Abstract

This paper illustrates the implementation of a new theoretical model for rapid quantitative analysis of the Vis-NIR diffuse reflectance spectra of blood cultures. This new model is based on the photon diffusion theory and Mie scattering theory that have been formulated to account for multiple scattering populations and absorptive components. This study stresses the significance of the thorough solution of the scattering and absorption problem in order to accurately resolve for optically relevant parameters of blood culture components. With advantages of being calibration-free and computationally fast, the new model has two basic requirements. First, wavelength-dependent refractive indices of the basic chemical constituents of blood culture components are needed. Second, multi-wavelength measurements or at least the measurements of characteristic wavelengths equal to the degrees of freedom, i.e. number of optically relevant parameters, of blood culture system are required. The blood culture analysis model was tested with a large number of diffuse reflectance spectra of blood culture samples characterized by an extensive range of the relevant parameters.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Smith, Y. M. Serebrennikova, D. E. Huffman, G. F. Leparc, and L. H. García-Rubio, "A new method for the detection of microorganisms in blood cultures. Part I: Theoretical analysis and simulation of blood culture processes," Can. J. Chem. Eng. 86,947-959 (2008).
    [CrossRef]
  2. J. M. Steinke and A. P. Shepherd, "Reflectance measurements of hematocrit and oxyhemoglobin saturation," Am. J. Physiol. 253, H147-H153 (1987).
    [PubMed]
  3. S. Zhang, B. R. Soller, S. Kaur, K. Perras, and T. J. vander Salm, "Investigation of noninvasive in vivo blood hematocrit measurement using NIR reflectance spectroscopy and partial least-square regression," Appl. Spectrosc. 54, 294-299 (2000).
    [CrossRef]
  4. M. Johns, C. A. Giller, and H. Liu, "Determination of hemoglobin oxygen saturation from turbid media using reflectance spectroscopy with small source-detector separations," Appl. Spectrosc. 55, 1686-1693 (2001).
    [CrossRef]
  5. M. Meinke, I. Gersonde, M. Friebel, J. Helfmann, and G. Muller, "Chemometric determination of blood parameters using Visible-Near-Infrared spectra," Appl. Spectrosc. 59, 826-835 (2005).
    [CrossRef] [PubMed]
  6. G. Zonios and A. Dimou, "Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties," Opt. Express 14, 8661-8674 (2006).
    [CrossRef] [PubMed]
  7. K.R. Denninghoff, R. A. Chipman, and L. W. Hillman, "Oxyhemoglobin saturation measurements by green spectral shift," Opt. Lett. 31, 924-926 (2006).
    [CrossRef] [PubMed]
  8. J. M. Steinke and A. P. Shepherd, "Effects of temperature on optical absorbance spectra of oxy-, carboxy-, and deoxyhemoglobin," Clin. Chem. 38, 1360 -1364 (1992).
    [PubMed]
  9. K. A. Schenkman and W. A. Ciesielski, "Improved myoglobin saturation measurement made by partial least-square analysis of optical reflectance spectra," Appl. Spectrosc. 56, 1215-1221 (2002).
    [CrossRef]
  10. A. P. Shepherd, V. T. Randal, J. M. Steinke, and J. L. Schmalzel, "An oximeter for measuring hemoglobin concentration and oxygen content," Am. J. Physiol. 257, H1705-H1711 (1989).
    [PubMed]
  11. A. M. K. Enejder, J. Swartling, P. Aruna, and S. Andersson-Engels, "Influence of cell shape and aggregate formation on the optical properties of flowing whole blood," Appl. Opt. 42, 1384-1394 (2003).
    [CrossRef] [PubMed]
  12. M. S. Patterson, B. C. Wilson, and D. R. Wyman, "The propagation of optical radiation in tissue I. Models of radiation transport and their application," Las. Med. Sci. 6, 155-168 (1991).
    [CrossRef]
  13. I. Turcu, "Effective phase function for light scattered by blood," Appl. Opt. 45, 639-647 (2006).
    [CrossRef] [PubMed]
  14. S. V. Tsinopoulos, E. J. Sellountos, and D. Polyzos, "Light scattering by aggregated red blood cells," Appl. Opt. 41, 1408-1417 (2002).
    [CrossRef] [PubMed]
  15. L. Reynolds, C. Johnson, and A. Ishimaru, "Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters," Appl. Opt. 15, 2059-2067 (1976).
    [CrossRef] [PubMed]
  16. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, "Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory," Appl. Opt. 22, 2456-2462 (1983).
    [CrossRef] [PubMed]
  17. T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady state diffuse reflectance for noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
    [CrossRef] [PubMed]
  18. R. Graaff, J. G. Aarnoudse, J. P. Zijp, M. A. Sloot, F. F. M. de Mul, J. Greve, and M. H. Koelink, "Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations," Appl. Opt. 31, 1370-1376 (1992).
    [CrossRef] [PubMed]
  19. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo," Appl. Opt. 38, 6628-6637 (1999).
    [CrossRef]
  20. G. Zonios, J. Bykowski, and N. Kollias, "Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy," J. Invest. Dermatol. 117, 1452-1457 (2001).
    [CrossRef]
  21. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36-46 (1999).
    [CrossRef]
  22. M. Meinke, G. Muller, J. Helfmann, and M. Friebel, "Empirical model functions to calculate hematocrit-dependent optical properties of human blood," Appl. Opt. 46, 1742-1753 (2007).
    [CrossRef] [PubMed]
  23. D. J. Faber, C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation dependent absorption and scattering of blood," Phys. Rev. Lett. 93, 028102 (2004).
    [CrossRef] [PubMed]
