Abstract

In this paper, we introduce a novel approach for optical sensing based on the excitation of critically localized modes in two-dimensional deterministic aperiodic structures generated by a Rudin-Shapiro (RS) sequence. Based on a rigorous computational analysis, we demonstrate that RS photonic structures provide a large number of resonant modes better suited for sensing applications compared to traditional band-edge and defect-localized modes in periodic photonic structures. Finally, we show that enhanced sensitivity to refractive index variations as low as Δn=0.002 in RS structures results from the extended nature of critical modes and can enable the fabrication of novel label-free optical biosensors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, "Porous silicon microcavities for biosensing applications," Phys. Status Solidi A,  182, 541-546 (2000).
    [CrossRef]
  2. B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
    [CrossRef]
  3. S. Xiao and N. A. Mortensen, "Highly dispersive photonic band-gap-edge optofluidic biosensors," J. Eur. Opt. Soc. 1, 06026 (2006).
    [CrossRef]
  4. N. A. Mortensen, S. Xiao, and J. Pedersen, "Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications," Microfluidics and Nanofluidics 4, 117-127 (2008).
    [CrossRef]
  5. M. R. Lee and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15, 4530-4535 (2007).
    [CrossRef] [PubMed]
  6. M. R. Lee and P. M. Fauchet, "Nanoscale microcavity sensor for single particle detection," Opt. Lett. 32, 3284-3286 (2007).
    [CrossRef] [PubMed]
  7. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004).
    [CrossRef] [PubMed]
  8. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications, and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005).
    [CrossRef]
  9. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett. 27, 512-514 (2002).
    [CrossRef]
  10. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
    [CrossRef] [PubMed]
  11. W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004).
    [CrossRef]
  12. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Opt. Express 15, 7610-7615 (2007).
    [CrossRef] [PubMed]
  13. I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE J. Sensors 7,28-35 (2007).
    [CrossRef]
  14. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
    [CrossRef] [PubMed]
  15. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15, 9139-9146 (2007).
    [CrossRef] [PubMed]
  16. S. V. Boriskina, "Spectrally-engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis," J. Opt. Soc. Am. B 23, 1565-1573 (2006).
    [CrossRef]
  17. A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
    [CrossRef]
  18. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol selfassembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
    [CrossRef]
  19. C.-S. Cheng, Y.-Q. Chen, and C.-J. Lu, "Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer," Talanta 73, 358-365 (2007).
    [CrossRef] [PubMed]
  20. I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008).
    [CrossRef] [PubMed]
  21. S.G. Williams, ed., Symbolic dynamics and its applications, (American Mathematical Society, 2004).
  22. M. R. Schroeder, Number Theory in Science and Communication (Springer-Verlag, 1985).
  23. P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants, (Springer-Verlag, 1990).
    [CrossRef]
  24. J. M. Luck, "Cantor spectra and scaling of gap widths in deterministic aperiodic systems," Phys. Rev. B 39, 5834-5849 (1989).
    [CrossRef]
  25. M. Queffélec, "Substitution dynamical systems-spectral analysis," in Lecture Notes in Mathematics, 1294 (Springer, 1987).
  26. M. Dulea, M. Johansson, and R. Riklund, "Localization of electrons and electromagnetic waves in a deterministic aperiodic system," Phys. Rev. B,  45, 105-114 (1992).
    [CrossRef]
  27. E. Macia, "The role of aperiodic order in science and technology," Rep. Prog. Phys. 69, 397-441 (2006).
    [CrossRef]
  28. L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
