Abstract

A full time-resolved scheme that has been previously applied in diffuse optical tomography is extended to time-domain fluorescence diffuse optical tomography regime, based on a finite-element-finite-time-difference photon diffusion modeling and a Newton-Raphson inversion framework. The merits of using full time-resolved data are twofold: it helps evaluate the intrinsic performance of time-domain mode for improvement of image quality and set up a valuable reference to the assessment of computationally efficient featured-data-based algorithms, and provides a self-normalized implementation to preclude the necessity of the scaling-factor calibration and spectroscopic-feature assessments of the system as well as to overcome the adversity of system instability. We validate the proposed methodology using simulated data, and evaluate its performances of simultaneous recovery of the fluorescent yield and lifetime as well as its superiority to the featured-data one in the fidelity of image reconstruction.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-650 (2002).
    [CrossRef] [PubMed]
  2. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas DA, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003).
    [CrossRef] [PubMed]
  3. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).
    [CrossRef] [PubMed]
  4. V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotech. 23, 313-320 (2005)
    [CrossRef]
  5. S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004).
    [CrossRef] [PubMed]
  6. X. Cong and G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847-9857 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-24-9847.
    [CrossRef] [PubMed]
  7. A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, "Time-resolved fluorescence tomography of turbid media based on lifetime contrast," Opt. Express 14, 12255-12270 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-12255.
    [CrossRef] [PubMed]
  8. S. Lam, F. Lesage, and X. Intes X, "Time-domain fluorescent diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2263.
    [CrossRef] [PubMed]
  9. F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography," Opt. Express 14, 7109-7124 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-16-7109.
    [CrossRef] [PubMed]
  10. H. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulation," Appl. Opt. 37, 5337-5343 (1998).
    [CrossRef]
  11. A. D. Klose, V. Ntziachristos, and A. D. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005).
    [CrossRef]
  12. J. Lee and E. M. Sevick-Muraca, "Three-dimensional fluorescence enhanced optical tomography using referenced frequency-domain photon migration measurements at emission and excitation wavelengths," J. Opt. Soc. Am. A 19, 759-771 (2002).
    [CrossRef]
  13. R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantom: A novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
    [CrossRef] [PubMed]
  14. V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, "Fluorescence lifetime imaging by using time-gated data," Appl. Opt. 46, 7384-7391 (2007).
    [CrossRef] [PubMed]
  15. S. V. Patwardhan and J. P. Culver, "Quantitative diffuse optical tomography for small animals using an unltrafast gated image intensifier," J. Biomed. Opt. 13, 011009 (2008).
    [CrossRef] [PubMed]
  16. M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, "Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media," Rev. Sci. Instrum. 79, 013103 (2008).
    [CrossRef] [PubMed]
  17. F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
    [CrossRef] [PubMed]
  18. T. J. Farrell and M. S. Patterson, "Diffusion modeling of fluorescence in tissue," in Handbook of Biomedical Fluorescence, Mycek MA and Pogue BW eds., Marcel Dekker, New York (2003).
    [CrossRef]
  19. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-93 (1999).
    [CrossRef]
  20. W. G. Egan and T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic Press, New York 1979).
  21. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
    [CrossRef] [PubMed]
  22. S. Achilefu, P. R. Dorshow, J. E. Bugaj, and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
    [CrossRef] [PubMed]
  23. K. Licha, "Contrast agents for optical imaging," Topics in Current Chemistry 222, 1-29 (2002).
    [CrossRef]
  24. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Methods, Vol. 1 5th ed., (Elsevier Pte Ltd., Singapore 2004).
  25. H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, "Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging," J. Biomed. Opt.  12, 062107 (2007).
    [CrossRef] [PubMed]
  26. W. Becker, Advanced time-correlated single photon counting techniques (Springer-Verlag, Berlin 2005).
    [CrossRef]
  27. D. A. Boas, T. Gaudette, and S. R. Arridge, "Simultaneous imaging and optode calibration with diffuse optical tomography," Opt. Express 8, 253-270 (2001).
    [CrossRef]
  28. S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, and K. J. Webb, "Source-detector calibration in three-dimensional Baysian optical diffusion tomography," J. Opt. Soc. Am. A 19, 1983-1993 (2002).
    [CrossRef]
  29. T. Tarvainen, V. Kolehmainen, M. Vauhkonen, A. Vanne, A. P. Gibson, M. Schweiger, S. R. Arridge, and A. P. Kaipio, "Computational calibration method for optical tomography," Appl. Opt. 44, 1879-1888 (2005).
    [CrossRef] [PubMed]
  30. J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
    [CrossRef] [PubMed]
  31. H. J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
    [CrossRef]
  32. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000).
    [CrossRef]
  33. F. Gao, H. J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, "Influences of target size and contrast on near infrared diffuse optical tomography - a comparison between featured-data and full time-resolved schemes," Opt. Quantum Electron. 37, 1287-1304 (2005).
    [CrossRef]
  34. A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
    [CrossRef] [PubMed]
  35. F. Gao, P. Poulet, and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from full three-dimensional model of time-resolved optical tomography," Appl. Opt. 39, 5898-5910 (2000).
    [CrossRef]
  36. E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, "Calibration techniques and datatype extraction for time-resolved optical tomography," Rev. Sci. Instrum. 71, 3415-3427 (2000).
    [CrossRef]

