Abstract

A simple and robust method is presented for the construction of 3-dimensional crystals from silica and polystyrene microspheres. The crystals are suitable for use as templates in the production of three-dimensional photonic band gap (PBG) materials. Manipulation of the microspheres was achieved using a dynamic holographic assembler (DHA) consisting of computer controlled holographic optical tweezers. Attachment of the microspheres was achieved by adjusting their colloidal interactions during assembly. The method is demonstrated by constructing a variety of 3-dimensional crystals using spheres ranging in size from 3 µm down to 800 nm. A major advantage of the technique is that it may be used to build structures that cannot be made using self-assembly. This is illustrated through the construction of crystals in which line defects have been deliberately included, and by building simple cubic structures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  2. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
    [Crossref] [PubMed]
  3. M. Woldeyohannes and S. John, “Coherent control of spontaneous emission near a photonic band edge: A qubit for quantum computation,” Phys. Rev. A 60, 5046–5068 (1999).
    [Crossref]
  4. M. F. Yanik, S. H. Fan, M. Soljacic, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506–2508 (2003).
    [Crossref] [PubMed]
  5. L. H. Frandsen, A. Harpoth, P. I. Borel, M. Kristensen, J. S. Jensen, and O. Sigmund, “Broadband photonic crystal waveguide 60 degrees bend obtained utilizing topology optimization,” Opt. Express 12, 5916–5921 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5916.
    [Crossref] [PubMed]
  6. P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: State of the art,” Adv. Mater. 18, 2665–2678 (2006).
    [Crossref]
  7. S. H. Wu, J. Serbin, and M. Gu, “Two-photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181, 1–11 (2006).
    [Crossref]
  8. N. Tetreault, H. Miguez, and G. A. Ozin, “Silicon inverse opal - A platform for photonic bandgap research,” Adv. Mater. 16, 1471–1476 (2004).
    [Crossref]
  9. S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nature Photonics 2, 52–56 (2008).
    [Crossref]
  10. F. Garcia-Santamaria, H. T Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F Meseguer, and C. Lopez, “Nanorobotic manipulation of microspheres for on-chip diamond architectures,” Adv. Mater. 14, 1144–1147 (2002).
    [Crossref]
  11. D. Erenso, A. Shulman, J. Curtis, and S. Elrod, “Formation of synthetic structures with micron size silica beads using optical tweezer,” J. Mod. Opt. 54, 1529–1536 (2007).
    [Crossref]
  12. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [Crossref]
  13. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, J. Cooper, and Z. J. Laczik, “3D manipulation of particles into crystal structures using holographic optical tweezers,” Opt. Express 12, 220–226 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-220.
    [Crossref] [PubMed]
  14. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12, 5475–5480 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475.
    [Crossref] [PubMed]
  15. P. Jordan, H. Clare, J. Leach, J. Cooper, and M. Padgett, “Permanent 3D microstructures in a polymeric host created using holographic optical tweezers,” J. Mod. Opt. 51, 627–632 (2004).
  16. Y. Roichman and D. G. Grier, “Holographic assembly of quasicrystalline photonic heterostructures,” Opt. Express 13, 5434–5439 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-14-5434.
    [Crossref] [PubMed]
  17. R. Agarwal, K. Ladavac, Y. Roichman, G. H. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13, 8906–8912 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-8906.
    [Crossref] [PubMed]
  18. G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, “An optical trapped microhand for manipulating micron-sized objects,” Opt. Express 14, 12,497–12,502 (2006). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-25-12497.
    [Crossref]
  19. G. Gibson, D. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. J. Robert, M. J. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt. A: Pure Appl. Opt. 10, 044,009 (2008).
    [Crossref]
  20. D. J. Shaw, Introduction to Colloid and Surface Chemistry, 4th ed. (Butterworth-Heinemann, Oxford, 1992).
  21. P. Jenkins and M. Snowden, “Depletion flocculation in colloidal dispersions,” Adv. Colloid Int. Sci. 68, 57–96 (1996).
  22. T. Cosgrove, T. M. Obey, and K. Ryan, “Depletion layer measurements using nuclear magnetic resonance for silica dispersions with nonadsorbing poly(styrene-sulfonate,” Colloids Surf. 65, 1–7 (1992).
    [Crossref]
  23. J. W. Tavacoli, P. J. Dowding, and A. F. Routh, “The polymer and salt induced aggregation of silica particles,” Colloid Surf. A-Physicochem. Eng. Asp. 293, 167–174 (2007).
    [Crossref]
  24. R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, New York, 1979).
  25. S.-Y. Lin, J. G. Fleming, L. R, M. M. Sigalas, R. Biswas, and K. M. Ho, “Complete three-dimensional photonic bandgap in a simple cubic structure,” J. Opt. Soc. Am. B 18, 32–35 (2001).
    [Crossref]
  26. K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E. 58, 3896–3908 (1998).
    [Crossref]