    [CrossRef]
  29. L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, "Photon bandgap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals," Appl. Phys. Lett. 84, 5186-5188 (2004).
    [CrossRef]
  30. C. Rockstuhl, U. Peschel, and F. Lederer, "Correlation between single-cylinder properties and bandgap formation in photonic structures," Opt. Lett. 31, 1741-1743 (2006).
    [CrossRef] [PubMed]
  31. L. Moretti and V. Mocella, "Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence," Opt. Express,  15, 15314-15323 (2007).
    [CrossRef] [PubMed]
  32. A. Della Villa, S. Enoch, G. Tayeb, F. Capolino, V. Pierro, and V. Galdi, "Localized modes in photonic quasicrystals with Penrose-type lattice," Opt. Express 14, 10021-10027 (2006).
    [CrossRef] [PubMed]
  33. K. Mnaymneh and R. C. Gauthier, "Mode localization and band-gap formation in defect-free photonic quasicrystals," Opt. Express,  15, 5089-5099 (2007).
    [CrossRef] [PubMed]
  34. Y. Lai, Z.-Q. Zhang, C.-H. Chan, and L. Tsang, "Anomalous properties of the band-edge states in large two-dimensional photonic quasicrystals," Phys. Rev. B 76, 165132 (2007).
    [CrossRef]
  35. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004).
    [CrossRef] [PubMed]
  36. S. V. Boriskina, A. Gopinath, and L. Dal Negro, "Optical gaps, mode patterns and dipole radiation in two-dimensional aperiodic photonic structures," Physica E (in the press); preprint at http://arxiv.org/abs/0807.4131
  37. L. Dal Negro, N.-N. Feng and A. Gopinath, "Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays," J. Opt. A: Pure Appl. Opt. 10064013 (2008).
    [CrossRef]
  38. L. Kroon, E. Lennholm, and R. Riklund, "Localization-delocalization in aperiodic systems," Phys. Rev. B 66, 094204 (2002).
    [CrossRef]
  39. L. Kroon and R. Riklund, "Absence of localization in a model with correlation measure as a random lattice," Phys. Rev. B,  69, 094204 (2004).
    [CrossRef]
  40. G. Tayeb and D. Maystre, "Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities," J. Opt. Soc. Am. A 14, 3323-3332 (1997).
    [CrossRef]
  41. A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, "Two-dimensional Green??s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length," Phys. Rev. E,  63, 046612 (2001).
    [CrossRef]
  42. S. V. Pishko, P. Sewell, T. M. Benson, and S. V. Boriskina, "Efficient analysis and design of low-loss WG-mode coupled resonator optical waveguide bends," J. Lightwave Technol. 25, 2487-2494 (2007).
    [CrossRef]
  43. Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, "Localized modes in defect-free dodecagonal quasiperiodic photonic crystals," Phys. Rev. B 68, 165106 (2003).
    [CrossRef]
  44. J. D. Joannopolous, S. Johnson, R. D. Meade, and J. N. Winn, Photonic crystals: Molding the flow of light (Princeton University, Princeton, 2008).
  45. J. Vu?kovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001).
    [CrossRef]
  46. S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities," Appl. Opt. 40, 570-582 (2001).
    [CrossRef]
  47. A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, "Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser," Phys. Rev. Lett. 96, 083905 (2006).
    [CrossRef] [PubMed]
  48. S. V. Zhukovsky, D. N. Chigrin, and J. Kroha, "Low-loss resonant modes in deterministically aperiodic nanopillar waveguides," J. Opt. Soc. Am. B 23, 2265-2272 (2006).
    [CrossRef]
  49. A. Sharkawy, D. Pustai, S. Shi, D. Prather, S. McBride, and P. Zanzucchi, "Modulating dispersion properties of low index photonic crystal structures using microfluidics," Opt. Express 13, 2814-2827 (2005).
    [CrossRef] [PubMed]
  50. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006).
    [CrossRef] [PubMed]
  51. R. W. Boyd and J. E. Heebner, "Sensitive disk resonator photonic biosensor," Appl. Opt. 40, 5742-5747 (2001).
    [CrossRef]
  52. J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D: Appl. Phys. 36, R240-R249 (2003).
    [CrossRef]