2008

S. V. Patwardhan and J. P. Culver, "Quantitative diffuse optical tomography for small animals using an unltrafast gated image intensifier," J. Biomed. Opt. 13, 011009 (2008).
[CrossRef] [PubMed]

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, "Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media," Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

2007

2006

2005

F. Gao, H. J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, "Influences of target size and contrast on near infrared diffuse optical tomography - a comparison between featured-data and full time-resolved schemes," Opt. Quantum Electron. 37, 1287-1304 (2005).
[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

T. Tarvainen, V. Kolehmainen, M. Vauhkonen, A. Vanne, A. P. Gibson, M. Schweiger, S. R. Arridge, and A. P. Kaipio, "Computational calibration method for optical tomography," Appl. Opt. 44, 1879-1888 (2005).
[CrossRef] [PubMed]

S. Lam, F. Lesage, and X. Intes X, "Time-domain fluorescent diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2263.
[CrossRef] [PubMed]

X. Cong and G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847-9857 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-24-9847.
[CrossRef] [PubMed]

H. J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

A. D. Klose, V. Ntziachristos, and A. D. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005).
[CrossRef]

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantom: A novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotech. 23, 313-320 (2005)
[CrossRef]

2004

S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

2003

2002

2001

D. A. Boas, T. Gaudette, and S. R. Arridge, "Simultaneous imaging and optode calibration with diffuse optical tomography," Opt. Express 8, 253-270 (2001).
[CrossRef]

2000

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, "Calibration techniques and datatype extraction for time-resolved optical tomography," Rev. Sci. Instrum. 71, 3415-3427 (2000).
[CrossRef]

S. Achilefu, P. R. Dorshow, J. E. Bugaj, and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
[CrossRef] [PubMed]

F. Gao, P. Poulet, and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from full three-dimensional model of time-resolved optical tomography," Appl. Opt. 39, 5898-5910 (2000).
[CrossRef]

1999

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-93 (1999).
[CrossRef]

1998

1993

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Achilefu, S.

S. Achilefu, P. R. Dorshow, J. E. Bugaj, and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
[CrossRef] [PubMed]

Arridge, S. R.

V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, "Fluorescence lifetime imaging by using time-gated data," Appl. Opt. 46, 7384-7391 (2007).
[CrossRef] [PubMed]

T. Tarvainen, V. Kolehmainen, M. Vauhkonen, A. Vanne, A. P. Gibson, M. Schweiger, S. R. Arridge, and A. P. Kaipio, "Computational calibration method for optical tomography," Appl. Opt. 44, 1879-1888 (2005).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

D. A. Boas, T. Gaudette, and S. R. Arridge, "Simultaneous imaging and optode calibration with diffuse optical tomography," Opt. Express 8, 253-270 (2001).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, "Calibration techniques and datatype extraction for time-resolved optical tomography," Rev. Sci. Instrum. 71, 3415-3427 (2000).
[CrossRef]

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-93 (1999).
[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Austin, T.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Bacskai, B. J.

Boas, D. A.

Bouman, C. A.

Boverman, G.

Brambilla, M.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, "Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media," Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

Bremer, C.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Bugaj, J. E.

S. Achilefu, P. R. Dorshow, J. E. Bugaj, and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
[CrossRef] [PubMed]

Cherry, S. R.

S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004).
[CrossRef] [PubMed]

Cong, X.

Cubeddu, R.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, "Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media," Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

Culver, J. P.