  24. D. H. Tycko, M. H. Metz, E. A. Epstein, and A. Grinbaum, "Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration," Appl. Opt. 24, 1355-1364 (1985).
    [CrossRef] [PubMed]
  25. G. J. Streekstra, A. G. Hoekstra, E. J. Nijhof, and R. M. Heethaar, "Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction," Appl. Opt. 32, 2266-2272 (1993).
    [CrossRef] [PubMed]
  26. M. Hammer, D. Schweitzer, B. Michel, E. Thamm, and A. Kolb, "Single scattering by red blood cells," Appl. Opt. 37, 7410-7418 (1998).
    [CrossRef]
  27. A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, "T-matrix computations of light scattering by red blood cells," Appl. Opt. 37, 2735-2748 (1998).
    [CrossRef]
  28. S. V. Tsinopoulos and D. Polyzos, "Scattering of He-Ne laser light by an average-sized red blood cell," Appl. Opt. 38, 5499-5510 (1999).
    [CrossRef]
  29. J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, "Light scattering by multiple red blood cells," J. Opt. Soc. Am. A 21, 1953-1961 (2004).
    [CrossRef]
  30. A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. Biomed. Eng. 52, 13-18 (2005).
    [CrossRef] [PubMed]
  31. J. M. Steinke and A. P. Shepherd, "Diffusion model of the optical absorbance of whole blood," J. Opt. Soc. Am. A 5, 813-822 (1988).
    [CrossRef] [PubMed]
  32. J. M. Steinke and A. P. Shepherd, "Comparison of Mie theory and the light scattering of red blood cells," Appl. Opt. 27, 4027-4033 (1988).
    [CrossRef] [PubMed]
  33. R. Drezek, A. Dunn, and R. Richards-Kortum, "Light scattering from cells: finite-difference time-domain simulations and goniometric measurements," Appl. Opt. 38, 3651-3661 (1999).
    [CrossRef]
  34. R. Drezek, A. Dunn, and R. Richards-Kortum, "A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges," Opt. Express 6, 147-157 (2000).
    [CrossRef] [PubMed]
  35. T. C. Thorpe, M. L. Wilson, J. E. Turner, J. L. DiGuiseppi, M. Willert, S. Mirrett, and L. B. Reller, "BacT/Alert: an automated colorimetric microbial detection system," J. Clin. Microbiol. 28, 1608-1612 (1990).
    [PubMed]
  36. D. E. Huffman, Y. M. Serebrennikova, J. M. Smith, G. F. Leparc, and L. H. García-Rubio, "A new method for the detection of microorganisms in blood cultures: Application of the quantitative interpretation to aerobic blood cultures," J. Biomed. Opt. (to be published).
    [PubMed]
  37. A. Ishimaru, Wave propagation and scattering in random media (Academic Press, 1978).
  38. R. Aronson and N. Corngold, "Photon diffusion coefficient in an absorbing medium," J. Opt. Soc. Am. A 16, 1066-1071 (1999).
    [CrossRef]
  39. V. Twersky, "Absorption and multiple scattering by biological suspensions," J. Opt. Soc. Am. 60, 1084-1093 (1970).
    [CrossRef] [PubMed]
  40. M. Kerker, The Scattering of Light and other electromagnetic radiation (Academic Press, 1969).
  41. C. Bohren and D. R. Huffman, Absorption and Scattering by Small Particles (John Wiley & Sons, 1983).
  42. B. H. Zimm and W. B. Dandliker, "Theory of light scattering and refractive index of solutions of large colloidal particles," J. Phys. Chem. 58, 644-648 (1954).
    [CrossRef]
  43. W. J. Lentz, "Generating Bessel functions in Mie scattering calculations using continued fractions," Appl. Opt. 15, 668-671 (1976).
    [CrossRef] [PubMed]
  44. W. J. Wiscombe, Mie Scattering Calculations: Advances in Technique and Fast Vector-Speed Computer Codes (National Technical Information Center, 1983), PB 301388.
  45. Y. Mattley, G. Leparc, R. Potter, and L. García-Rubio, "Light scattering and absorption model for the quantitative interpretation of human blood platelet spectral data," Photochem. Photobiol. 71, 610-619 (2000).
    [CrossRef] [PubMed]
  46. C. E. Alupoaei and L. H. García-Rubio, "Growth behavior of microorganisms using UV-Vis spectroscopy: Escherichia coli," Biotech. Bioeng. 86, 163-167 (2004).
    [CrossRef]
  47. C. E. Alupoaei, J. A. Olivares, and L. H. García-Rubio, "Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores," Biosens. Bioelectron. 19, 893-908 (2004).
    [CrossRef] [PubMed]
  48. C. E. Alupoaei and L. H. García-Rubio, "An interpretation model for the UV-VIS spectra of microorganisms," Chem. Eng. Comm. 192, 198-218 (2005).
    [CrossRef]
  49. I. Thormählen, J. Straub, and U. Grigull, "Refractive index of water and its dependence on wavelength temperature, and density," J. Phys. Chem. Ref. Data 14, 933-946 (1985).
    [CrossRef]
  50. W. G. Zijistra, A. Buursma, and W. P. Meeuwsen-van der Roest, "Absorption Spectra of Human Fetal and Adult Oxyhemoglobin, De-Oxyhemoglobin, Carboxyhemoglobin, and Methemoglobin," Clin. Chem. 37, 1633-1638 (1991).
  51. J.A. Nelder and R. Mead, "A simplex method for function minimization," Comp. J. 7, 308-313 (1965).
  52. J. L. Kuester and J. H. Mize, Optimization Techniques with Fortran (McGraw-Hill, New York, 1973).
  53. M. J. Box, "A comparison of several current optimization methods, and the use of transformations in constrained problems," Comp. J. 9, 67-77 (1966).
  54. Y. M. Serebrennikova, J. M. Smith, D. E. Huffman, and L. R. García-Rubio, Claro Scientific, LLC., 10100 Dr. Martin Luther King Jr. St., N., St. Petersburg, FL, 33716, are preparing a manuscript to be called "A new method for the detection of yeast in blood cultures".
  55. S. J. Matcher, M. Cope, and D. T. Deply, "In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Appl. Opt. 36, 386-396 (1997).
    [CrossRef] [PubMed]
  56. V. V. Tuchin, D. M. Zhestkov, A. N. Bashkatov, and E. A. Genina, "Theoretical study of immersion optical clearing of blood in vessels at local hemolysis," Opt. Express 12, 2966-2971 (2004).
    [CrossRef] [PubMed]

