Abstract

This paper reports on a technique to improve the coherence length of a high-speed wavelength swept laser. The wavelength swept laser comprises a pigtailed semiconductor optical amplifier and a wavelength-scanning filter in a fiber extended cavity configuration. The laser operates in the 1310 nm wavelength region. The tunable filter consists of a diffraction grating and polygon mirror scanner. Littrow arrangement of external cavity in a specific geometry realizes the quasi-phase continuous tuning over wavelength range emphasizing coherent amplification of cavity modes resulting in spectral narrowing of the instantaneous linewidth to about 0.06nm. Improvement by a factor of two is confirmed in comparison with coherence length without using this technique. Peak power is 12 mW and wavelength swept range is 55 nm, from 1271 nm to 1326 nm. Measured coherence lengths of over 30 mm and 17 mm were achieved at scanning rates of 2.5 kHz and 20 kHz, respectively. Correlation of laser cavity parameters with spectral linewidth is also discussed by introducing the rate equations for multi-mode laser operation. Shorter cavity length is considered effective to further improve the coherence length in terms of shorter roundtrip time as well as higher mode suppression ratio because of higher carrier concentration on cavity modes around the filter center.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
    [CrossRef] [PubMed]
  3. A. F. Fercher, C. K. Hitzenberger, G. Kamp, Sy. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  4. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr/sup 4+/:forsterite laser," Opt. Lett. 22, 1704-1706 (1997).
    [CrossRef]
  5. M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
    [CrossRef] [PubMed]
  6. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt.Express 11, 2953-2963 (2003).
    [CrossRef] [PubMed]
  7. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
    [CrossRef] [PubMed]
  8. S. H. Yun, D. J. Richardson, and B. Y. Kim, "Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser," Opt. Lett. 23, 843-845 (1998).
    [CrossRef]
  9. S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, "Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines," P. Combust. Inst. 28, 587-594 (2000).
    [CrossRef]
  10. S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, "Diode-laser absorption sensor for line-of-sight gas temperature distributions," Appl. Opt. 40, 4404-4415 (2001).
    [CrossRef]
  11. J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, "Oxygen measurements at high pressures with vertical cavity surface-emitting lasers," Appl. Phys. B 72, 865-872 (2001).
    [CrossRef]
  12. S. M. R. Motaghian Nezam, "High-speed polygon-scanner-based wavelength swept laser source in the telescope-less configurations with application in optical coherence tomography," Opt. Lett. 33, 1741-1743 (2008).
    [CrossRef] [PubMed]
  13. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett 30, 3159-3161 (2005).
    [CrossRef] [PubMed]
  14. F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, "Wavelength-tuning interferometry of intraocular distances," Appl. Opt. 36, 6548-6553 (1997).
    [CrossRef]
  15. Y. T. Pan, Z. G. Li, T. Q. Xie, and C. R. Chu, "Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage," J. Biomed. Opt. 8, 648-654 (2003).
    [CrossRef] [PubMed]
  16. J. Su, J. Zhang, and Z. P. Chen, "In-vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography," Opt. Express 15,10390-10396 (2007).
    [CrossRef] [PubMed]
  17. L. A. Kranendonk, R. J. Bartula, and S. T. Sanders, "Modeless operation of a wavelength-agile laser by high-speed cavity length changes," Opt. Express 13, 1498-1507 (2005).
    [CrossRef] [PubMed]
  18. R. Huber, M. Wojtkowski, J. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300nm, " Opt. Express 13, 10523-10538 (2005).
    [CrossRef] [PubMed]
  19. R. Huber, M. Wojtkowski, K. Taira, and J. G. Fujimoto, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles, " Opt. Express 13, 3513-3528 (2005).
    [CrossRef] [PubMed]
  20. A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Numerical study of wavelength-swept semiconductor ring lasers: the role of refractiveindex nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications," Opt. Lett. 31, 760-762 (2006).
    [CrossRef] [PubMed]
  21. S. H. Yun, C. Boudoux, M. C. Pierce, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
    [CrossRef]
  22. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983(2003).
    [CrossRef] [PubMed]
  23. M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10,044009 (2005).
    [CrossRef]
  24. Q1. C. Chong, A. Morosawa, and T. Sakai, "High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
    [CrossRef]
  25. Q2Q3. S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, "Wavelength-Swept Fiber Laser with Frequency Shifted Feedback and Resonantly Swept Intra-Cavity Acoustooptic Tunable Filter, " IEEE J. Sel. Top. Quantum Electron. 3,1087-1076 (1997).
    [CrossRef]
  26. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
    [CrossRef] [PubMed]
  27. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004).
    [CrossRef] [PubMed]
  28. M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005).
    [CrossRef] [PubMed]
  29. A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005)
    [CrossRef]
  30. W. R. Trutna, Jr., and L. F. Stokes, "Continuously Tuned External Cavity Semiconductor Laser," J. Lightwave Technol. 11, 1279- 1286 (1993).
    [CrossRef]
  31. G. P. Agrawal, "Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers," J. Opt. Soc. Am. B 5, 147-159 (1988).
    [CrossRef]
  32. K. Inoue, T. Mukai, and T. Saitou, "Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier," Appl. Phys. Lett. 51, 1051-1053 (1987).
    [CrossRef]
  33. L. A. Coldren and S. W. Corzine "Diode Lasers and Photonic Integrated Circuits," (Wiley Series in Microwave and Optical Engineering, NY, 1995).