2008 (2)

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nature Photonics 2, 52–56 (2008).
[Crossref]

G. Gibson, D. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. J. Robert, M. J. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt. A: Pure Appl. Opt. 10, 044,009 (2008).
[Crossref]

2007 (2)

J. W. Tavacoli, P. J. Dowding, and A. F. Routh, “The polymer and salt induced aggregation of silica particles,” Colloid Surf. A-Physicochem. Eng. Asp. 293, 167–174 (2007).
[Crossref]

D. Erenso, A. Shulman, J. Curtis, and S. Elrod, “Formation of synthetic structures with micron size silica beads using optical tweezer,” J. Mod. Opt. 54, 1529–1536 (2007).
[Crossref]

2006 (3)

P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: State of the art,” Adv. Mater. 18, 2665–2678 (2006).
[Crossref]

S. H. Wu, J. Serbin, and M. Gu, “Two-photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181, 1–11 (2006).
[Crossref]

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, “An optical trapped microhand for manipulating micron-sized objects,” Opt. Express 14, 12,497–12,502 (2006). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-25-12497.
[Crossref]

2005 (2)

2004 (6)

2003 (1)

2002 (2)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

F. Garcia-Santamaria, H. T Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F Meseguer, and C. Lopez, “Nanorobotic manipulation of microspheres for on-chip diamond architectures,” Adv. Mater. 14, 1144–1147 (2002).
[Crossref]

2001 (1)

1999 (1)

M. Woldeyohannes and S. John, “Coherent control of spontaneous emission near a photonic band edge: A qubit for quantum computation,” Phys. Rev. A 60, 5046–5068 (1999).
[Crossref]

1998 (1)

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E. 58, 3896–3908 (1998).
[Crossref]

1996 (1)

P. Jenkins and M. Snowden, “Depletion flocculation in colloidal dispersions,” Adv. Colloid Int. Sci. 68, 57–96 (1996).

1992 (1)

T. Cosgrove, T. M. Obey, and K. Ryan, “Depletion layer measurements using nuclear magnetic resonance for silica dispersions with nonadsorbing poly(styrene-sulfonate,” Colloids Surf. 65, 1–7 (1992).
[Crossref]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Agarwal, R.

Baek, J. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref] [PubMed]

Belmonte, M.

F. Garcia-Santamaria, H. T Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F Meseguer, and C. Lopez, “Nanorobotic manipulation of microspheres for on-chip diamond architectures,” Adv. Mater. 14, 1144–1147 (2002).
[Crossref]

Biswas, R.

Borel, P. I.

Braun, P. V.

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nature Photonics 2, 52–56 (2008).
[Crossref]

P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: State of the art,” Adv. Mater. 18, 2665–2678 (2006).
[Crossref]

Busch, K.

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E. 58, 3896–3908 (1998).
[Crossref]

Carberry, D.

G. Gibson, D. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. J. Robert, M. J. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt. A: Pure Appl. Opt. 10, 044,009 (2008).
[Crossref]

Clare, H.

P. Jordan, H. Clare, J. Leach, J. Cooper, and M. Padgett, “Permanent 3D microstructures in a polymeric host created using holographic optical tweezers,” J. Mod. Opt. 51, 627–632 (2004).

Cooper, J.

Cosgrove, T.

T. Cosgrove, T. M. Obey, and K. Ryan, “Depletion layer measurements using nuclear magnetic resonance for silica dispersions with nonadsorbing poly(styrene-sulfonate,” Colloids Surf. 65, 1–7 (1992).
[Crossref]

Courtial, J.