2008 (1)

J. M. Smith, Y. M. Serebrennikova, D. E. Huffman, G. F. Leparc, and L. H. García-Rubio, "A new method for the detection of microorganisms in blood cultures. Part I: Theoretical analysis and simulation of blood culture processes," Can. J. Chem. Eng. 86,947-959 (2008).
[CrossRef]

2007 (1)

2006 (3)

2005 (3)

M. Meinke, I. Gersonde, M. Friebel, J. Helfmann, and G. Muller, "Chemometric determination of blood parameters using Visible-Near-Infrared spectra," Appl. Spectrosc. 59, 826-835 (2005).
[CrossRef] [PubMed]

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. Biomed. Eng. 52, 13-18 (2005).
[CrossRef] [PubMed]

C. E. Alupoaei and L. H. García-Rubio, "An interpretation model for the UV-VIS spectra of microorganisms," Chem. Eng. Comm. 192, 198-218 (2005).
[CrossRef]

2004 (5)

C. E. Alupoaei and L. H. García-Rubio, "Growth behavior of microorganisms using UV-Vis spectroscopy: Escherichia coli," Biotech. Bioeng. 86, 163-167 (2004).
[CrossRef]

C. E. Alupoaei, J. A. Olivares, and L. H. García-Rubio, "Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores," Biosens. Bioelectron. 19, 893-908 (2004).
[CrossRef] [PubMed]

V. V. Tuchin, D. M. Zhestkov, A. N. Bashkatov, and E. A. Genina, "Theoretical study of immersion optical clearing of blood in vessels at local hemolysis," Opt. Express 12, 2966-2971 (2004).
[CrossRef] [PubMed]

J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, "Light scattering by multiple red blood cells," J. Opt. Soc. Am. A 21, 1953-1961 (2004).
[CrossRef]

D. J. Faber, C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation dependent absorption and scattering of blood," Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (2)

2001 (2)

M. Johns, C. A. Giller, and H. Liu, "Determination of hemoglobin oxygen saturation from turbid media using reflectance spectroscopy with small source-detector separations," Appl. Spectrosc. 55, 1686-1693 (2001).
[CrossRef]

G. Zonios, J. Bykowski, and N. Kollias, "Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy," J. Invest. Dermatol. 117, 1452-1457 (2001).
[CrossRef]

2000 (3)

1999 (5)

1998 (2)

1997 (1)

1993 (1)

1992 (3)

J. M. Steinke and A. P. Shepherd, "Effects of temperature on optical absorbance spectra of oxy-, carboxy-, and deoxyhemoglobin," Clin. Chem. 38, 1360 -1364 (1992).
[PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady state diffuse reflectance for noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

R. Graaff, J. G. Aarnoudse, J. P. Zijp, M. A. Sloot, F. F. M. de Mul, J. Greve, and M. H. Koelink, "Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations," Appl. Opt. 31, 1370-1376 (1992).
[CrossRef] [PubMed]

1991 (2)

M. S. Patterson, B. C. Wilson, and D. R. Wyman, "The propagation of optical radiation in tissue I. Models of radiation transport and their application," Las. Med. Sci. 6, 155-168 (1991).
[CrossRef]

W. G. Zijistra, A. Buursma, and W. P. Meeuwsen-van der Roest, "Absorption Spectra of Human Fetal and Adult Oxyhemoglobin, De-Oxyhemoglobin, Carboxyhemoglobin, and Methemoglobin," Clin. Chem. 37, 1633-1638 (1991).

1990 (1)

T. C. Thorpe, M. L. Wilson, J. E. Turner, J. L. DiGuiseppi, M. Willert, S. Mirrett, and L. B. Reller, "BacT/Alert: an automated colorimetric microbial detection system," J. Clin. Microbiol. 28, 1608-1612 (1990).
[PubMed]

1989 (1)

A. P. Shepherd, V. T. Randal, J. M. Steinke, and J. L. Schmalzel, "An oximeter for measuring hemoglobin concentration and oxygen content," Am. J. Physiol. 257, H1705-H1711 (1989).
[PubMed]

1988 (2)

1987 (1)

J. M. Steinke and A. P. Shepherd, "Reflectance measurements of hematocrit and oxyhemoglobin saturation," Am. J. Physiol. 253, H147-H153 (1987).
[PubMed]

1985 (2)

D. H. Tycko, M. H. Metz, E. A. Epstein, and A. Grinbaum, "Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration," Appl. Opt. 24, 1355-1364 (1985).
[CrossRef] [PubMed]

I. Thormählen, J. Straub, and U. Grigull, "Refractive index of water and its dependence on wavelength temperature, and density," J. Phys. Chem. Ref. Data 14, 933-946 (1985).
[CrossRef]

1983 (1)

1976 (2)

1970 (1)

1966 (1)

M. J. Box, "A comparison of several current optimization methods, and the use of transformations in constrained problems," Comp. J. 9, 67-77 (1966).

1965 (1)

J.A. Nelder and R. Mead, "A simplex method for function minimization," Comp. J. 7, 308-313 (1965).

1954 (1)

B. H. Zimm and W. B. Dandliker, "Theory of light scattering and refractive index of solutions of large colloidal particles," J. Phys. Chem. 58, 644-648 (1954).
[CrossRef]

Aalders, C. G.

D. J. Faber, C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation dependent absorption and scattering of blood," Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

Aarnoudse, J. G.

Alsholm, P.

Alupoaei, C. E.

C. E. Alupoaei and L. H. García-Rubio, "An interpretation model for the UV-VIS spectra of microorganisms," Chem. Eng. Comm. 192, 198-218 (2005).
[CrossRef]

C. E. Alupoaei and L. H. García-Rubio, "Growth behavior of microorganisms using UV-Vis spectroscopy: Escherichia coli," Biotech. Bioeng. 86, 163-167 (2004).
[CrossRef]

C. E. Alupoaei, J. A. Olivares, and L. H. García-Rubio, "Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores," Biosens. Bioelectron. 19, 893-908 (2004).
[CrossRef] [PubMed]

Andersson, S.

