Abstract

We report for the first time the use of two photon fluorescence as detection method of affinity binding reactions. We use a resonant grating waveguide structure as platform enhancement for detecting the interaction between fluorescent labeled Boldenone, a non-natural androgenic hormone, and a specific anti-anabolic antibody. We were able to detect a surface coverage of approximately 0.7 ng/mm2.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Tschmelak, M. Kumpf, N. Kappel, and G. Proll, "Total internal reflectance fluorescence (TIRF) biosensor for environmental monitoring of testosterone with commercially available immunochemistry: Antibody characterization, assay development and real sample measurements," Talanta. 69, 343-350 (2006).
    [CrossRef]
  2. M. Kreuzer, R. Quidant, J.-P. Salvador, M.-P. Marco, and G. Badenes, "Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol," Anal. Bioanal. Chem. 391, 1813-1820 (2008).
    [CrossRef] [PubMed]
  3. T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, "Femtomolar sensitivity using a channel etched thin film waveguide as fluoroimmunosensor," Biosens. Bioelectron. 11,149-160 (1996).
    [CrossRef] [PubMed]
  4. S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, "Enhanced two photon fluorescence excitation by resonant grating waveguide structures," Opt. Lett. 29, 1989-1991 (2004).
    [CrossRef] [PubMed]
  5. A. Selle, C. Kappel, M. A. Bader, G. Marowsky, K. Winkler, and U. Alexiev, "Picosecond-pulse-induced TPF enhancement in biological material by application of grating waveguide structures," Opt. Lett. 30,1683-1685 (2005).
    [CrossRef] [PubMed]
  6. S. Soria, A. Thayil K. N., G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, "Resonant double grating waveguide structures as enhancement platforms for two photon fluorescence excitation," Appl. Phys. Lett. 87, 081109 (2005).
    [CrossRef]
  7. G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, "Evanescent-fiel-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides," Appl. Phys. B 73, 869-871 (2001).
    [CrossRef]
  8. M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. BakerJr, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. St. J. Russell, "Enhanced two photon biosensing with double-clad photonic crystal fibers," Opt. Lett. 28, 1224-1226 (2003).
    [CrossRef] [PubMed]
  9. W. Budach, D. Neuschaefer, C. Wanke, and S. Chibout, "Generation of Transducers for Fluorescence based microarrays with enhanced sensitivity and their application for gene expression profiling," Anal. Chem. 45, 2571-2577 (2003).
    [CrossRef]
  10. D. Neuschaefer, W. Budach, C. Wanke, and S. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
    [CrossRef]
  11. R. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-408 (1902).
  12. h124RE BioChip.pdf from www.optics.unaxis.com
  13. D. Brovelli, G. Hahner, L. Ruiz, R. Hofer, G. Kraus, A. Waldner, J. Schlosser, P. Oroszlan, M. Ehrat, and N. D. Ehrat, "Highly Oriented, Self-Assembled Alkanephosphate Monolayers on Tantalum(V) Oxide Surfaces," Langmuir. 15, 4324-4327 (1999).
    [CrossRef]
  14. K. O. Katrin, K. O. Schmitt, G. Sulz, and C. Hoffmann, "Evanescent field Sensors Based on Tantalum Pentoxide Waveguides - A review," Sensors. 8, 711-738 (2008).
    [CrossRef]
  15. Specific antibody (Ab143) and non-specific antibody (Abpre) were previously produced in the AMR research group by Dr. J.-P. Salvador.
  16. A. Muriano, A. Thayil K. N., P. Salvador, R. Galve, S. Soria, P. Loza-Alvarez, and M. P. Marco, Anal. Chem.in preparation
  17. U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1878 (1961).
    [CrossRef]
  18. U. Fano, "The theory of anomalous diffraction gratings and quasi stationary waves on metallic surfaces (Sommerfeld�??s waves)," J. Opt. Soc. Am. 31, 213-222 (1941).
    [CrossRef]
  19. S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, "Spectral shifts and line-shapes asymmetries in resonant response of grating waveguide structures," Opt. Commun. 145, 291-299 (1998).
    [CrossRef]
  20. S. H. Fan, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," J. Opt. Soc. Am. A 20,569-572 (2003).
    [CrossRef]

2008 (2)

M. Kreuzer, R. Quidant, J.-P. Salvador, M.-P. Marco, and G. Badenes, "Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol," Anal. Bioanal. Chem. 391, 1813-1820 (2008).
[CrossRef] [PubMed]