2008 (3)

N. A. Mortensen, S. Xiao, and J. Pedersen, "Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications," Microfluidics and Nanofluidics 4, 117-127 (2008).
[CrossRef]

I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008).
[CrossRef] [PubMed]

L. Dal Negro, N.-N. Feng and A. Gopinath, "Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays," J. Opt. A: Pure Appl. Opt. 10064013 (2008).
[CrossRef]

2007 (11)

K. Mnaymneh and R. C. Gauthier, "Mode localization and band-gap formation in defect-free photonic quasicrystals," Opt. Express,  15, 5089-5099 (2007).
[CrossRef] [PubMed]

Y. Lai, Z.-Q. Zhang, C.-H. Chan, and L. Tsang, "Anomalous properties of the band-edge states in large two-dimensional photonic quasicrystals," Phys. Rev. B 76, 165132 (2007).
[CrossRef]

L. Moretti and V. Mocella, "Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence," Opt. Express,  15, 15314-15323 (2007).
[CrossRef] [PubMed]

M. R. Lee and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15, 4530-4535 (2007).
[CrossRef] [PubMed]

M. R. Lee and P. M. Fauchet, "Nanoscale microcavity sensor for single particle detection," Opt. Lett. 32, 3284-3286 (2007).
[CrossRef] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Opt. Express 15, 7610-7615 (2007).
[CrossRef] [PubMed]

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE J. Sensors 7,28-35 (2007).
[CrossRef]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15, 9139-9146 (2007).
[CrossRef] [PubMed]

C.-S. Cheng, Y.-Q. Chen, and C.-J. Lu, "Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer," Talanta 73, 358-365 (2007).
[CrossRef] [PubMed]

S. V. Pishko, P. Sewell, T. M. Benson, and S. V. Boriskina, "Efficient analysis and design of low-loss WG-mode coupled resonator optical waveguide bends," J. Lightwave Technol. 25, 2487-2494 (2007).
[CrossRef]

2006 (8)

2005 (2)

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications, and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005).
[CrossRef]

A. Sharkawy, D. Pustai, S. Shi, D. Prather, S. McBride, and P. Zanzucchi, "Modulating dispersion properties of low index photonic crystal structures using microfluidics," Opt. Express 13, 2814-2827 (2005).
[CrossRef] [PubMed]

2004 (6)

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004).
[CrossRef] [PubMed]

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004).
[CrossRef]

L. Kroon and R. Riklund, "Absence of localization in a model with correlation measure as a random lattice," Phys. Rev. B,  69, 094204 (2004).
[CrossRef]

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef] [PubMed]

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, "Photon bandgap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals," Appl. Phys. Lett. 84, 5186-5188 (2004).
[CrossRef]

2003 (5)

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, "Localized modes in defect-free dodecagonal quasiperiodic photonic crystals," Phys. Rev. B 68, 165106 (2003).
[CrossRef]

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D: Appl. Phys. 36, R240-R249 (2003).
[CrossRef]

2002 (2)

E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett. 27, 512-514 (2002).
[CrossRef]

L. Kroon, E. Lennholm, and R. Riklund, "Localization-delocalization in aperiodic systems," Phys. Rev. B 66, 094204 (2002).
[CrossRef]

2001 (5)

A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, "Two-dimensional Green??s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length," Phys. Rev. E,  63, 046612 (2001).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol selfassembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

J. Vu?kovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001).
[CrossRef]

S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities," Appl. Opt. 40, 570-582 (2001).
[CrossRef]

R. W. Boyd and J. E. Heebner, "Sensitive disk resonator photonic biosensor," Appl. Opt. 40, 5742-5747 (2001).
[CrossRef]

2000 (1)

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, "Porous silicon microcavities for biosensing applications," Phys. Status Solidi A,  182, 541-546 (2000).
[CrossRef]

1997 (1)

1992 (1)

M. Dulea, M. Johansson, and R. Riklund, "Localization of electrons and electromagnetic waves in a deterministic aperiodic system," Phys. Rev. B,  45, 105-114 (1992).
[CrossRef]

1989 (1)

J. M. Luck, "Cantor spectra and scaling of gap widths in deterministic aperiodic systems," Phys. Rev. B 39, 5834-5849 (1989).
[CrossRef]

Almeida, V.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Arnold, S.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

Asatryan, A. A.