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. Biomed. Eng. 52, 13-18 (2005).
[CrossRef] [PubMed]

Andersson-Engels, S.

Aronson, R.

Aruna, P.

Backman, V.

Bashkatov, A. N.

Box, M. J.

M. J. Box, "A comparison of several current optimization methods, and the use of transformations in constrained problems," Comp. J. 9, 67-77 (1966).

Buursma, A.

W. G. Zijistra, A. Buursma, and W. P. Meeuwsen-van der Roest, "Absorption Spectra of Human Fetal and Adult Oxyhemoglobin, De-Oxyhemoglobin, Carboxyhemoglobin, and Methemoglobin," Clin. Chem. 37, 1633-1638 (1991).

Bykowski, J.

G. Zonios, J. Bykowski, and N. Kollias, "Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy," J. Invest. Dermatol. 117, 1452-1457 (2001).
[CrossRef]

Chipman, R. A.

Ciesielski, W. A.

Cope, M.

Corngold, N.

Dandliker, W. B.

B. H. Zimm and W. B. Dandliker, "Theory of light scattering and refractive index of solutions of large colloidal particles," J. Phys. Chem. 58, 644-648 (1954).
[CrossRef]

de Mul, F. F. M.

Denninghoff, K.R.

Deply, D. T.

DiGuiseppi, J. L.

T. C. Thorpe, M. L. Wilson, J. E. Turner, J. L. DiGuiseppi, M. Willert, S. Mirrett, and L. B. Reller, "BacT/Alert: an automated colorimetric microbial detection system," J. Clin. Microbiol. 28, 1608-1612 (1990).
[PubMed]

Dimou, A.

Dorschel, K.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36-46 (1999).
[CrossRef]

Drezek, R.

Dunn, A.

Enejder, A. M. K.

Epstein, E. A.

Faber, D. J.

D. J. Faber, C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation dependent absorption and scattering of blood," Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady state diffuse reflectance for noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

Feld, M. S.

Ferwerda, H. A.

Fitzmaurice, M.

Friebel, M.

García-Rubio, L.

Y. Mattley, G. Leparc, R. Potter, and L. García-Rubio, "Light scattering and absorption model for the quantitative interpretation of human blood platelet spectral data," Photochem. Photobiol. 71, 610-619 (2000).
[CrossRef] [PubMed]

García-Rubio, L. H.

J. M. Smith, Y. M. Serebrennikova, D. E. Huffman, G. F. Leparc, and L. H. García-Rubio, "A new method for the detection of microorganisms in blood cultures. Part I: Theoretical analysis and simulation of blood culture processes," Can. J. Chem. Eng. 86,947-959 (2008).
[CrossRef]

C. E. Alupoaei and L. H. García-Rubio, "An interpretation model for the UV-VIS spectra of microorganisms," Chem. Eng. Comm. 192, 198-218 (2005).
[CrossRef]

C. E. Alupoaei, J. A. Olivares, and L. H. García-Rubio, "Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores," Biosens. Bioelectron. 19, 893-908 (2004).
[CrossRef] [PubMed]

C. E. Alupoaei and L. H. García-Rubio, "Growth behavior of microorganisms using UV-Vis spectroscopy: Escherichia coli," Biotech. Bioeng. 86, 163-167 (2004).
[CrossRef]

D. E. Huffman, Y. M. Serebrennikova, J. M. Smith, G. F. Leparc, and L. H. García-Rubio, "A new method for the detection of microorganisms in blood cultures: Application of the quantitative interpretation to aerobic blood cultures," J. Biomed. Opt. (to be published).
[PubMed]

Genina, E. A.

Gersonde, I.

Giller, C. A.

Graaff, R.

Greve, J.

Grigull, U.

I. Thormählen, J. Straub, and U. Grigull, "Refractive index of water and its dependence on wavelength temperature, and density," J. Phys. Chem. Ref. Data 14, 933-946 (1985).
[CrossRef]

Grinbaum, A.

Groenhuis, R. A. J.

Hahn, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36-46 (1999).
[CrossRef]

Hammer, M.

He, J.

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. Biomed. Eng. 52, 13-18 (2005).
[CrossRef] [PubMed]

J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, "Light scattering by multiple red blood cells," J. Opt. Soc. Am. A 21, 1953-1961 (2004).
[CrossRef]

Heethaar, R. M.

Helfmann, J.

Hillman, L. W.

Hoekstra, A. G.

Hooper, B. A.

D. J. Faber, C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation dependent absorption and scattering of blood," Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

Huffman, D. E.

J. M. Smith, Y. M. Serebrennikova, D. E. Huffman, G. F. Leparc, and L. H. García-Rubio, "A new method for the detection of microorganisms in blood cultures. Part I: Theoretical analysis and simulation of blood culture processes," Can. J. Chem. Eng. 86,947-959 (2008).
[CrossRef]

D. E. Huffman, Y. M. Serebrennikova, J. M. Smith, G. F. Leparc, and L. H. García-Rubio, "A new method for the detection of microorganisms in blood cultures: Application of the quantitative interpretation to aerobic blood cultures," J. Biomed. Opt. (to be published).
[PubMed]

Ishimaru, A.

Johns, M.

Johnson, C.

Karlsson, A.

Kaur, S.

Koelink, M. H.

Kolb, A.

Kollias, N.

G. Zonios, J. Bykowski, and N. Kollias, "Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy," J. Invest. Dermatol. 117, 1452-1457 (2001).
[CrossRef]

Lentz, W. J.

Leparc, G.

Y. Mattley, G. Leparc, R. Potter, and L. García-Rubio, "Light scattering and absorption model for the quantitative interpretation of human blood platelet spectral data," Photochem. Photobiol. 71, 610-619 (2000).
[CrossRef] [PubMed]

Leparc, G. F.