K. O. Katrin, K. O. Schmitt, G. Sulz, and C. Hoffmann, "Evanescent field Sensors Based on Tantalum Pentoxide Waveguides - A review," Sensors. 8, 711-738 (2008).
[CrossRef]

2006 (1)

J. Tschmelak, M. Kumpf, N. Kappel, and G. Proll, "Total internal reflectance fluorescence (TIRF) biosensor for environmental monitoring of testosterone with commercially available immunochemistry: Antibody characterization, assay development and real sample measurements," Talanta. 69, 343-350 (2006).
[CrossRef]

2005 (2)

A. Selle, C. Kappel, M. A. Bader, G. Marowsky, K. Winkler, and U. Alexiev, "Picosecond-pulse-induced TPF enhancement in biological material by application of grating waveguide structures," Opt. Lett. 30,1683-1685 (2005).
[CrossRef] [PubMed]

S. Soria, A. Thayil K. N., G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, "Resonant double grating waveguide structures as enhancement platforms for two photon fluorescence excitation," Appl. Phys. Lett. 87, 081109 (2005).
[CrossRef]

2004 (1)

2003 (4)

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. BakerJr, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. St. J. Russell, "Enhanced two photon biosensing with double-clad photonic crystal fibers," Opt. Lett. 28, 1224-1226 (2003).
[CrossRef] [PubMed]

W. Budach, D. Neuschaefer, C. Wanke, and S. Chibout, "Generation of Transducers for Fluorescence based microarrays with enhanced sensitivity and their application for gene expression profiling," Anal. Chem. 45, 2571-2577 (2003).
[CrossRef]

D. Neuschaefer, W. Budach, C. Wanke, and S. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef]

S. H. Fan, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," J. Opt. Soc. Am. A 20,569-572 (2003).
[CrossRef]

2001 (1)

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, "Evanescent-fiel-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides," Appl. Phys. B 73, 869-871 (2001).
[CrossRef]

1999 (1)

D. Brovelli, G. Hahner, L. Ruiz, R. Hofer, G. Kraus, A. Waldner, J. Schlosser, P. Oroszlan, M. Ehrat, and N. D. Ehrat, "Highly Oriented, Self-Assembled Alkanephosphate Monolayers on Tantalum(V) Oxide Surfaces," Langmuir. 15, 4324-4327 (1999).
[CrossRef]

1998 (1)

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, "Spectral shifts and line-shapes asymmetries in resonant response of grating waveguide structures," Opt. Commun. 145, 291-299 (1998).
[CrossRef]

1996 (1)

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, "Femtomolar sensitivity using a channel etched thin film waveguide as fluoroimmunosensor," Biosens. Bioelectron. 11,149-160 (1996).
[CrossRef] [PubMed]

1961 (1)

U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

1941 (1)

1902 (1)

R. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-408 (1902).

Alexiev, U.

Badenes, G.

M. Kreuzer, R. Quidant, J.-P. Salvador, M.-P. Marco, and G. Badenes, "Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol," Anal. Bioanal. Chem. 391, 1813-1820 (2008).
[CrossRef] [PubMed]

Bader, M. A.

A. Selle, C. Kappel, M. A. Bader, G. Marowsky, K. Winkler, and U. Alexiev, "Picosecond-pulse-induced TPF enhancement in biological material by application of grating waveguide structures," Opt. Lett. 30,1683-1685 (2005).
[CrossRef] [PubMed]

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, "Evanescent-fiel-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides," Appl. Phys. B 73, 869-871 (2001).
[CrossRef]

Baker, J. R.

Bopp, M. A.

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, "Evanescent-fiel-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides," Appl. Phys. B 73, 869-871 (2001).
[CrossRef]

Bouwmans, G.

Brovelli, D.

D. Brovelli, G. Hahner, L. Ruiz, R. Hofer, G. Kraus, A. Waldner, J. Schlosser, P. Oroszlan, M. Ehrat, and N. D. Ehrat, "Highly Oriented, Self-Assembled Alkanephosphate Monolayers on Tantalum(V) Oxide Surfaces," Langmuir. 15, 4324-4327 (1999).
[CrossRef]

Budach, W.