S. V. Patwardhan and J. P. Culver, "Quantitative diffuse optical tomography for small animals using an unltrafast gated image intensifier," J. Biomed. Opt. 13, 011009 (2008).
[CrossRef] [PubMed]

Dehghani, H.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, "Calibration techniques and datatype extraction for time-resolved optical tomography," Rev. Sci. Instrum. 71, 3415-3427 (2000).
[CrossRef]

Delpy, D. T.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, "Calibration techniques and datatype extraction for time-resolved optical tomography," Rev. Sci. Instrum. 71, 3415-3427 (2000).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Dorshow, P. R.

S. Achilefu, P. R. Dorshow, J. E. Bugaj, and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
[CrossRef] [PubMed]

Elson, D. S.

Everdell, N.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

French, P. M. W.

Fry, M. E.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

Gao, F.

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography," Opt. Express 14, 7109-7124 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-16-7109.
[CrossRef] [PubMed]

H. J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

F. Gao, H. J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, "Influences of target size and contrast on near infrared diffuse optical tomography - a comparison between featured-data and full time-resolved schemes," Opt. Quantum Electron. 37, 1287-1304 (2005).
[CrossRef]

F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
[CrossRef] [PubMed]

F. Gao, P. Poulet, and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from full three-dimensional model of time-resolved optical tomography," Appl. Opt. 39, 5898-5910 (2000).
[CrossRef]

Gaudette, T.

D. A. Boas, T. Gaudette, and S. R. Arridge, "Simultaneous imaging and optode calibration with diffuse optical tomography," Opt. Express 8, 253-270 (2001).
[CrossRef]

Gibson, A.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Gibson, A. P.

Godavarty, A.

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantom: A novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

Gurfinkel, M.

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-650 (2002).
[CrossRef] [PubMed]

Hebden, J. C.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, "Calibration techniques and datatype extraction for time-resolved optical tomography," Rev. Sci. Instrum. 71, 3415-3427 (2000).
[CrossRef]

Hielscher, A. D.

A. D. Klose, V. Ntziachristos, and A. D. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005).
[CrossRef]

Hillman, E. M. C.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, "Calibration techniques and datatype extraction for time-resolved optical tomography," Rev. Sci. Instrum. 71, 3415-3427 (2000).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Homma, K.

F. Gao, H. J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, "Influences of target size and contrast on near infrared diffuse optical tomography - a comparison between featured-data and full time-resolved schemes," Opt. Quantum Electron. 37, 1287-1304 (2005).
[CrossRef]

H. J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

Houston, J. P.

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-650 (2002).
[CrossRef] [PubMed]

Jiang, H.

Kaipio, A. P.

Klose, A. D.

A. D. Klose, V. Ntziachristos, and A. D. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005).
[CrossRef]

Kolehmainen, V.

Kumar, A. T. N.

Lam, S.

Lee, J.

Lesage, F.

Licha, K.

K. Licha, "Contrast agents for optical imaging," Topics in Current Chemistry 222, 1-29 (2002).
[CrossRef]

McGinty, J.

Meek, J. H.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Millane, R. P.

Milstein, A. B.

Neil, M. A. A.

Ntziachiristos, V.

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotech. 23, 313-320 (2005)
[CrossRef]

Ntziachristos, V.

A. D. Klose, V. Ntziachristos, and A. D. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005).
[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Oh, S.

Patwardhan, S. V.

S. V. Patwardhan and J. P. Culver, "Quantitative diffuse optical tomography for small animals using an unltrafast gated image intensifier," J. Biomed. Opt. 13, 011009 (2008).
[CrossRef] [PubMed]

Pifferi, A.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, "Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media," Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

Poulet, P.

Rajapopalan, R.

S. Achilefu, P. R. Dorshow, J. E. Bugaj, and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
[CrossRef] [PubMed]

Raymond, S. B.

Ripoll, J.

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotech. 23, 313-320 (2005)
[CrossRef]

Roy, R.

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantom: A novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

Schmidt, F. E. W.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, "Calibration techniques and datatype extraction for time-resolved optical tomography," Rev. Sci. Instrum. 71, 3415-3427 (2000).
[CrossRef]

Schweiger, M.