J. M. Smith, Y. M. Serebrennikova, D. E. Huffman, G. F. Leparc, and L. H. García-Rubio, "A new method for the detection of microorganisms in blood cultures. Part I: Theoretical analysis and simulation of blood culture processes," Can. J. Chem. Eng. 86,947-959 (2008).
[CrossRef]

D. E. Huffman, Y. M. Serebrennikova, J. M. Smith, G. F. Leparc, and L. H. García-Rubio, "A new method for the detection of microorganisms in blood cultures: Application of the quantitative interpretation to aerobic blood cultures," J. Biomed. Opt. (to be published).
[PubMed]

Liu, H.

Manoharan, R.

Matcher, S. J.

Mattley, Y.

Y. Mattley, G. Leparc, R. Potter, and L. García-Rubio, "Light scattering and absorption model for the quantitative interpretation of human blood platelet spectral data," Photochem. Photobiol. 71, 610-619 (2000).
[CrossRef] [PubMed]

Mead, R.

J.A. Nelder and R. Mead, "A simplex method for function minimization," Comp. J. 7, 308-313 (1965).

Meeuwsen-van der Roest, W. P.

W. G. Zijistra, A. Buursma, and W. P. Meeuwsen-van der Roest, "Absorption Spectra of Human Fetal and Adult Oxyhemoglobin, De-Oxyhemoglobin, Carboxyhemoglobin, and Methemoglobin," Clin. Chem. 37, 1633-1638 (1991).

Meinke, M.

Metz, M. H.

Michel, B.

Mik, E. G.

D. J. Faber, C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation dependent absorption and scattering of blood," Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

Mirrett, S.

T. C. Thorpe, M. L. Wilson, J. E. Turner, J. L. DiGuiseppi, M. Willert, S. Mirrett, and L. B. Reller, "BacT/Alert: an automated colorimetric microbial detection system," J. Clin. Microbiol. 28, 1608-1612 (1990).
[PubMed]

Muller, G.

Nelder, J.A.

J.A. Nelder and R. Mead, "A simplex method for function minimization," Comp. J. 7, 308-313 (1965).

Nijhof, E. J.

Nilsson, A. M. K.

Olivares, J. A.

C. E. Alupoaei, J. A. Olivares, and L. H. García-Rubio, "Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores," Biosens. Bioelectron. 19, 893-908 (2004).
[CrossRef] [PubMed]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady state diffuse reflectance for noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

M. S. Patterson, B. C. Wilson, and D. R. Wyman, "The propagation of optical radiation in tissue I. Models of radiation transport and their application," Las. Med. Sci. 6, 155-168 (1991).
[CrossRef]

Perelman, L. T.

Perras, K.

Polyzos, D.

Potter, R.

Y. Mattley, G. Leparc, R. Potter, and L. García-Rubio, "Light scattering and absorption model for the quantitative interpretation of human blood platelet spectral data," Photochem. Photobiol. 71, 610-619 (2000).
[CrossRef] [PubMed]

Randal, V. T.

A. P. Shepherd, V. T. Randal, J. M. Steinke, and J. L. Schmalzel, "An oximeter for measuring hemoglobin concentration and oxygen content," Am. J. Physiol. 257, H1705-H1711 (1989).
[PubMed]

Reller, L. B.

T. C. Thorpe, M. L. Wilson, J. E. Turner, J. L. DiGuiseppi, M. Willert, S. Mirrett, and L. B. Reller, "BacT/Alert: an automated colorimetric microbial detection system," J. Clin. Microbiol. 28, 1608-1612 (1990).
[PubMed]

Reynolds, L.

Richards-Kortum, R.

Roggan, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36-46 (1999).
[CrossRef]

Schenkman, K. A.

Schmalzel, J. L.

A. P. Shepherd, V. T. Randal, J. M. Steinke, and J. L. Schmalzel, "An oximeter for measuring hemoglobin concentration and oxygen content," Am. J. Physiol. 257, H1705-H1711 (1989).
[PubMed]

Schweitzer, D.

Sellountos, E. J.

Serebrennikova, Y. M.

J. M. Smith, Y. M. Serebrennikova, D. E. Huffman, G. F. Leparc, and L. H. García-Rubio, "A new method for the detection of microorganisms in blood cultures. Part I: Theoretical analysis and simulation of blood culture processes," Can. J. Chem. Eng. 86,947-959 (2008).
[CrossRef]

D. E. Huffman, Y. M. Serebrennikova, J. M. Smith, G. F. Leparc, and L. H. García-Rubio, "A new method for the detection of microorganisms in blood cultures: Application of the quantitative interpretation to aerobic blood cultures," J. Biomed. Opt. (to be published).
[PubMed]

Shepherd, A. P.

J. M. Steinke and A. P. Shepherd, "Effects of temperature on optical absorbance spectra of oxy-, carboxy-, and deoxyhemoglobin," Clin. Chem. 38, 1360 -1364 (1992).
[PubMed]

A. P. Shepherd, V. T. Randal, J. M. Steinke, and J. L. Schmalzel, "An oximeter for measuring hemoglobin concentration and oxygen content," Am. J. Physiol. 257, H1705-H1711 (1989).
[PubMed]

J. M. Steinke and A. P. Shepherd, "Comparison of Mie theory and the light scattering of red blood cells," Appl. Opt. 27, 4027-4033 (1988).
[CrossRef] [PubMed]

J. M. Steinke and A. P. Shepherd, "Diffusion model of the optical absorbance of whole blood," J. Opt. Soc. Am. A 5, 813-822 (1988).
[CrossRef] [PubMed]

J. M. Steinke and A. P. Shepherd, "Reflectance measurements of hematocrit and oxyhemoglobin saturation," Am. J. Physiol. 253, H147-H153 (1987).
[PubMed]

Sloot, M. A.

Smith, J. M.

J. M. Smith, Y. M. Serebrennikova, D. E. Huffman, G. F. Leparc, and L. H. García-Rubio, "A new method for the detection of microorganisms in blood cultures. Part I: Theoretical analysis and simulation of blood culture processes," Can. J. Chem. Eng. 86,947-959 (2008).
[CrossRef]

D. E. Huffman, Y. M. Serebrennikova, J. M. Smith, G. F. Leparc, and L. H. García-Rubio, "A new method for the detection of microorganisms in blood cultures: Application of the quantitative interpretation to aerobic blood cultures," J. Biomed. Opt. (to be published).
[PubMed]

Soller, B. R.