A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, "Two-dimensional Green??s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length," Phys. Rev. E,  63, 046612 (2001).
[CrossRef]

Baets, R.

Bailey, R. C.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004).
[CrossRef]

Bartolozzi, I.

Benson, T. M.

Bienstman, P.

Blair, S.

Boriskina, S. V.

Botten, L. C.

A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, "Two-dimensional Green??s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length," Phys. Rev. E,  63, 046612 (2001).
[CrossRef]

Boyd, R. W.

Braun, D.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

Buchholz, D. B.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004).
[CrossRef]

Busch, K.

A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, "Two-dimensional Green??s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length," Phys. Rev. E,  63, 046612 (2001).
[CrossRef]

Cao, H.

A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, "Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser," Phys. Rev. Lett. 96, 083905 (2006).
[CrossRef] [PubMed]

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004).
[CrossRef]

Capolino, F.

Chan, C.-H.

Y. Lai, Z.-Q. Zhang, C.-H. Chan, and L. Tsang, "Anomalous properties of the band-edge states in large two-dimensional photonic quasicrystals," Phys. Rev. B 76, 165132 (2007).
[CrossRef]

Chan, S.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, "Porous silicon microcavities for biosensing applications," Phys. Status Solidi A,  182, 541-546 (2000).
[CrossRef]

Chang, R. P. H.

A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, "Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser," Phys. Rev. Lett. 96, 083905 (2006).
[CrossRef] [PubMed]

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004).
[CrossRef]

Chen, Y.

Chen, Y.-Q.

C.-S. Cheng, Y.-Q. Chen, and C.-J. Lu, "Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer," Talanta 73, 358-365 (2007).
[CrossRef] [PubMed]

Cheng, B.

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, "Localized modes in defect-free dodecagonal quasiperiodic photonic crystals," Phys. Rev. B 68, 165106 (2003).
[CrossRef]

Cheng, C.-S.

C.-S. Cheng, Y.-Q. Chen, and C.-J. Lu, "Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer," Talanta 73, 358-365 (2007).
[CrossRef] [PubMed]

Chigrin, D. N.

Chow, E.

Colocci, M.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

Dal Negro, L.

L. Dal Negro, N.-N. Feng and A. Gopinath, "Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays," J. Opt. A: Pure Appl. Opt. 10064013 (2008).
[CrossRef]

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, "Photon bandgap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals," Appl. Phys. Lett. 84, 5186-5188 (2004).
[CrossRef]

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

Dale, P. S.

De Vos, K.

Della Villa, A.

DeRose, G. A.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications, and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005).
[CrossRef]

Driessen, A.

Duan, X.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, "Photon bandgap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals," Appl. Phys. Lett. 84, 5186-5188 (2004).
[CrossRef]

Dulea, M.

M. Dulea, M. Johansson, and R. Riklund, "Localization of electrons and electromagnetic waves in a deterministic aperiodic system," Phys. Rev. B,  45, 105-114 (1992).
[CrossRef]

Edagawa, K.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef] [PubMed]

Emery, T.

Enoch, S.

Erickson, D.

Fan, X.

Fang, W.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004).
[CrossRef]

Fauchet, P. M.

Feng, N.-N.

L. Dal Negro, N.-N. Feng and A. Gopinath, "Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays," J. Opt. A: Pure Appl. Opt. 10064013 (2008).
[CrossRef]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Gaburro, Z.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

Galdi, V.

Gauthier, R. C.

Geddes, C. D.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D: Appl. Phys. 36, R240-R249 (2003).
[CrossRef]

Girolami, G.

Gopinath, A.

L. Dal Negro, N.-N. Feng and A. Gopinath, "Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays," J. Opt. A: Pure Appl. Opt. 10064013 (2008).
[CrossRef]

Green, W. M. J.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications, and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005).
[CrossRef]

Greve, J.

Grot, A.

