapy: current status of translational research," Cancer Biol. Ther. 3, 259-267 (2004).
[CrossRef] [PubMed]

Chest (1)

G. E. Kochiadakis, S. I. Chrysostomakis, M. D. Kalebubas, G. M. Filippidis, I. G. Zacharakis, T. G. Papazoglou, and P. E. Vardas, "The role of laser-induced fluorescence in myocardial tissue characterization: an experimental in vitro study," Chest 120, 233-239 (2001).
[CrossRef] [PubMed]

Curr. Opin. Chem. Biol. (1)

K. Sokolov, M. Follen, and R. Richards-Kortum, "Optical spectroscopy for detection of neoplasia," Curr. Opin. Chem. Biol. 6, 651-658 (2002).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

E. K. Chan, B. Sorg, D. Protsenko, Oapos, M. Neil, M. Motamedi, and A. J. Welch, "Effects of compression on soft tissue optical properties," IEEE J. Sel. Top. Quantum Electron. 2, 943-950 (1996).
[CrossRef]

J. Biol. Chem. (3)

W. J. Bowen, "The absorption spectra and extinction coefficients of myoglobin," J. Biol. Chem. 179, 235-245 (1949).
[PubMed]

R. Junowicz-Kocholaty and T. R. Hogness, "The spectroscopic determination of cytochrome c and its distribution in some mammalian tissues," J. Biol. Chem. 129, 569-574 (1939).

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, "Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy," J. Biol. Chem. 280, 25119-25126 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

C. R. Buttemere, R. S. Chari, C. D. Anderson, M. K. Washington, A. Mahadevan-Jansen, and W. C. Lin, "In vivo assessment of thermal damage in the liver using optical spectroscopy," J. Biomed. Opt. 9, 1018-1027 (2004).
[CrossRef] [PubMed]

U. Utzinger and R. R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003).
[CrossRef] [PubMed]

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, "Effect of probe pressure on cervical fluorescence spectroscopy measurements," J. Biomed. Opt. 9, 523-533 (2004).
[CrossRef] [PubMed]

W. C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy; an in vitro study," J. Biomed. Opt. 5, 214-220 (2000).
[CrossRef] [PubMed]

J. Nucl. Med. (1)

G. D. Luker and K. E. Luker, "Optical imaging: current applications and future directions," J. Nucl. Med. 49, 1-4 (2008).
[CrossRef]

J. Phys. D (1)

W. Chen, R. Liu, K. Xu, and R. K. Wang, "Influence of contact state on NIR diffuse reflectance spectroscopy in vivo," J. Phys. D 38, 2691-2695 (2005).
[CrossRef]

J. Thorac. Cardiovasc. Surg. (1)

K. A. Horvath, K. T. Schomacker, C. C. Lee, and L. H. Cohn, "Intraoperative myocardial ischemia detection with laser-induced fluorescence," J. Thorac. Cardiovasc. Surg. 107, 220-225 (1994).
[PubMed]

Lasers Surg. Med. (1)

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (1)

A. Murray and D. Marjanovic, "Optical assessment of recovery of tissue blood supply after removal of externally applied pressure," Med. Biol. Eng. Comput. 35, 425-427 (1997).
[CrossRef] [PubMed]

Methods Enzymol. (1)

B. Chance, "Mitochondrial NADH redox state, monitoring discovery and deployment in tissue," Methods Enzymol. 385, 361-370 (2004).
[CrossRef] [PubMed]

Mol. Cancer. Ther. (1)

U. Mahmood and R. Weissleder, "Near-infrared optical imaging of proteases in cancer," Mol. Cancer. Ther. 2, 489-496 (2003).
[PubMed]

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Neoplasia (1)

N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000).
[CrossRef] [PubMed]

Neurosurgery (1)

S. A. Toms, W.-C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative Optical Spectroscopy Identifies Infiltrating Glioma Margins with High Sensitivity," Neurosurgery 57, 382-391 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Photochem. Photobiol. (3)

W. C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001).
[CrossRef] [PubMed]

R. S. DaCosta, H. Andersson, and B. C. Wilson, "Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy," Photochem. Photobiol. 78, 384-392 (2003).
[CrossRef] [PubMed]