Steinke, J. M.

J. M. Steinke and A. P. Shepherd, "Effects of temperature on optical absorbance spectra of oxy-, carboxy-, and deoxyhemoglobin," Clin. Chem. 38, 1360 -1364 (1992).
[PubMed]

A. P. Shepherd, V. T. Randal, J. M. Steinke, and J. L. Schmalzel, "An oximeter for measuring hemoglobin concentration and oxygen content," Am. J. Physiol. 257, H1705-H1711 (1989).
[PubMed]

J. M. Steinke and A. P. Shepherd, "Comparison of Mie theory and the light scattering of red blood cells," Appl. Opt. 27, 4027-4033 (1988).
[CrossRef] [PubMed]

J. M. Steinke and A. P. Shepherd, "Diffusion model of the optical absorbance of whole blood," J. Opt. Soc. Am. A 5, 813-822 (1988).
[CrossRef] [PubMed]

J. M. Steinke and A. P. Shepherd, "Reflectance measurements of hematocrit and oxyhemoglobin saturation," Am. J. Physiol. 253, H147-H153 (1987).
[PubMed]

Straub, J.

I. Thormählen, J. Straub, and U. Grigull, "Refractive index of water and its dependence on wavelength temperature, and density," J. Phys. Chem. Ref. Data 14, 933-946 (1985).
[CrossRef]

Streekstra, G. J.

Swartling, J.

Ten Bosch, J. J.

Thamm, E.

Thormählen, I.

I. Thormählen, J. Straub, and U. Grigull, "Refractive index of water and its dependence on wavelength temperature, and density," J. Phys. Chem. Ref. Data 14, 933-946 (1985).
[CrossRef]

Thorpe, T. C.

T. C. Thorpe, M. L. Wilson, J. E. Turner, J. L. DiGuiseppi, M. Willert, S. Mirrett, and L. B. Reller, "BacT/Alert: an automated colorimetric microbial detection system," J. Clin. Microbiol. 28, 1608-1612 (1990).
[PubMed]

Tsinopoulos, S. V.

Tuchin, V. V.

Turcu, I.

Turner, J. E.

T. C. Thorpe, M. L. Wilson, J. E. Turner, J. L. DiGuiseppi, M. Willert, S. Mirrett, and L. B. Reller, "BacT/Alert: an automated colorimetric microbial detection system," J. Clin. Microbiol. 28, 1608-1612 (1990).
[PubMed]

Twersky, V.

Tycko, D. H.

Van Dam, J.

van Gemert, M. J. C.

D. J. Faber, C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation dependent absorption and scattering of blood," Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

van Leeuwen, T. G.

D. J. Faber, C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation dependent absorption and scattering of blood," Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

vander Salm, T. J.

Willert, M.

T. C. Thorpe, M. L. Wilson, J. E. Turner, J. L. DiGuiseppi, M. Willert, S. Mirrett, and L. B. Reller, "BacT/Alert: an automated colorimetric microbial detection system," J. Clin. Microbiol. 28, 1608-1612 (1990).
[PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady state diffuse reflectance for noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

M. S. Patterson, B. C. Wilson, and D. R. Wyman, "The propagation of optical radiation in tissue I. Models of radiation transport and their application," Las. Med. Sci. 6, 155-168 (1991).
[CrossRef]

Wilson, M. L.

T. C. Thorpe, M. L. Wilson, J. E. Turner, J. L. DiGuiseppi, M. Willert, S. Mirrett, and L. B. Reller, "BacT/Alert: an automated colorimetric microbial detection system," J. Clin. Microbiol. 28, 1608-1612 (1990).
[PubMed]

Wyman, D. R.

M. S. Patterson, B. C. Wilson, and D. R. Wyman, "The propagation of optical radiation in tissue I. Models of radiation transport and their application," Las. Med. Sci. 6, 155-168 (1991).
[CrossRef]

Zhang, S.

Zhestkov, D. M.

Zijistra, W. G.

W. G. Zijistra, A. Buursma, and W. P. Meeuwsen-van der Roest, "Absorption Spectra of Human Fetal and Adult Oxyhemoglobin, De-Oxyhemoglobin, Carboxyhemoglobin, and Methemoglobin," Clin. Chem. 37, 1633-1638 (1991).

Zijp, J. P.

Zimm, B. H.

B. H. Zimm and W. B. Dandliker, "Theory of light scattering and refractive index of solutions of large colloidal particles," J. Phys. Chem. 58, 644-648 (1954).
[CrossRef]

Zonios, G.

Am. J. Physiol. (2)

J. M. Steinke and A. P. Shepherd, "Reflectance measurements of hematocrit and oxyhemoglobin saturation," Am. J. Physiol. 253, H147-H153 (1987).
[PubMed]

A. P. Shepherd, V. T. Randal, J. M. Steinke, and J. L. Schmalzel, "An oximeter for measuring hemoglobin concentration and oxygen content," Am. J. Physiol. 257, H1705-H1711 (1989).
[PubMed]

Appl. Opt. (17)

A. M. K. Enejder, J. Swartling, P. Aruna, and S. Andersson-Engels, "Influence of cell shape and aggregate formation on the optical properties of flowing whole blood," Appl. Opt. 42, 1384-1394 (2003).
[CrossRef] [PubMed]

I. Turcu, "Effective phase function for light scattered by blood," Appl. Opt. 45, 639-647 (2006).
[CrossRef] [PubMed]

S. V. Tsinopoulos, E. J. Sellountos, and D. Polyzos, "Light scattering by aggregated red blood cells," Appl. Opt. 41, 1408-1417 (2002).
[CrossRef] [PubMed]

L. Reynolds, C. Johnson, and A. Ishimaru, "Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters," Appl. Opt. 15, 2059-2067 (1976).
[CrossRef] [PubMed]

R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, "Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory," Appl. Opt. 22, 2456-2462 (1983).
[CrossRef] [PubMed]