T. Tarvainen, V. Kolehmainen, M. Vauhkonen, A. Vanne, A. P. Gibson, M. Schweiger, S. R. Arridge, and A. P. Kaipio, "Computational calibration method for optical tomography," Appl. Opt. 44, 1879-1888 (2005).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, "Calibration techniques and datatype extraction for time-resolved optical tomography," Rev. Sci. Instrum. 71, 3415-3427 (2000).
[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantom: A novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-650 (2002).
[CrossRef] [PubMed]

J. Lee and E. M. Sevick-Muraca, "Three-dimensional fluorescence enhanced optical tomography using referenced frequency-domain photon migration measurements at emission and excitation wavelengths," J. Opt. Soc. Am. A 19, 759-771 (2002).
[CrossRef]

Soloviev, V. Y.

Soubret, A.

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

Spinelli, L.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, "Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media," Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

Tahir, K. B.

Tanikawa, Y.

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography," Opt. Express 14, 7109-7124 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-16-7109.
[CrossRef] [PubMed]

H. J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

F. Gao, H. J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, "Influences of target size and contrast on near infrared diffuse optical tomography - a comparison between featured-data and full time-resolved schemes," Opt. Quantum Electron. 37, 1287-1304 (2005).
[CrossRef]

Tarvainen, T.

Thompson, A. B.

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantom: A novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

Torricelli, A.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, "Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media," Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

Tung, C. H.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Vanne, A.

Vauhkonen, M.

Wang, G.

Wang, L. H. V.

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotech. 23, 313-320 (2005)
[CrossRef]

Webb, K. J.

Weissleder, R.

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotech. 23, 313-320 (2005)
[CrossRef]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Wyatt, J. S.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Yamada, Y.

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography," Opt. Express 14, 7109-7124 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-16-7109.
[CrossRef] [PubMed]

H. J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

F. Gao, H. J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, "Influences of target size and contrast on near infrared diffuse optical tomography - a comparison between featured-data and full time-resolved schemes," Opt. Quantum Electron. 37, 1287-1304 (2005).
[CrossRef]

F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
[CrossRef] [PubMed]

F. Gao, P. Poulet, and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from full three-dimensional model of time-resolved optical tomography," Appl. Opt. 39, 5898-5910 (2000).
[CrossRef]

Yusof, R.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Zhang, Q.

Zhao, H.

Zhao, H. J.

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography," Opt. Express 14, 7109-7124 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-16-7109.
[CrossRef] [PubMed]

H. J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

F. Gao, H. J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, "Influences of target size and contrast on near infrared diffuse optical tomography - a comparison between featured-data and full time-resolved schemes," Opt. Quantum Electron. 37, 1287-1304 (2005).
[CrossRef]

Appl. Opt.

Curr. Opin. Chem. Biol.

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-650 (2002).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantom: A novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

Inverse Probl.

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-93 (1999).
[CrossRef]

Invest. Radiol.

S. Achilefu, P. R. Dorshow, J. E. Bugaj, and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
[CrossRef] [PubMed]

J. Biomed. Opt.

S. V. Patwardhan and J. P. Culver, "Quantitative diffuse optical tomography for small animals using an unltrafast gated image intensifier," J. Biomed. Opt. 13, 011009 (2008).
[CrossRef] [PubMed]

J. Comput. Phys.

A. D. Klose, V. Ntziachristos, and A. D. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005).
[CrossRef]

J. Opt. Soc. Am. A

Med. Phys.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Nat. Biotech.

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotech. 23, 313-320 (2005)
[CrossRef]

Nat. Med.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Quantum Electron.

F. Gao, H. J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, "Influences of target size and contrast on near infrared diffuse optical tomography - a comparison between featured-data and full time-resolved schemes," Opt. Quantum Electron. 37, 1287-1304 (2005).
[CrossRef]

Phys. Med. Biol.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, "Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media," Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, "Calibration techniques and datatype extraction for time-resolved optical tomography," Rev. Sci. Instrum. 71, 3415-3427 (2000).
[CrossRef]

Topics in Current Chemistry

K. Licha, "Contrast agents for optical imaging," Topics in Current Chemistry 222, 1-29 (2002).
[CrossRef]

Other

O. C. Zienkiewicz and R. L. Taylor, The Finite Element Methods, Vol. 1 5th ed., (Elsevier Pte Ltd., Singapore 2004).

H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, "Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging," J. Biomed. Opt.  12, 062107 (2007).
[CrossRef] [PubMed]