D. Neuschaefer, W. Budach, C. Wanke, and S. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef]

W. Budach, D. Neuschaefer, C. Wanke, and S. Chibout, "Generation of Transducers for Fluorescence based microarrays with enhanced sensitivity and their application for gene expression profiling," Anal. Chem. 45, 2571-2577 (2003).
[CrossRef]

Chibout, S.

W. Budach, D. Neuschaefer, C. Wanke, and S. Chibout, "Generation of Transducers for Fluorescence based microarrays with enhanced sensitivity and their application for gene expression profiling," Anal. Chem. 45, 2571-2577 (2003).
[CrossRef]

D. Neuschaefer, W. Budach, C. Wanke, and S. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef]

Christensen, D. A.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, "Femtomolar sensitivity using a channel etched thin film waveguide as fluoroimmunosensor," Biosens. Bioelectron. 11,149-160 (1996).
[CrossRef] [PubMed]

Duveneck, G. L.

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, "Evanescent-fiel-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides," Appl. Phys. B 73, 869-871 (2001).
[CrossRef]

Ehrat, M.

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, "Evanescent-fiel-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides," Appl. Phys. B 73, 869-871 (2001).
[CrossRef]

D. Brovelli, G. Hahner, L. Ruiz, R. Hofer, G. Kraus, A. Waldner, J. Schlosser, P. Oroszlan, M. Ehrat, and N. D. Ehrat, "Highly Oriented, Self-Assembled Alkanephosphate Monolayers on Tantalum(V) Oxide Surfaces," Langmuir. 15, 4324-4327 (1999).
[CrossRef]

Ehrat, N. D.

D. Brovelli, G. Hahner, L. Ruiz, R. Hofer, G. Kraus, A. Waldner, J. Schlosser, P. Oroszlan, M. Ehrat, and N. D. Ehrat, "Highly Oriented, Self-Assembled Alkanephosphate Monolayers on Tantalum(V) Oxide Surfaces," Langmuir. 15, 4324-4327 (1999).
[CrossRef]

Fan, S. H.

Fano, U.

Friesem, A. A.

S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, "Enhanced two photon fluorescence excitation by resonant grating waveguide structures," Opt. Lett. 29, 1989-1991 (2004).
[CrossRef] [PubMed]

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, "Spectral shifts and line-shapes asymmetries in resonant response of grating waveguide structures," Opt. Commun. 145, 291-299 (1998).
[CrossRef]

Glasberg, S.

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, "Spectral shifts and line-shapes asymmetries in resonant response of grating waveguide structures," Opt. Commun. 145, 291-299 (1998).
[CrossRef]

Hahner, G.

D. Brovelli, G. Hahner, L. Ruiz, R. Hofer, G. Kraus, A. Waldner, J. Schlosser, P. Oroszlan, M. Ehrat, and N. D. Ehrat, "Highly Oriented, Self-Assembled Alkanephosphate Monolayers on Tantalum(V) Oxide Surfaces," Langmuir. 15, 4324-4327 (1999).
[CrossRef]

Haiml, M.

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, "Evanescent-fiel-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides," Appl. Phys. B 73, 869-871 (2001).
[CrossRef]

Herron, J. N.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, "Femtomolar sensitivity using a channel etched thin film waveguide as fluoroimmunosensor," Biosens. Bioelectron. 11,149-160 (1996).
[CrossRef] [PubMed]

Hofer, R.

D. Brovelli, G. Hahner, L. Ruiz, R. Hofer, G. Kraus, A. Waldner, J. Schlosser, P. Oroszlan, M. Ehrat, and N. D. Ehrat, "Highly Oriented, Self-Assembled Alkanephosphate Monolayers on Tantalum(V) Oxide Surfaces," Langmuir. 15, 4324-4327 (1999).
[CrossRef]

Hoffmann, C.

K. O. Katrin, K. O. Schmitt, G. Sulz, and C. Hoffmann, "Evanescent field Sensors Based on Tantalum Pentoxide Waveguides - A review," Sensors. 8, 711-738 (2008).
[CrossRef]

Joannopoulos, J. D.

Kappel, C.

Kappel, N.

J. Tschmelak, M. Kumpf, N. Kappel, and G. Proll, "Total internal reflectance fluorescence (TIRF) biosensor for environmental monitoring of testosterone with commercially available immunochemistry: Antibody characterization, assay development and real sample measurements," Talanta. 69, 343-350 (2006).
[CrossRef]

Katchalski, T.