Curtis, J.

D. Erenso, A. Shulman, J. Curtis, and S. Elrod, “Formation of synthetic structures with micron size silica beads using optical tweezer,” J. Mod. Opt. 54, 1529–1536 (2007).
[Crossref]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Dowding, P. J.

J. W. Tavacoli, P. J. Dowding, and A. F. Routh, “The polymer and salt induced aggregation of silica particles,” Colloid Surf. A-Physicochem. Eng. Asp. 293, 167–174 (2007).
[Crossref]

Elrod, S.

D. Erenso, A. Shulman, J. Curtis, and S. Elrod, “Formation of synthetic structures with micron size silica beads using optical tweezer,” J. Mod. Opt. 54, 1529–1536 (2007).
[Crossref]

Erenso, D.

D. Erenso, A. Shulman, J. Curtis, and S. Elrod, “Formation of synthetic structures with micron size silica beads using optical tweezer,” J. Mod. Opt. 54, 1529–1536 (2007).
[Crossref]

Fan, S. H.

Fleming, J. G.

Frandsen, L. H.

Garcia-Santamaria, F.

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nature Photonics 2, 52–56 (2008).
[Crossref]

P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: State of the art,” Adv. Mater. 18, 2665–2678 (2006).
[Crossref]

F. Garcia-Santamaria, H. T Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F Meseguer, and C. Lopez, “Nanorobotic manipulation of microspheres for on-chip diamond architectures,” Adv. Mater. 14, 1144–1147 (2002).
[Crossref]

Gibson, G.

G. Gibson, D. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. J. Robert, M. J. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt. A: Pure Appl. Opt. 10, 044,009 (2008).
[Crossref]

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, “An optical trapped microhand for manipulating micron-sized objects,” Opt. Express 14, 12,497–12,502 (2006). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-25-12497.
[Crossref]

Grier, D. G.

Gu, M.

S. H. Wu, J. Serbin, and M. Gu, “Two-photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181, 1–11 (2006).
[Crossref]

Harpoth, A.

Ho, K. M.

Ibisate, M.

F. Garcia-Santamaria, H. T Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F Meseguer, and C. Lopez, “Nanorobotic manipulation of microspheres for on-chip diamond architectures,” Adv. Mater. 14, 1144–1147 (2002).
[Crossref]

Iler, R. K.

R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, New York, 1979).

Jackson, J. C.

G. Gibson, D. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. J. Robert, M. J. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt. A: Pure Appl. Opt. 10, 044,009 (2008).
[Crossref]

Jenkins, P.

P. Jenkins and M. Snowden, “Depletion flocculation in colloidal dispersions,” Adv. Colloid Int. Sci. 68, 57–96 (1996).

Jensen, J. S.

Joannopoulos, J. D.

John, S.

M. Woldeyohannes and S. John, “Coherent control of spontaneous emission near a photonic band edge: A qubit for quantum computation,” Phys. Rev. A 60, 5046–5068 (1999).
[Crossref]

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E. 58, 3896–3908 (1998).
[Crossref]

Jordan, P.

Ju, Y. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref] [PubMed]

Kim, S. B.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref] [PubMed]

Kim, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref] [PubMed]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Kristensen, M.

Kwon, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref] [PubMed]

L. R,

Laczik, Z. J.

Ladavac, K.

Leach, J.

G. Gibson, D. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. J. Robert, M. J. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt. A: Pure Appl. Opt. 10, 044,009 (2008).
[Crossref]

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, “An optical trapped microhand for manipulating micron-sized objects,” Opt. Express 14, 12,497–12,502 (2006). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-25-12497.
[Crossref]

P. Jordan, H. Clare, J. Leach, J. Cooper, and M. Padgett, “Permanent 3D microstructures in a polymeric host created using holographic optical tweezers,” J. Mod. Opt. 51, 627–632 (2004).

J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, J. Cooper, and Z. J. Laczik, “3D manipulation of particles into crystal structures using holographic optical tweezers,” Opt. Express 12, 220–226 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-220.
[Crossref] [PubMed]

Lee, Y. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref] [PubMed]

Lieber, C. M.