Gryczynski, I.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D: Appl. Phys. 36, R240-R249 (2003).
[CrossRef]

Gryczynski, Z.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D: Appl. Phys. 36, R240-R249 (2003).
[CrossRef]

Haavisto, J.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, "Photon bandgap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals," Appl. Phys. Lett. 84, 5186-5188 (2004).
[CrossRef]

Hanumegowda, N. M.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE J. Sensors 7,28-35 (2007).
[CrossRef]

Heebner, J. E.

Hu, X.

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, "Localized modes in defect-free dodecagonal quasiperiodic photonic crystals," Phys. Rev. B 68, 165106 (2003).
[CrossRef]

Hupp, J. T.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004).
[CrossRef]

Johansson, M.

M. Dulea, M. Johansson, and R. Riklund, "Localization of electrons and electromagnetic waves in a deterministic aperiodic system," Phys. Rev. B,  45, 105-114 (1992).
[CrossRef]

Johnson, P.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

Kelly, K. L.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol selfassembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

Kimerling, L. C.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, "Photon bandgap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals," Appl. Phys. Lett. 84, 5186-5188 (2004).
[CrossRef]

Klunder, D. J. W.

Krioukov, E.

Kroha, J.

Kroon, L.

L. Kroon and R. Riklund, "Absence of localization in a model with correlation measure as a random lattice," Phys. Rev. B,  69, 094204 (2004).
[CrossRef]

L. Kroon, E. Lennholm, and R. Riklund, "Localization-delocalization in aperiodic systems," Phys. Rev. B 66, 094204 (2002).
[CrossRef]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Lagendijk, A.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

Lai, Y.

Y. Lai, Z.-Q. Zhang, C.-H. Chan, and L. Tsang, "Anomalous properties of the band-edge states in large two-dimensional photonic quasicrystals," Phys. Rev. B 76, 165132 (2007).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D: Appl. Phys. 36, R240-R249 (2003).
[CrossRef]

LeBlanc, J.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, "Photon bandgap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals," Appl. Phys. Lett. 84, 5186-5188 (2004).
[CrossRef]

Lederer, F.

Lee, M. R.

Lennholm, E.

L. Kroon, E. Lennholm, and R. Riklund, "Localization-delocalization in aperiodic systems," Phys. Rev. B 66, 094204 (2002).
[CrossRef]

Li, Y.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, "Porous silicon microcavities for biosensing applications," Phys. Status Solidi A,  182, 541-546 (2000).
[CrossRef]

Libchaber, A.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

Lipson, M.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

Liu, X.

A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, "Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser," Phys. Rev. Lett. 96, 083905 (2006).
[CrossRef] [PubMed]

Lon?ar, M.

J. Vu?kovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Lu, C.-J.

C.-S. Cheng, Y.-Q. Chen, and C.-J. Lu, "Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer," Talanta 73, 358-365 (2007).
[CrossRef] [PubMed]

Luck, J. M.

J. M. Luck, "Cantor spectra and scaling of gap widths in deterministic aperiodic systems," Phys. Rev. B 39, 5834-5849 (1989).
[CrossRef]

Mabuchi, H.

J. Vu?kovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Macia, E.

E. Macia, "The role of aperiodic order in science and technology," Rep. Prog. Phys. 69, 397-441 (2006).
[CrossRef]

Malicka, J.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D: Appl. Phys. 36, R240-R249 (2003).
[CrossRef]

Malinsky, M. D.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol selfassembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

Manolatou, C.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

Martijn de Sterke, C.

A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, "Two-dimensional Green??s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length," Phys. Rev. E,  63, 046612 (2001).
[CrossRef]

Maystre, D.

McBride, S.

McFarland, A. D.

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

McPhedran, R. C.

A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, "Two-dimensional Green??s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length," Phys. Rev. E,  63, 046612 (2001).
[CrossRef]

Michel, J.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, "Photon bandgap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals," Appl. Phys. Lett. 84, 5186-5188 (2004).
[CrossRef]

Miller, B. L.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, "Porous silicon microcavities for biosensing applications," Phys. Status Solidi A,  182, 541-546 (2000).
[CrossRef]

Mirkarimi, L. W.