Katrin, K. O.

K. O. Katrin, K. O. Schmitt, G. Sulz, and C. Hoffmann, "Evanescent field Sensors Based on Tantalum Pentoxide Waveguides - A review," Sensors. 8, 711-738 (2008).
[CrossRef]

Keller, U.

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, "Evanescent-fiel-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides," Appl. Phys. B 73, 869-871 (2001).
[CrossRef]

Knight, J. C.

Kraus, G.

D. Brovelli, G. Hahner, L. Ruiz, R. Hofer, G. Kraus, A. Waldner, J. Schlosser, P. Oroszlan, M. Ehrat, and N. D. Ehrat, "Highly Oriented, Self-Assembled Alkanephosphate Monolayers on Tantalum(V) Oxide Surfaces," Langmuir. 15, 4324-4327 (1999).
[CrossRef]

Kreuzer, M.

M. Kreuzer, R. Quidant, J.-P. Salvador, M.-P. Marco, and G. Badenes, "Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol," Anal. Bioanal. Chem. 391, 1813-1820 (2008).
[CrossRef] [PubMed]

Kumpf, M.

J. Tschmelak, M. Kumpf, N. Kappel, and G. Proll, "Total internal reflectance fluorescence (TIRF) biosensor for environmental monitoring of testosterone with commercially available immunochemistry: Antibody characterization, assay development and real sample measurements," Talanta. 69, 343-350 (2006).
[CrossRef]

Marco, M.-P.

M. Kreuzer, R. Quidant, J.-P. Salvador, M.-P. Marco, and G. Badenes, "Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol," Anal. Bioanal. Chem. 391, 1813-1820 (2008).
[CrossRef] [PubMed]

Marowsky, G.

Muriano, A.

A. Muriano, A. Thayil K. N., P. Salvador, R. Galve, S. Soria, P. Loza-Alvarez, and M. P. Marco, Anal. Chem.in preparation

Myaing, M. T.

Neuschaefer, D.

D. Neuschaefer, W. Budach, C. Wanke, and S. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef]

W. Budach, D. Neuschaefer, C. Wanke, and S. Chibout, "Generation of Transducers for Fluorescence based microarrays with enhanced sensitivity and their application for gene expression profiling," Anal. Chem. 45, 2571-2577 (2003).
[CrossRef]

Norris, T. B.

Oroszlan, P.

D. Brovelli, G. Hahner, L. Ruiz, R. Hofer, G. Kraus, A. Waldner, J. Schlosser, P. Oroszlan, M. Ehrat, and N. D. Ehrat, "Highly Oriented, Self-Assembled Alkanephosphate Monolayers on Tantalum(V) Oxide Surfaces," Langmuir. 15, 4324-4327 (1999).
[CrossRef]

Peters, C. R.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, "Femtomolar sensitivity using a channel etched thin film waveguide as fluoroimmunosensor," Biosens. Bioelectron. 11,149-160 (1996).
[CrossRef] [PubMed]

Plowman, T. E.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, "Femtomolar sensitivity using a channel etched thin film waveguide as fluoroimmunosensor," Biosens. Bioelectron. 11,149-160 (1996).
[CrossRef] [PubMed]

Proll, G.

J. Tschmelak, M. Kumpf, N. Kappel, and G. Proll, "Total internal reflectance fluorescence (TIRF) biosensor for environmental monitoring of testosterone with commercially available immunochemistry: Antibody characterization, assay development and real sample measurements," Talanta. 69, 343-350 (2006).
[CrossRef]

Quidant, R.

M. Kreuzer, R. Quidant, J.-P. Salvador, M.-P. Marco, and G. Badenes, "Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol," Anal. Bioanal. Chem. 391, 1813-1820 (2008).
[CrossRef] [PubMed]

Reichert, W. M.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, "Femtomolar sensitivity using a channel etched thin film waveguide as fluoroimmunosensor," Biosens. Bioelectron. 11,149-160 (1996).
[CrossRef] [PubMed]

Rosenblatt, D.

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, "Spectral shifts and line-shapes asymmetries in resonant response of grating waveguide structures," Opt. Commun. 145, 291-299 (1998).
[CrossRef]

Ruiz, L.