Lin, S.-Y.

Lopez, C.

F. Garcia-Santamaria, H. T Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F Meseguer, and C. Lopez, “Nanorobotic manipulation of microspheres for on-chip diamond architectures,” Adv. Mater. 14, 1144–1147 (2002).
[Crossref]

Meseguer, F

F. Garcia-Santamaria, H. T Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F Meseguer, and C. Lopez, “Nanorobotic manipulation of microspheres for on-chip diamond architectures,” Adv. Mater. 14, 1144–1147 (2002).
[Crossref]

Miguez, H.

N. Tetreault, H. Miguez, and G. A. Ozin, “Silicon inverse opal - A platform for photonic bandgap research,” Adv. Mater. 16, 1471–1476 (2004).
[Crossref]

Miles, M.

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, “An optical trapped microhand for manipulating micron-sized objects,” Opt. Express 14, 12,497–12,502 (2006). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-25-12497.
[Crossref]

Miles, M. J.

G. Gibson, D. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. J. Robert, M. J. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt. A: Pure Appl. Opt. 10, 044,009 (2008).
[Crossref]

Miyazaki, H. T

F. Garcia-Santamaria, H. T Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F Meseguer, and C. Lopez, “Nanorobotic manipulation of microspheres for on-chip diamond architectures,” Adv. Mater. 14, 1144–1147 (2002).
[Crossref]

Obey, T. M.

T. Cosgrove, T. M. Obey, and K. Ryan, “Depletion layer measurements using nuclear magnetic resonance for silica dispersions with nonadsorbing poly(styrene-sulfonate,” Colloids Surf. 65, 1–7 (1992).
[Crossref]

Ozin, G. A.

N. Tetreault, H. Miguez, and G. A. Ozin, “Silicon inverse opal - A platform for photonic bandgap research,” Adv. Mater. 16, 1471–1476 (2004).
[Crossref]

Padgett, M.

G. Gibson, D. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. J. Robert, M. J. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt. A: Pure Appl. Opt. 10, 044,009 (2008).
[Crossref]

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, “An optical trapped microhand for manipulating micron-sized objects,” Opt. Express 14, 12,497–12,502 (2006). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-25-12497.
[Crossref]

P. Jordan, H. Clare, J. Leach, J. Cooper, and M. Padgett, “Permanent 3D microstructures in a polymeric host created using holographic optical tweezers,” J. Mod. Opt. 51, 627–632 (2004).

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12, 5475–5480 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475.
[Crossref] [PubMed]

Padgett, M. J.

Park, H. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref] [PubMed]

Rinne, S. A.

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nature Photonics 2, 52–56 (2008).
[Crossref]

P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: State of the art,” Adv. Mater. 18, 2665–2678 (2006).
[Crossref]

Robert, D.

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, “An optical trapped microhand for manipulating micron-sized objects,” Opt. Express 14, 12,497–12,502 (2006). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-25-12497.
[Crossref]

Robert, D. J.

G. Gibson, D. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. J. Robert, M. J. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt. A: Pure Appl. Opt. 10, 044,009 (2008).
[Crossref]

Roichman, Y.

Routh, A. F.

J. W. Tavacoli, P. J. Dowding, and A. F. Routh, “The polymer and salt induced aggregation of silica particles,” Colloid Surf. A-Physicochem. Eng. Asp. 293, 167–174 (2007).
[Crossref]

Ryan, K.

T. Cosgrove, T. M. Obey, and K. Ryan, “Depletion layer measurements using nuclear magnetic resonance for silica dispersions with nonadsorbing poly(styrene-sulfonate,” Colloids Surf. 65, 1–7 (1992).
[Crossref]

Serbin, J.

S. H. Wu, J. Serbin, and M. Gu, “Two-photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181, 1–11 (2006).
[Crossref]

Shaw, D. J.

D. J. Shaw, Introduction to Colloid and Surface Chemistry, 4th ed. (Butterworth-Heinemann, Oxford, 1992).

Shinya, N.

F. Garcia-Santamaria, H. T Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F Meseguer, and C. Lopez, “Nanorobotic manipulation of microspheres for on-chip diamond architectures,” Adv. Mater. 14, 1144–1147 (2002).
[Crossref]

Shulman, A.