R. Graaff, J. G. Aarnoudse, J. P. Zijp, M. A. Sloot, F. F. M. de Mul, J. Greve, and M. H. Koelink, "Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations," Appl. Opt. 31, 1370-1376 (1992).
[CrossRef] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo," Appl. Opt. 38, 6628-6637 (1999).
[CrossRef]

D. H. Tycko, M. H. Metz, E. A. Epstein, and A. Grinbaum, "Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration," Appl. Opt. 24, 1355-1364 (1985).
[CrossRef] [PubMed]

G. J. Streekstra, A. G. Hoekstra, E. J. Nijhof, and R. M. Heethaar, "Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction," Appl. Opt. 32, 2266-2272 (1993).
[CrossRef] [PubMed]

M. Hammer, D. Schweitzer, B. Michel, E. Thamm, and A. Kolb, "Single scattering by red blood cells," Appl. Opt. 37, 7410-7418 (1998).
[CrossRef]

A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, "T-matrix computations of light scattering by red blood cells," Appl. Opt. 37, 2735-2748 (1998).
[CrossRef]

S. V. Tsinopoulos and D. Polyzos, "Scattering of He-Ne laser light by an average-sized red blood cell," Appl. Opt. 38, 5499-5510 (1999).
[CrossRef]

M. Meinke, G. Muller, J. Helfmann, and M. Friebel, "Empirical model functions to calculate hematocrit-dependent optical properties of human blood," Appl. Opt. 46, 1742-1753 (2007).
[CrossRef] [PubMed]

J. M. Steinke and A. P. Shepherd, "Comparison of Mie theory and the light scattering of red blood cells," Appl. Opt. 27, 4027-4033 (1988).
[CrossRef] [PubMed]

R. Drezek, A. Dunn, and R. Richards-Kortum, "Light scattering from cells: finite-difference time-domain simulations and goniometric measurements," Appl. Opt. 38, 3651-3661 (1999).
[CrossRef]

W. J. Lentz, "Generating Bessel functions in Mie scattering calculations using continued fractions," Appl. Opt. 15, 668-671 (1976).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, and D. T. Deply, "In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Appl. Opt. 36, 386-396 (1997).
[CrossRef] [PubMed]

Appl. Spectrosc. (4)

Biosens. Bioelectron. (1)

C. E. Alupoaei, J. A. Olivares, and L. H. García-Rubio, "Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores," Biosens. Bioelectron. 19, 893-908 (2004).
[CrossRef] [PubMed]

Biotech. Bioeng. (1)

C. E. Alupoaei and L. H. García-Rubio, "Growth behavior of microorganisms using UV-Vis spectroscopy: Escherichia coli," Biotech. Bioeng. 86, 163-167 (2004).
[CrossRef]

Can. J. Chem. Eng. (1)

J. M. Smith, Y. M. Serebrennikova, D. E. Huffman, G. F. Leparc, and L. H. García-Rubio, "A new method for the detection of microorganisms in blood cultures. Part I: Theoretical analysis and simulation of blood culture processes," Can. J. Chem. Eng. 86,947-959 (2008).
[CrossRef]

Chem. Eng. Comm. (1)

C. E. Alupoaei and L. H. García-Rubio, "An interpretation model for the UV-VIS spectra of microorganisms," Chem. Eng. Comm. 192, 198-218 (2005).
[CrossRef]

Clin. Chem. (2)

W. G. Zijistra, A. Buursma, and W. P. Meeuwsen-van der Roest, "Absorption Spectra of Human Fetal and Adult Oxyhemoglobin, De-Oxyhemoglobin, Carboxyhemoglobin, and Methemoglobin," Clin. Chem. 37, 1633-1638 (1991).

J. M. Steinke and A. P. Shepherd, "Effects of temperature on optical absorbance spectra of oxy-, carboxy-, and deoxyhemoglobin," Clin. Chem. 38, 1360 -1364 (1992).
[PubMed]

Comp. J. (2)

J.A. Nelder and R. Mead, "A simplex method for function minimization," Comp. J. 7, 308-313 (1965).

M. J. Box, "A comparison of several current optimization methods, and the use of transformations in constrained problems," Comp. J. 9, 67-77 (1966).

IEEE Trans. Biomed. Eng. (1)

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. Biomed. Eng. 52, 13-18 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

D. E. Huffman, Y. M. Serebrennikova, J. M. Smith, G. F. Leparc, and L. H. García-Rubio, "A new method for the detection of microorganisms in blood cultures: Application of the quantitative interpretation to aerobic blood cultures," J. Biomed. Opt. (to be published).
[PubMed]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36-46 (1999).
[CrossRef]

J. Clin. Microbiol. (1)

T. C. Thorpe, M. L. Wilson, J. E. Turner, J. L. DiGuiseppi, M. Willert, S. Mirrett, and L. B. Reller, "BacT/Alert: an automated colorimetric microbial detection system," J. Clin. Microbiol. 28, 1608-1612 (1990).
[PubMed]

J. Invest. Dermatol. (1)

G. Zonios, J. Bykowski, and N. Kollias, "Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy," J. Invest. Dermatol. 117, 1452-1457 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Phys. Chem. (1)

B. H. Zimm and W. B. Dandliker, "Theory of light scattering and refractive index of solutions of large colloidal particles," J. Phys. Chem. 58, 644-648 (1954).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

I. Thormählen, J. Straub, and U. Grigull, "Refractive index of water and its dependence on wavelength temperature, and density," J. Phys. Chem. Ref. Data 14, 933-946 (1985).
[CrossRef]

Las. Med. Sci. (1)

M. S. Patterson, B. C. Wilson, and D. R. Wyman, "The propagation of optical radiation in tissue I. Models of radiation transport and their application," Las. Med. Sci. 6, 155-168 (1991).
[CrossRef]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady state diffuse reflectance for noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Photochem. Photobiol. (1)

Y. Mattley, G. Leparc, R. Potter, and L. García-Rubio, "Light scattering and absorption model for the quantitative interpretation of human blood platelet spectral data," Photochem. Photobiol. 71, 610-619 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

D. J. Faber, C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation dependent absorption and scattering of blood," Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

Other (6)

A. Ishimaru, Wave propagation and scattering in random media (Academic Press, 1978).

M. Kerker, The Scattering of Light and other electromagnetic radiation (Academic Press, 1969).

C. Bohren and D. R. Huffman, Absorption and Scattering by Small Particles (John Wiley & Sons, 1983).

W. J. Wiscombe, Mie Scattering Calculations: Advances in Technique and Fast Vector-Speed Computer Codes (National Technical Information Center, 1983), PB 301388.