2008 (2)

Q1. C. Chong, A. Morosawa, and T. Sakai, "High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
[CrossRef]

S. M. R. Motaghian Nezam, "High-speed polygon-scanner-based wavelength swept laser source in the telescope-less configurations with application in optical coherence tomography," Opt. Lett. 33, 1741-1743 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (2)

2005 (8)

M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005).
[CrossRef] [PubMed]

L. A. Kranendonk, R. J. Bartula, and S. T. Sanders, "Modeless operation of a wavelength-agile laser by high-speed cavity length changes," Opt. Express 13, 1498-1507 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, and J. G. Fujimoto, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles, " Opt. Express 13, 3513-3528 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, J. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300nm, " Opt. Express 13, 10523-10538 (2005).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
[CrossRef] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005)
[CrossRef]

M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10,044009 (2005).
[CrossRef]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett 30, 3159-3161 (2005).
[CrossRef] [PubMed]

2004 (2)

S. H. Yun, C. Boudoux, M. C. Pierce, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004).
[CrossRef] [PubMed]

2003 (4)

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983(2003).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

Y. T. Pan, Z. G. Li, T. Q. Xie, and C. R. Chu, "Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage," J. Biomed. Opt. 8, 648-654 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt.Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

2001 (2)

J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, "Oxygen measurements at high pressures with vertical cavity surface-emitting lasers," Appl. Phys. B 72, 865-872 (2001).
[CrossRef]

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, "Diode-laser absorption sensor for line-of-sight gas temperature distributions," Appl. Opt. 40, 4404-4415 (2001).
[CrossRef]

2000 (1)

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, "Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines," P. Combust. Inst. 28, 587-594 (2000).
[CrossRef]

1998 (1)

1997 (4)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, Sy. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

1993 (1)

W. R. Trutna, Jr., and L. F. Stokes, "Continuously Tuned External Cavity Semiconductor Laser," J. Lightwave Technol. 11, 1279- 1286 (1993).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1988 (1)

1987 (1)

K. Inoue, T. Mukai, and T. Saitou, "Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier," Appl. Phys. Lett. 51, 1051-1053 (1987).
[CrossRef]

Agrawal, G. P.

Akiba, M.

Baer, D. S.

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, "Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines," P. Combust. Inst. 28, 587-594 (2000).
[CrossRef]

Baldwin, J. A.

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, "Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines," P. Combust. Inst. 28, 587-594 (2000).
[CrossRef]

Bartula, R. J.

Bilenca, A.

Boudoux, C.

S. H. Yun, C. Boudoux, M. C. Pierce, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983(2003).
[CrossRef] [PubMed]

Bouma, B. E.

A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Numerical study of wavelength-swept semiconductor ring lasers: the role of refractiveindex nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications," Opt. Lett. 31, 760-762 (2006).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett 30, 3159-3161 (2005).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, M. C. Pierce, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt.Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983(2003).
[CrossRef] [PubMed]

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr/sup 4+/:forsterite laser," Opt. Lett. 22, 1704-1706 (1997).
[CrossRef]

Cable, A. E.

Chan, K. P.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, Z. P.

Chinn, S. R.

Choma, M. A.

A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005)
[CrossRef]

M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10,044009 (2005).
[CrossRef]

M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

Chong, C.

Chu, C. R.