D. Erenso, A. Shulman, J. Curtis, and S. Elrod, “Formation of synthetic structures with micron size silica beads using optical tweezer,” J. Mod. Opt. 54, 1529–1536 (2007).
[Crossref]

Sigalas, M. M.

Sigmund, O.

Sinclair, G.

Snowden, M.

P. Jenkins and M. Snowden, “Depletion flocculation in colloidal dispersions,” Adv. Colloid Int. Sci. 68, 57–96 (1996).

Soljacic, M.

Tavacoli, J. W.

J. W. Tavacoli, P. J. Dowding, and A. F. Routh, “The polymer and salt induced aggregation of silica particles,” Colloid Surf. A-Physicochem. Eng. Asp. 293, 167–174 (2007).
[Crossref]

Tetreault, N.

N. Tetreault, H. Miguez, and G. A. Ozin, “Silicon inverse opal - A platform for photonic bandgap research,” Adv. Mater. 16, 1471–1476 (2004).
[Crossref]

Urquia, A.

F. Garcia-Santamaria, H. T Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F Meseguer, and C. Lopez, “Nanorobotic manipulation of microspheres for on-chip diamond architectures,” Adv. Mater. 14, 1144–1147 (2002).
[Crossref]

Whyte, G.

G. Gibson, D. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. J. Robert, M. J. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt. A: Pure Appl. Opt. 10, 044,009 (2008).
[Crossref]

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, “An optical trapped microhand for manipulating micron-sized objects,” Opt. Express 14, 12,497–12,502 (2006). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-25-12497.
[Crossref]

Woldeyohannes, M.

M. Woldeyohannes and S. John, “Coherent control of spontaneous emission near a photonic band edge: A qubit for quantum computation,” Phys. Rev. A 60, 5046–5068 (1999).
[Crossref]

Wu, S. H.

S. H. Wu, J. Serbin, and M. Gu, “Two-photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181, 1–11 (2006).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yang, J. K.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref] [PubMed]

Yanik, M. F.

Yu, G. H.

Adv. Colloid Int. Sci. (1)

P. Jenkins and M. Snowden, “Depletion flocculation in colloidal dispersions,” Adv. Colloid Int. Sci. 68, 57–96 (1996).

Adv. Mater. (3)

P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: State of the art,” Adv. Mater. 18, 2665–2678 (2006).
[Crossref]

N. Tetreault, H. Miguez, and G. A. Ozin, “Silicon inverse opal - A platform for photonic bandgap research,” Adv. Mater. 16, 1471–1476 (2004).
[Crossref]

F. Garcia-Santamaria, H. T Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F Meseguer, and C. Lopez, “Nanorobotic manipulation of microspheres for on-chip diamond architectures,” Adv. Mater. 14, 1144–1147 (2002).
[Crossref]

Colloid Surf. A-Physicochem. Eng. Asp. (1)

J. W. Tavacoli, P. J. Dowding, and A. F. Routh, “The polymer and salt induced aggregation of silica particles,” Colloid Surf. A-Physicochem. Eng. Asp. 293, 167–174 (2007).
[Crossref]

Colloids Surf. (1)

T. Cosgrove, T. M. Obey, and K. Ryan, “Depletion layer measurements using nuclear magnetic resonance for silica dispersions with nonadsorbing poly(styrene-sulfonate,” Colloids Surf. 65, 1–7 (1992).
[Crossref]

J. Mod. Opt. (2)

D. Erenso, A. Shulman, J. Curtis, and S. Elrod, “Formation of synthetic structures with micron size silica beads using optical tweezer,” J. Mod. Opt. 54, 1529–1536 (2007).
[Crossref]

P. Jordan, H. Clare, J. Leach, J. Cooper, and M. Padgett, “Permanent 3D microstructures in a polymeric host created using holographic optical tweezers,” J. Mod. Opt. 51, 627–632 (2004).