W. Becker, Advanced time-correlated single photon counting techniques (Springer-Verlag, Berlin 2005).
[CrossRef]

T. J. Farrell and M. S. Patterson, "Diffusion modeling of fluorescence in tissue," in Handbook of Biomedical Fluorescence, Mycek MA and Pogue BW eds., Marcel Dekker, New York (2003).
[CrossRef]

W. G. Egan and T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic Press, New York 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

TDFD-FEM forward calculation for a circular domain containing a centered, circular fluorescent heterogeneity: (a) the geometrical setup and FEM mesh; (b) the normalized TPSFs of the fluorescent emission calculated for a fixed fluorescent yield of 0.002 mm-1 and different lifetimes of 0.56, 1, and 2.8 ns of the heterogeneity; (c) the TPSFs of the fluorescent emission calculated with different TDFD time-intervals of 10, 20, 40, 80 ps, for a fixed fluorescent yield of 0.002 mm-1 and lifetime of 2.8 ns.

Fig. 2.
Fig. 2.

The 2-D circular domain embedding two circular fluorescent heterogeneities along Y-axis for the performance evaluation of the proposed scheme.

Fig. 3.
Fig. 3.

The spatial-resolution measure of the yield (left) and lifetime (right) as a function of the target CCS for (a) different sampling-intervals and (b) different bin-widths, respectively.

Fig. 4.
Fig. 4.

The reconstructed η(top) - and τ(bottom) -images using the proposed scheme for a fixed sampling-interval of tr =20 ps and a series of the bin-widths of (a) 20 ps, (b) 180 ps, (c) 500 ps, and (d) 1000 ps.

Fig. 5.
Fig. 5.

The reconstructed η(left) - and τ(right) -images for a fixed bin-width of 180 ps and different sampling-intervals of (a) 20 ps, (b) 100 ps, and (c) 180 ps, at CCS=11mm.

Fig. 6.
Fig. 6.

The reconstructed fluorescent contrast Q χ of the yield (left) and lifetime (right) as a function of the target fluorescent contrast for (a) different sampling-intervals at T=180 ps and (b) different bin-widths at tr =20 ps, respectively.

Fig. 7.
Fig. 7.

The reconstructed S χ of yield (left) and lifetime (right) as a function of the target size-contrast, ranging from 1 to 3, for (a) different sampling-intervals at T=180 ps and (b) different bin-widths at tr =20 ps, respectively.

Fig. 8.
Fig. 8.

Calculating G χ of yield (left) and lifetime (right) as a function of the target grayscale difference with fixed target baseline of η=0.005 mm-1 and τ=1500 ps, and target radius of r 1=r 2=2 mm, for (a) different sampling-intervals at T=180 ps and (b) different bin-widths at tr =20 ps, respectively.

Fig. 9.
Fig. 9.

The reconstructed η(left) - and τ(right) -images for the same scenario as Fig. 8 for a target grayscale difference of 30%, with tr =20, 100, and 180 ps, at T=180 ps.

Fig. 10.
Fig. 10.

The simultaneously reconstructed η(left) - and τ(right) -images at a mean SNR level of 25 dB, for different bin-widths of T=20, 180, and 500 ps, respectively, at tr =20 ps, for a standard target setting with η - and τ -contrasts of 5:1 and 3:1.

Fig. 11.
Fig. 11.

The simultaneously reconstructed η(top) - and τ(bottom) -images at different temporal offset of date-sets: (a) -80 ps ; (b) -40 ps ; (c) 0 ps ; (d) 40 ps, and (e) 80 ps, at a bin-width of T=180 ps and a sampling-interval of tr =20 ps.

Fig. 12.
Fig. 12.

The reconstructed η- and τ -images as a comparison between the emission- and excitation-normalized formulations at a target CCS of 10 mm, a bin-width of 180 ps and a sampling-interval of 20 ps.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