Y. T. Pan, Z. G. Li, T. Q. Xie, and C. R. Chu, "Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage," J. Biomed. Opt. 8, 648-654 (2003).
[CrossRef] [PubMed]

Culverhouse, D. O.

Q2Q3. S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, "Wavelength-Swept Fiber Laser with Frequency Shifted Feedback and Resonantly Swept Intra-Cavity Acoustooptic Tunable Filter, " IEEE J. Sel. Top. Quantum Electron. 3,1087-1076 (1997).
[CrossRef]

Davis, A. M.

A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005)
[CrossRef]

de Boer, J. F.

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, M. C. Pierce, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt.Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

Fercher, A. F.

F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, "Wavelength-tuning interferometry of intraocular distances," Appl. Opt. 36, 6548-6553 (1997).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, Sy. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

Golubovic, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hanson, R. K.

J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, "Oxygen measurements at high pressures with vertical cavity surface-emitting lasers," Appl. Phys. B 72, 865-872 (2001).
[CrossRef]

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, "Diode-laser absorption sensor for line-of-sight gas temperature distributions," Appl. Opt. 40, 4404-4415 (2001).
[CrossRef]

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, "Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines," P. Combust. Inst. 28, 587-594 (2000).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, "Wavelength-tuning interferometry of intraocular distances," Appl. Opt. 36, 6548-6553 (1997).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, Sy. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Hsu, K.

M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10,044009 (2005).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Iftimia, N.

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt.Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

Inoue, K.

K. Inoue, T. Mukai, and T. Saitou, "Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier," Appl. Phys. Lett. 51, 1051-1053 (1987).
[CrossRef]

Itoh, M.

Izatt, J.

Izatt, J. A.

M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005).
[CrossRef] [PubMed]

M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10,044009 (2005).
[CrossRef]

A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005)
[CrossRef]

Jeffries, J. B.

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, "Diode-laser absorption sensor for line-of-sight gas temperature distributions," Appl. Opt. 40, 4404-4415 (2001).
[CrossRef]

J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, "Oxygen measurements at high pressures with vertical cavity surface-emitting lasers," Appl. Phys. B 72, 865-872 (2001).
[CrossRef]

Jenkins, T. P.

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, "Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines," P. Combust. Inst. 28, 587-594 (2000).
[CrossRef]

Jiang, J. Y.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, Sy. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Kim, B. Y.

S. H. Yun, D. J. Richardson, and B. Y. Kim, "Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser," Opt. Lett. 23, 843-845 (1998).
[CrossRef]

Q2Q3. S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, "Wavelength-Swept Fiber Laser with Frequency Shifted Feedback and Resonantly Swept Intra-Cavity Acoustooptic Tunable Filter, " IEEE J. Sel. Top. Quantum Electron. 3,1087-1076 (1997).
[CrossRef]

Kranendonk, L. A.

Kulhavy, M.

Lexer, F.

Li, Z. G.

Y. T. Pan, Z. G. Li, T. Q. Xie, and C. R. Chu, "Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage," J. Biomed. Opt. 8, 648-654 (2003).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Madjarova, V. D.

Makita, S.

Morosawa, A.

Motaghian Nezam, S. M. R.

Mukai, T.

K. Inoue, T. Mukai, and T. Saitou, "Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier," Appl. Phys. Lett. 51, 1051-1053 (1987).
[CrossRef]

Oh, W. Y.

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett 30, 3159-3161 (2005).
[CrossRef] [PubMed]

Pan, Y. T.

Y. T. Pan, Z. G. Li, T. Q. Xie, and C. R. Chu, "Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage," J. Biomed. Opt. 8, 648-654 (2003).
[CrossRef] [PubMed]

Pierce, M. C.

S. H. Yun, C. Boudoux, M. C. Pierce, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Richardson, D. J.

S. H. Yun, D. J. Richardson, and B. Y. Kim, "Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser," Opt. Lett. 23, 843-845 (1998).
[CrossRef]

Q2Q3. S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, "Wavelength-Swept Fiber Laser with Frequency Shifted Feedback and Resonantly Swept Intra-Cavity Acoustooptic Tunable Filter, " IEEE J. Sel. Top. Quantum Electron. 3,1087-1076 (1997).
[CrossRef]

Saitou, T.

K. Inoue, T. Mukai, and T. Saitou, "Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier," Appl. Phys. Lett. 51, 1051-1053 (1987).
[CrossRef]

Sakai, T.