J. Opt. A: Pure Appl. Opt. (1)

G. Gibson, D. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. J. Robert, M. J. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt. A: Pure Appl. Opt. 10, 044,009 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. A (1)

S. H. Wu, J. Serbin, and M. Gu, “Two-photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181, 1–11 (2006).
[Crossref]

Nature Photonics (1)

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nature Photonics 2, 52–56 (2008).
[Crossref]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Opt. Express (6)

J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, J. Cooper, and Z. J. Laczik, “3D manipulation of particles into crystal structures using holographic optical tweezers,” Opt. Express 12, 220–226 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-220.
[Crossref] [PubMed]

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12, 5475–5480 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475.
[Crossref] [PubMed]

Y. Roichman and D. G. Grier, “Holographic assembly of quasicrystalline photonic heterostructures,” Opt. Express 13, 5434–5439 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-14-5434.
[Crossref] [PubMed]

R. Agarwal, K. Ladavac, Y. Roichman, G. H. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13, 8906–8912 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-8906.
[Crossref] [PubMed]

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, “An optical trapped microhand for manipulating micron-sized objects,” Opt. Express 14, 12,497–12,502 (2006). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-25-12497.
[Crossref]

L. H. Frandsen, A. Harpoth, P. I. Borel, M. Kristensen, J. S. Jensen, and O. Sigmund, “Broadband photonic crystal waveguide 60 degrees bend obtained utilizing topology optimization,” Opt. Express 12, 5916–5921 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5916.
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (1)

M. Woldeyohannes and S. John, “Coherent control of spontaneous emission near a photonic band edge: A qubit for quantum computation,” Phys. Rev. A 60, 5046–5068 (1999).
[Crossref]

Phys. Rev. E. (1)

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E. 58, 3896–3908 (1998).
[Crossref]

Phys. Rev. Lett. (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Science (1)

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref] [PubMed]

Other (2)

R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, New York, 1979).

D. J. Shaw, Introduction to Colloid and Surface Chemistry, 4th ed. (Butterworth-Heinemann, Oxford, 1992).

Supplementary Material (2)

» Media 1: MOV (2274 KB)     
» Media 2: MOV (2638 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The sample cell used for the production of crystals made from silica and polystyrene spheres. The production area is shown by the red square. The wedges, shown in blue, are used to limit the diffusion and circulation of the PSS solution and microspheres.

Fig. 2.
Fig. 2.

(a) The sample geometry used to build crystals. The trapping beam is incident from below. The sample is illuminated from above for conventional imaging or from below for fluorescence imaging. The camera is located below the sample. (b) The letters “DHA” constructed from 2 µm diameter silica spheres.

Fig. 3.
Fig. 3.

(a) The first layer, (111) plane, of an FCC crystal templatemade from 3 µm diameter, fluorescent silica spheres. A single, out of focus, particle is visible in the second layer. (b) The first and second layers of the same crystal, showing a line defect along one of the in-plane [110] directions. (c) The final structure showing all three layers but focussing on the third. (a) and (b) are fluorescence images while (c) is a conventional image. A video showing a through-focus sequence is available online (Media 1).

Fig. 4.
Fig. 4.

(a) The first and second layers of an FCC crystal template made from 3 µm diameter polystyrene spheres. A line-defect containing a 60° bend is present, highlighted in red. (b) The same structure slightly defocussed to show the line-defect more clearly. (c) The final crystal, focussing on the third layer.

Fig. 5.
Fig. 5.

Images of a simple cubic structure constructed from 3 µm diameter fluorescent silica spheres: (a) the first layer and (b) the partially constructed second layer. A video of the completed 3×3×3 crystal is available online (Media 2).

Fig. 6.
Fig. 6.

An FCC crystal constructed from 2 µm diameter non-fluorescent silica micro-spheres. In this case, the crystal contains a channel running in an out-of-plane [110] direction. The top images are taken from the microscope, focussing on (a) the first layer, (b) the second layer and (c) the third layer. The illustrations beneath are to aid the reader.

Fig. 7.
Fig. 7.

A 3×3×2 simple cubic structure assembled out of 800 nm diameter silica spheres. (a) The first layer of the crystal. (b) The crystal during construction of the second layer; the right hand column is incomplete.

Tables (1)

Tables Icon

Table 1. The minimum concentration of PSS required for reproducible adhesion of each size of sphere. The concentrations appear to be independent of the type of sphere used.

Metrics