J. L. Kuester and J. H. Mize, Optimization Techniques with Fortran (McGraw-Hill, New York, 1973).

Y. M. Serebrennikova, J. M. Smith, D. E. Huffman, and L. R. García-Rubio, Claro Scientific, LLC., 10100 Dr. Martin Luther King Jr. St., N., St. Petersburg, FL, 33716, are preparing a manuscript to be called "A new method for the detection of yeast in blood cultures".

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The imaginary parts, k(λ), of refractive indices of oxyhemoglobin (HbO2), deoxyhemoglobin (Hb), and methemoglobin (HbFe(III)).

Fig. 2.
Fig. 2.

Panel A: diffuse reflectance spectra collected during a blood culture experiments with E. coli. Panel B: diffuse reflectance spectra collected during a blood culture experiment with no contaminants.

Fig. 3.
Fig. 3.

The measured (Rmeas) and predicted (Rcalc) diffuse reflectance spectra and residuals (σres) of three different blood cultures.

Fig. 4.
Fig. 4.

The measured (Rmeas) and predicted (Rcalc) diffuse reflectance spectra and residuals (σres) for blood culture samples characterized by the mean erythrocyte volume of 82 µm3 (A) and the mean erythrocyte volume of 99 µm3 (B).

Fig. 5.
Fig. 5.

The measured (Rmeas) and predicted (Rcalc) diffuse reflectance spectra and residuals (σres) for blood culture samples characterized by the mean erythrocyte volume of 92 µm3 (A) and the mean erythrocyte volume of 77 µm3 (B).

Fig. 6.
Fig. 6.

The measured (Rmeas) and predicted (Rcalc) diffuse reflectance spectra and residuals (σres) for blood culture samples characterized by one particle population (erythrocytes) (A), two particle populations (erythrocytes and bacterial cells) (B), and three particle populations (erythrocytes, bacterial cells, and yeast cells) (C).

Fig. 7.
Fig. 7.

Temporal progression of oxyhemoglobin (A), fraction of deoxyhemoglobin (B), fraction of methemoglobin (C), and the mean cell volume (MCV) of erythrocytes (D) along with the residual sum of squares (E) obtained from deconvolution of diffuse reflectance spectra recorded during an on-line blood culture experiment.

Fig. 8.
Fig. 8.

The measured (Rmeas) and predicted (Rcalc) diffuse reflectance spectra and residuals (σres) for blood culture samples with intact erythrocytes (A) and partially lysed erythrocytes (B).

Tables (6)

Tables Icon

Table 1. Definition of parameters used in Eqs. (2 and 3).

Tables Icon

Table 2. The relevant parameters of blood culture components obtained from the deconvolution of the diffuse reflectance spectra presented in Fig. 2.

Tables Icon

Table 3. The relevant parameters of blood culture components obtained from the deconvolution of the diffuse reflectance spectra presented in Fig. 4.

Tables Icon

Table 4. The relevant parameters of blood culture components obtained from the deconvolution of the diffuse reflectance spectra presented in Fig. 5.

Tables Icon

Table 5. The relevant parameters of blood culture components obtained from the deconvolution of the diffuse reflectance spectra presented in Fig. 6.

Tables Icon

Table 6. The relevant parameters of blood culture components obtained from the deconvolution of the diffuse reflectance spectra presented in Fig. 7.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

R ( λ ) = I sample I dark I MgO 2 I dark
R ( λ ) = r x 2 r 2 2 r 1 2 ( R diff ( r 2 ) R diff ( r 1 ) )
R diff ( r ) = 2 μ st ( λ ) a 2 n = 1 k n z n cos γ n N n ζ n 2 ( k n 2 + μ t 2 ( λ ) ) { ( a 2 2 ) ra I 1 ( ζ n a ) K 1 ( ζ n r ) ; r > a ( r 2 2 ) ra K 1 ( ζ n a ) · I 1 ( ζ n r ) ; r < a }
μ a ( λ ) = J = 1 N N ( p ) J C absJ + i = 1 M 4 π k i ( λ ) λ [ C i ]
μ s ( λ ) = J = 1 N N ( p ) J ( 1 N ( p ) J V ( p ) J ) C scaJ
μ st ( λ ) = J = 1 N N ( p ) J ( 1 N ( P ) J V ( P ) J ) C scaJ ( 1 < μ J > )
C abs = Q abs ( m ( λ ) , V ( p ) ) · S C sca = Q sca ( m ( λ ) , V ( p ) ) · S
Q sca = 2 α 2 n = 1 ( 2 n + 1 ) { a n 2 + b n 2 }
Q ext = 2 α 2 n = 1 ( 2 n + 1 ) { Re ( a n + b n ) }
Q abs = Q ext Q sca
< μ > = 4 α 2 · Q sca n = 2 [ n 2 1 n { Re ( a n 1 a ¯ n + b n 1 b ¯ n ) } + 2 n 1 n ( n 1 ) { Re ( a n 1 b ¯ n 1 ) } ]
S = ( 6 π 2 V ( p ) ) 2 3 4 α = ( 6 π 2 V ( p ) ) 1 3 λ
m ( λ ) = n ( λ ) + ik ( λ ) n 0 ( λ ) n ( λ ) = i = 1 M ω i n i ( λ ) k ( λ ) = i = 1 M ω i k i ( λ )
f ( HbO 2 ) + f ( Hb ) + f ( HbFe ( III ) ) = 1
[ Hb ] T = [ Hb ] ( e ) · V f ( e ) + [ C Hb ] · V
[ C Hb ] = 1 V [ Hb ] ( e ) · V f ( e ) · V f ( e ) lysed

Metrics