Sanders, S. T.

L. A. Kranendonk, R. J. Bartula, and S. T. Sanders, "Modeless operation of a wavelength-agile laser by high-speed cavity length changes," Opt. Express 13, 1498-1507 (2005).
[CrossRef] [PubMed]

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, "Diode-laser absorption sensor for line-of-sight gas temperature distributions," Appl. Opt. 40, 4404-4415 (2001).
[CrossRef]

J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, "Oxygen measurements at high pressures with vertical cavity surface-emitting lasers," Appl. Phys. B 72, 865-872 (2001).
[CrossRef]

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, "Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines," P. Combust. Inst. 28, 587-594 (2000).
[CrossRef]

Sarunic, M. V.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Stokes, L. F.

W. R. Trutna, Jr., and L. F. Stokes, "Continuously Tuned External Cavity Semiconductor Laser," J. Lightwave Technol. 11, 1279- 1286 (1993).
[CrossRef]

Su, J.

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Taira, K.

Tearney, G. J.

A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Numerical study of wavelength-swept semiconductor ring lasers: the role of refractiveindex nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications," Opt. Lett. 31, 760-762 (2006).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett 30, 3159-3161 (2005).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, M. C. Pierce, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt.Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983(2003).
[CrossRef] [PubMed]

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr/sup 4+/:forsterite laser," Opt. Lett. 22, 1704-1706 (1997).
[CrossRef]

Trutna, W. R.

W. R. Trutna, Jr., and L. F. Stokes, "Continuously Tuned External Cavity Semiconductor Laser," J. Lightwave Technol. 11, 1279- 1286 (1993).
[CrossRef]

Wang, J.

J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, "Oxygen measurements at high pressures with vertical cavity surface-emitting lasers," Appl. Phys. B 72, 865-872 (2001).
[CrossRef]

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, "Diode-laser absorption sensor for line-of-sight gas temperature distributions," Appl. Opt. 40, 4404-4415 (2001).
[CrossRef]

Wojtkowski, M.

Xie, T. Q.

Y. T. Pan, Z. G. Li, T. Q. Xie, and C. R. Chu, "Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage," J. Biomed. Opt. 8, 648-654 (2003).
[CrossRef] [PubMed]

Yang, C.

Yang, C. H.

Yasuno, Y.

Yatagai, T.

Yun, S. H.

A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Numerical study of wavelength-swept semiconductor ring lasers: the role of refractiveindex nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications," Opt. Lett. 31, 760-762 (2006).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett 30, 3159-3161 (2005).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, M. C. Pierce, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt.Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983(2003).
[CrossRef] [PubMed]

S. H. Yun, D. J. Richardson, and B. Y. Kim, "Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser," Opt. Lett. 23, 843-845 (1998).
[CrossRef]

Q2Q3. S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, "Wavelength-Swept Fiber Laser with Frequency Shifted Feedback and Resonantly Swept Intra-Cavity Acoustooptic Tunable Filter, " IEEE J. Sel. Top. Quantum Electron. 3,1087-1076 (1997).
[CrossRef]

Zhang, J.

Appl. Opt. (2)

Appl. Phys. B (1)

J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, "Oxygen measurements at high pressures with vertical cavity surface-emitting lasers," Appl. Phys. B 72, 865-872 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

K. Inoue, T. Mukai, and T. Saitou, "Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier," Appl. Phys. Lett. 51, 1051-1053 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

Q1. C. Chong, A. Morosawa, and T. Sakai, "High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
[CrossRef]

Q2Q3. S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, "Wavelength-Swept Fiber Laser with Frequency Shifted Feedback and Resonantly Swept Intra-Cavity Acoustooptic Tunable Filter, " IEEE J. Sel. Top. Quantum Electron. 3,1087-1076 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. H. Yun, C. Boudoux, M. C. Pierce, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

J. Biomed. Opt. (3)

M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10,044009 (2005).
[CrossRef]

Y. T. Pan, Z. G. Li, T. Q. Xie, and C. R. Chu, "Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage," J. Biomed. Opt. 8, 648-654 (2003).
[CrossRef] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005)
[CrossRef]

J. Lightwave Technol. (1)

W. R. Trutna, Jr., and L. F. Stokes, "Continuously Tuned External Cavity Semiconductor Laser," J. Lightwave Technol. 11, 1279- 1286 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, Sy. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express (9)