D. Brovelli, G. Hahner, L. Ruiz, R. Hofer, G. Kraus, A. Waldner, J. Schlosser, P. Oroszlan, M. Ehrat, and N. D. Ehrat, "Highly Oriented, Self-Assembled Alkanephosphate Monolayers on Tantalum(V) Oxide Surfaces," Langmuir. 15, 4324-4327 (1999).
[CrossRef]

Russell, P. St. J.

Salvador, J.-P.

M. Kreuzer, R. Quidant, J.-P. Salvador, M.-P. Marco, and G. Badenes, "Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol," Anal. Bioanal. Chem. 391, 1813-1820 (2008).
[CrossRef] [PubMed]

Schlosser, J.

D. Brovelli, G. Hahner, L. Ruiz, R. Hofer, G. Kraus, A. Waldner, J. Schlosser, P. Oroszlan, M. Ehrat, and N. D. Ehrat, "Highly Oriented, Self-Assembled Alkanephosphate Monolayers on Tantalum(V) Oxide Surfaces," Langmuir. 15, 4324-4327 (1999).
[CrossRef]

Schmitt, K. O.

K. O. Katrin, K. O. Schmitt, G. Sulz, and C. Hoffmann, "Evanescent field Sensors Based on Tantalum Pentoxide Waveguides - A review," Sensors. 8, 711-738 (2008).
[CrossRef]

Selle, A.

Sharon, A.

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, "Spectral shifts and line-shapes asymmetries in resonant response of grating waveguide structures," Opt. Commun. 145, 291-299 (1998).
[CrossRef]

Soria, S.

S. Soria, A. Thayil K. N., G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, "Resonant double grating waveguide structures as enhancement platforms for two photon fluorescence excitation," Appl. Phys. Lett. 87, 081109 (2005).
[CrossRef]

S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, "Enhanced two photon fluorescence excitation by resonant grating waveguide structures," Opt. Lett. 29, 1989-1991 (2004).
[CrossRef] [PubMed]

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, "Evanescent-fiel-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides," Appl. Phys. B 73, 869-871 (2001).
[CrossRef]

Suh, W.

Sulz, G.

K. O. Katrin, K. O. Schmitt, G. Sulz, and C. Hoffmann, "Evanescent field Sensors Based on Tantalum Pentoxide Waveguides - A review," Sensors. 8, 711-738 (2008).
[CrossRef]

Teitelbaum, E.

Thomas, T.

Tschmelak, J.

J. Tschmelak, M. Kumpf, N. Kappel, and G. Proll, "Total internal reflectance fluorescence (TIRF) biosensor for environmental monitoring of testosterone with commercially available immunochemistry: Antibody characterization, assay development and real sample measurements," Talanta. 69, 343-350 (2006).
[CrossRef]

Wadsworth, W. J.

Waldner, A.

D. Brovelli, G. Hahner, L. Ruiz, R. Hofer, G. Kraus, A. Waldner, J. Schlosser, P. Oroszlan, M. Ehrat, and N. D. Ehrat, "Highly Oriented, Self-Assembled Alkanephosphate Monolayers on Tantalum(V) Oxide Surfaces," Langmuir. 15, 4324-4327 (1999).
[CrossRef]

Wang, H. K.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, "Femtomolar sensitivity using a channel etched thin film waveguide as fluoroimmunosensor," Biosens. Bioelectron. 11,149-160 (1996).
[CrossRef] [PubMed]

Wanke, C.

D. Neuschaefer, W. Budach, C. Wanke, and S. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef]

W. Budach, D. Neuschaefer, C. Wanke, and S. Chibout, "Generation of Transducers for Fluorescence based microarrays with enhanced sensitivity and their application for gene expression profiling," Anal. Chem. 45, 2571-2577 (2003).
[CrossRef]

Winkler, K.

Wood, R.

R. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-408 (1902).

Ye, J. Y.

Anal. Bioanal. Chem. (1)

M. Kreuzer, R. Quidant, J.-P. Salvador, M.-P. Marco, and G. Badenes, "Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol," Anal. Bioanal. Chem. 391, 1813-1820 (2008).
[CrossRef] [PubMed]

Anal. Chem. (2)

W. Budach, D. Neuschaefer, C. Wanke, and S. Chibout, "Generation of Transducers for Fluorescence based microarrays with enhanced sensitivity and their application for gene expression profiling," Anal. Chem. 45, 2571-2577 (2003).
[CrossRef]

A. Muriano, A. Thayil K. N., P. Salvador, R. Galve, S. Soria, P. Loza-Alvarez, and M. P. Marco, Anal. Chem.in preparation