M. G. Shim, L.-M. Wong Kee Song, N. E. Marcon, and B. C. Wilson, "In vivo Near-infrared Raman Spectroscopy: Demonstration of Feasibility during Clinical Gastrointestinal Endoscopy and Para," Photochem. Photobiol. 72, 146-150 (2000).
[PubMed]

Science (1)

A. Mayevsky and B. Chance, "Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer," Science 217, 537-540 (1982).
[CrossRef] [PubMed]

Other (5)

D. Voet and J. Voet, Biochemistry, 3rd ed., (John Wiley and Sons, Hoboken, NJ, 2004), Vol. 1.

S. Prahl, "Optical absorption of hemoglobin" (1999), retrieved http://omlc.ogi.edu/spectra/hemoglobin/index.html.

Y. C. Fung, Biomechanics : mechanical properties of living tissues, 2nd ed. (Springer-Verlag, New York, 1993), pp. 53, p. 568 .

W. C. Lin, A. Mahadevan-Jansen, M. D. Johnson, R. J. Weil, and S. A. Toms, "In vivo optical spectroscopy detects radiation damage in brain tissue," Neurosurgery 57, 518-525; discussion 518-525 (2005).
[CrossRef] [PubMed]

B. Chance, "Spectrophotometric and kinetic studies of flavoproteins in tissues, cell suspensions, mitochondria and their fragments," in Flavins and flavoproteins, S. EC, ed., (Elsevier, New York, 1996), pp. 496-510.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the experimental setup.

Fig. 2.
Fig. 2.

Average in vivo (a) diffuse reflectance and (b) fluorescence spectra from liver tissue recorded at various probe contact pressures.

Fig. 3.
Fig. 3.

Average in vivo (a) diffuse reflectance and (b) fluorescence spectra from heart tissue recorded at various probe contact pressures.

Fig. 4.
Fig. 4.

Quantitative comparisons of (a) diffuse reflectance characteristics, including Rd(480), Rd(800), and Rd(575)/Rd(565), and (b) fluorescence characteristics including F(410), F(470), and F(470)/F(600) of liver tissue at various probe contact pressures. The bars and error bars represent mean and standard deviation, respectively, for each spectral characteristic (nsite = 6). % indicates that the mean spectral characteristic at a particular probe contact pressure is significantly different (p<0.05) from those at other probe contact pressures.

Fig. 5.
Fig. 5.

Quantitative comparisons of (a) diffuse reflectance characteristics including Rd(480), Rd(800), and Rd(575)/Rd(565), and (b) fluorescence characteristics including F(410), F(470), and F(470)/F(600) of heart tissue at various probe contact pressures. The bars and error bars represent the mean and the standard deviation, respectively, for each spectral characteristic (nsite = 6). % indicates that the mean spectral characteristic at this particular probe contact pressure is significantly different (p<0.05) from those at other probe contact pressures.

Fig. 6.
Fig. 6.

Comparisons of the average time histories of (a) Rd(480), (b) Rd(800), (c) Rd(575)/Rd(565), (d) F(410), (e) F(470), and (f) F(470)/F(600) for liver tissue at various probe contact pressures (nsite = 6). A heavy line indicates that the initial and final values for the spectral characteristic are significantly different (p<0.05). The error bars represent the standard deviation of the measurements and they are shown only in the data series with the lowest and highest probe contact pressures.

Fig. 7.
Fig. 7.

Comparisons of the average time histories of (a) Rd(480), (b) Rd(800), (c) Rd(575)/Rd(565), (d) F(410), (e) F(470), and (f) F(470)/F(600) for heart tissue at various probe contact pressures (nsite = 6). A heavy line indicates that the initial and final values for the spectral characteristic are significantly different (p<0.05). The error bars represent the standard deviation of the measurements and they are shown only in the data series with the lowest and highest probe contact pressures.

Tables (1)

Tables Icon

Table 1: Weights and pressures applied by the optical probe (d = 1.3 mm) in the study.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( λ ) = [ I raw ( λ ) B ( λ ) ] × C ( λ ) ,

Metrics