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
[CrossRef] [PubMed]

J. Su, J. Zhang, and Z. P. Chen, "In-vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography," Opt. Express 15,10390-10396 (2007).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004).
[CrossRef] [PubMed]

M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005).
[CrossRef] [PubMed]

L. A. Kranendonk, R. J. Bartula, and S. T. Sanders, "Modeless operation of a wavelength-agile laser by high-speed cavity length changes," Opt. Express 13, 1498-1507 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, and J. G. Fujimoto, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles, " Opt. Express 13, 3513-3528 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, J. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300nm, " Opt. Express 13, 10523-10538 (2005).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
[CrossRef] [PubMed]

Opt. Lett (1)

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett 30, 3159-3161 (2005).
[CrossRef] [PubMed]

Opt. Lett. (6)

Opt.Express (1)

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt.Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

P. Combust. Inst. (1)

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, "Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines," P. Combust. Inst. 28, 587-594 (2000).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (1)

L. A. Coldren and S. W. Corzine "Diode Lasers and Photonic Integrated Circuits," (Wiley Series in Microwave and Optical Engineering, NY, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1.
Fig. 1.

Diagram of multi-mode lasing with Gaussian filter envelope

Fig. 2.
Fig. 2.

(a). Configuration for phase continuous tuning. 2(b) Concept of quasi-phase continuous tuning for mode-hop free tuning.

Fig. 3.(a).
Fig. 3.(a).

Phase diagram of Lasing in Fig. 2(a)

3.(b).
3.(b).

Phase diagram of Lasing in Fig. 2(b)

Fig. 4.
Fig. 4.

QPCT conditions with different wavelength ranges

Fig. 5.(a).
Fig. 5.(a).

Phase variation over diffraction angle range

Fig. 5.(b).
Fig. 5.(b).

Cavity mode order over wavelength

Fig. 6.
Fig. 6.

Out-of-Phase ratio P over wavelength range

Fig. 7.
Fig. 7.

Diagram of polygon scanner -based swept laser source PE: Partial reflector, Col: Collimator lens, PC: Polarization controller, S: SOA, PR: Prism, G: Diffraction grating, POL: Polygon scanner.

Fig. 8.
Fig. 8.

Temporal optical output power

Fig. 9.
Fig. 9.

Relative Intensity Noise

Fig. 10.
Fig. 10.

Balanced Mach-Zehnder interferometer

Fig. 11.
Fig. 11.

(a). OCT signal at different depth positions with and without QPCT (b) Close-up of spectrum (20 kHz swept rate)

Fig. 12.
Fig. 12.

OCT signal at different depth positions with and without QPCT condition (2.5 kHz swept rate)

Fig. 13.
Fig. 13.

Spectral linewidth vs. Scan rate

Fig. 14.
Fig. 14.

OCT signal at different depth positions with and without QPCT condition

Fig. 17.
Fig. 17.

Light vs. carrier density for n-th cavity mode

Fig. 18.
Fig. 18.

Mode suppression ratio

Fig. 19.
Fig. 19.

Output power vs. Injection current

Fig. 20.
Fig. 20.

Spectrum comparison

Tables (1)

Tables Icon

Table 1. List of summary results

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

λ g = 2 a sin θ
λ L = L ( θ ) L o λ L ( θ c )
λ ' g = d λ g d θ = 2 a cos θ c
d λ L d θ = λ c H tan θ c ( L o cos θ c + H )
H = cos θ c tan 2 θ c 1 · L 1
P = d λ g d λ L d θ
L c = 2 ln 2 π c δ ν
d N dt = η i I q V V τ m v g g m N phm
d N phm dt = Γ v g g m N phm + Γ β sp R spm N phm τ ph
N phm = Γ β sp R spm 1 τ ph Γ v gm g m = Γ β sp R spm v gm α i + α mm Γ g m
I = I th + q V η i m v g g m N phm
P m = F 1 m v gm α m N phm h ν V p = α m Γ R spm h ν V p α i + α mm Γ g m
MSR = P n P m = g thn g n ( N ) g thm g m ( N )
P total = η i α m α i + α mm h ν q ( I I th ) = α m α i + α mm h ν V m v g g m N phm
MSR = P total ( + Δ α ) P total = ( α i + α mm ) ( I I thn ) ( α i + α mn ) ( I I th )

Metrics