Appl. Phys. B (1)

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, "Evanescent-fiel-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides," Appl. Phys. B 73, 869-871 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

S. Soria, A. Thayil K. N., G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, "Resonant double grating waveguide structures as enhancement platforms for two photon fluorescence excitation," Appl. Phys. Lett. 87, 081109 (2005).
[CrossRef]

Biosens. Bioelectron. (2)

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, "Femtomolar sensitivity using a channel etched thin film waveguide as fluoroimmunosensor," Biosens. Bioelectron. 11,149-160 (1996).
[CrossRef] [PubMed]

D. Neuschaefer, W. Budach, C. Wanke, and S. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Langmuir. (1)

D. Brovelli, G. Hahner, L. Ruiz, R. Hofer, G. Kraus, A. Waldner, J. Schlosser, P. Oroszlan, M. Ehrat, and N. D. Ehrat, "Highly Oriented, Self-Assembled Alkanephosphate Monolayers on Tantalum(V) Oxide Surfaces," Langmuir. 15, 4324-4327 (1999).
[CrossRef]

Opt. Commun. (1)

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, "Spectral shifts and line-shapes asymmetries in resonant response of grating waveguide structures," Opt. Commun. 145, 291-299 (1998).
[CrossRef]

Opt. Lett. (3)

Phil. Mag. (1)

R. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-408 (1902).

Phys. Rev. (1)

U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Sensors. (1)

K. O. Katrin, K. O. Schmitt, G. Sulz, and C. Hoffmann, "Evanescent field Sensors Based on Tantalum Pentoxide Waveguides - A review," Sensors. 8, 711-738 (2008).
[CrossRef]

Talanta. (1)

J. Tschmelak, M. Kumpf, N. Kappel, and G. Proll, "Total internal reflectance fluorescence (TIRF) biosensor for environmental monitoring of testosterone with commercially available immunochemistry: Antibody characterization, assay development and real sample measurements," Talanta. 69, 343-350 (2006).
[CrossRef]

Other (2)

Specific antibody (Ab143) and non-specific antibody (Abpre) were previously produced in the AMR research group by Dr. J.-P. Salvador.

h124RE BioChip.pdf from www.optics.unaxis.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

A schematic diagram of the DGWS with the inset showing AFM image of a 1×1 µm section of DGWS surface. The period of the structure is 388nm and the groove depth is 38nm. The size of the transducer is 22×75 mm and 1.1mm thickness.

Fig. 2.
Fig. 2.

Surface functionalization. (A) Schematic diagram of surface functionalization; (B) covalent protein (Ab143 specific antibody, Abpre non specific antibody) immobilization; and (C) bioaffinity assay.

Fig. 3.
Fig. 3.

A schematic diagram of the experimental arrangement. HW: half wavelength plate, ND: Neutral density filter, LSA: laser spectrum analyser, L1 and L2 collecting lenses.

Fig. 4.
Fig. 4.

Transmission spectra of a bare DGWS. (a) At 36° incident angle and TE polarization resonance occurs at 812.7nm wavelength with a FWHM bandwidth of 3.3nm; changing the polarization to TM results in full transmittance of the incident pulse. (b) Resonance for TM polarization at this wavelength occurs at 45°incident angle with 1.3nm FWHM. TE polarization at this angle is a non-resonant condition.

Fig. 5.
Fig. 5.

Transmission and reflection spectra of a DGWS with 0.3125µg/ml of antibody and 5µg/ml of hb-Boldenone labelled with Rhodamine B. For TE polarization resonance occurs at 36° where TM polarization is a non-resonant condition.

Fig. 6.
Fig. 6.

TPF enhancement near resonance. (a) TPF emission spectra obtained from a DGWS with 0.3125µg/ml of antibody and 5µg/ml of Rhodamine B labelled hb-Boldenone on the grating surface for different excitation wavelengths. (b) The corresponding normalized TPF excitation spectrum.

Fig. 7.
Fig. 7.

Variation of the total TPF intensity for different antibody and Boldenone-Rhodamine B conjugate concentrations (squares: 5µg/ml, circles: 2.5µg/ml, triangles: 1.25 µg/ml,) Continuous line corresponds to specific Ab143, and discontinuous line corresponds to nonspecific antibody Abpre. Same colour corresponds to the same concentration of fluorescent conjugate.

Metrics