{ [ · κ x ( r ) μ ax ( r ) c t ] ϕ x ( r , r s , t ) = δ ( r r s , t ) [ · κ m ( r ) μ am ( r ) c t ] ϕ m ( r , r s , t ) = η ( r ) τ ( r ) c [ ϕ x ( r , r s , t ) e ( τ ( r ) , t ) ]
Γ v ( ξ d , ζ s , t ) = 0.5 ( 1 R f ) ( 1 + R f ) c ϕ v ( ξ d , ζ s , t )
ϕ v ( r , t ) n = 1 N Φ v ( n , t ) u n ( r ) = Φ v ( t ) T u ( r )
{ [ A v + B + C Δ t f ] Φ v ( i + 1 ) C Φ v ( i ) Δ t f = Q v ( i + 1 ) Φ v ( 1 ) = 0
{ A v ( i , j ) = Ω [ D v ( r ) u i ( r ) · u j ( r ) + μ av ( r ) c u i ( r ) · u j ( r ) ] d r B ( i , j ) = 0.5 ( 1 R f ) ( 1 + R f ) c Ω u i ( r ) · u j ( r ) d r C ( i , j ) = Ω u i ( r ) · u j ( r ) d r
Q v ( i ) = { u ( r s ) δ ( i ) Δ t f v = x C Φ x ( i ) v = m
[ Γ m F m ( p k ) ] = J ( p k ) δ p k , p k + 1 = p k + δ p k
δ Γ m ( ξ d , ζ s , t ) = Ω g m ( ξ d , r , t ) ϕ x ( r , ζ s , t ) [ f η ( τ ( r ) , t ) c δ η ( r ) + f τ ( τ ( r ) , η ( r ) , t ) c δ τ ( r ) ] d r
J χ ( ξ d , ζ s , t i , n ) = c W j [ g m ( ξ d , r , t ) ϕ x ( r , ζ s , t ) f χ ( τ ( r ) , t ) ] t = t i Ω n j V ( Ω n j ) χ [ η , τ ]
Γ ¯ v ( ζ d , ξ s , t ) = 1 K k = 1 K Γ v ( ζ d , ξ s , t + t k ) v [ x , m ]
J ¯ χ ( ξ d , ζ s , t ) = 1 T T 2 T 2 J χ ( ξ d , ζ s , t + t ) dt χ [ η , τ ]
Γ ¯ m x ( ξ d , ζ s , t ) = Γ ¯ m ( ξ d , ζ s , t ) E x ( ξ d , ζ s )
[ Γ ¯ m x ( ξ d , ζ s , t i ) Θ m Θ x F ¯ m ( ξ d , ζ s , t i , η k , τ k ) F x ( E ) ( ξ d , ζ s ) ] = J ¯ η ( ξ d , ζ s , t i , τ k ) F x ( E ) ( ξ d , ζ s ) δ η k + J ¯ τ ( ξ d , ζ s , t i , η k , τ k ) F x ( E ) ( ξ d , ζ s ) δ τ k
Γ ¯ m m ( ξ d , ζ s , t ) = Γ ¯ m ( ξ d , ζ s , t ) E m ( ξ d , ζ s )
[ Γ ¯ m m ( ξ d , ζ s , t i ) F ¯ m ( ξ d , ζ s , t i , η k , τ k ) F m ( E ) ( ξ d , ζ s ) ] =
[ J ¯ η ( ξ d , ζ s , t i , τ k ) F m ( E ) ( ξ d , ζ s , η k ) F ¯ m ( ξ d , ζ s , t i , η k , τ k ) F m ( E ) ( ξ d , ζ s , η k ) J η ( E m ) ( ξ d , ζ s ) F m ( E ) ( ξ d , ζ s , η k ) ] δ η k + J ¯ τ ( ξ d , ζ s , t i , η k , τ k ) F m ( E ) ( ξ d , ζ s , η k ) δ τ k
J η ( E m ) ( ξ d , ζ s , n ) = c K j E m ( ξ d , r ) Φ x ( r , ζ s ) Ω n j V ( Ω n j )
R χ = ( χ ( 0 ) min [ χ ( y ) ] ) ( max [ χ ( y ) ] min [ χ ( y ) ] )
Q χ = max [ χ ( y ) ] min [ χ ( y ) ]
S χ = ( χ 1 ( max ) χ ( min ) y 1 ( l ) y 1 ( u ) ) ( χ 2 ( max ) χ ( min ) y 2 ( l ) y 2 ( u ) )
G χ = ( χ 1 ( max ) χ 2 ( max ) ) ( 0.5 [ χ 1 ( max ) + χ 2 ( max ) ] χ ( min ) )
{ σ ( ξ d , ζ s , t ) = Γ m ( ξ d , ζ s , t ) 10 SNR ( ξ d , ζ s , t ) 20 SNR ( ξ d , ζ s , t ) = 20 log 10 ( N pm Γ m ( ξ d , ζ s , t ) min [ Γ m ( ξ d , ζ s , t ) ] )

Metrics