Mnaymneh, K.

Mocella, V.

Moretti, L.

Mortensen, N. A.

N. A. Mortensen, S. Xiao, and J. Pedersen, "Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications," Microfluidics and Nanofluidics 4, 117-127 (2008).
[CrossRef]

S. Xiao and N. A. Mortensen, "Highly dispersive photonic band-gap-edge optofluidic biosensors," J. Eur. Opt. Soc. 1, 06026 (2006).
[CrossRef]

Nicorovici, N. A.

A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, "Two-dimensional Green??s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length," Phys. Rev. E,  63, 046612 (2001).
[CrossRef]

Notomi, M.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef] [PubMed]

Oton, C. J.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

Otto, C.

Oveys, H.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE J. Sensors 7,28-35 (2007).
[CrossRef]

Pavesi, L.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

Pedersen, J.

N. A. Mortensen, S. Xiao, and J. Pedersen, "Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications," Microfluidics and Nanofluidics 4, 117-127 (2008).
[CrossRef]

Peschel, U.

Pierro, V.

Pishko, S. V.

Prather, D.

Preble, S.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

Psaltis, D.

Pustai, D.

Righini, R.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

Riklund, R.

L. Kroon and R. Riklund, "Absence of localization in a model with correlation measure as a random lattice," Phys. Rev. B,  69, 094204 (2004).
[CrossRef]

L. Kroon, E. Lennholm, and R. Riklund, "Localization-delocalization in aperiodic systems," Phys. Rev. B 66, 094204 (2002).
[CrossRef]

M. Dulea, M. Johansson, and R. Riklund, "Localization of electrons and electromagnetic waves in a deterministic aperiodic system," Phys. Rev. B,  45, 105-114 (1992).
[CrossRef]

Rockstuhl, C.

Rockwood, T.

Rothberg, L. J.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, "Porous silicon microcavities for biosensing applications," Phys. Status Solidi A,  182, 541-546 (2000).
[CrossRef]

Schacht, E.

Schatz, G. C.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol selfassembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

Scherer, A.

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006).
[CrossRef] [PubMed]

J. Vu?kovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Scheuer, J.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications, and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005).
[CrossRef]

Schmidt, B.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

Sewell, P.

Sharkawy, A.

Shi, S.

Sigalas, M.

Stolfi, M.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, "Photon bandgap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals," Appl. Phys. Lett. 84, 5186-5188 (2004).
[CrossRef]

Suter, J. D.

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15, 9139-9146 (2007).
[CrossRef] [PubMed]

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE J. Sensors 7,28-35 (2007).
[CrossRef]

Suzuki, H.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef] [PubMed]

Tamamura, T.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef] [PubMed]

Tayeb, G.

Teraoka, I.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

Tsang, L.

Y. Lai, Z.-Q. Zhang, C.-H. Chan, and L. Tsang, "Anomalous properties of the band-edge states in large two-dimensional photonic quasicrystals," Phys. Rev. B 76, 165132 (2007).
[CrossRef]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Van Duyne, R. P.

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol selfassembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

Vollmer, F.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

Vu?kovi?, J.

J. Vu?kovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Wang, Y.

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, "Localized modes in defect-free dodecagonal quasiperiodic photonic crystals," Phys. Rev. B 68, 165106 (2003).
[CrossRef]

White, I. M.

Wiersma, D.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

Wu, X.

A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, "Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser," Phys. Rev. Lett. 96, 083905 (2006).
[CrossRef] [PubMed]

Xiao, S.

N. A. Mortensen, S. Xiao, and J. Pedersen, "Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications," Microfluidics and Nanofluidics 4, 117-127 (2008).
[CrossRef]

S. Xiao and N. A. Mortensen, "Highly dispersive photonic band-gap-edge optofluidic biosensors," J. Eur. Opt. Soc. 1, 06026 (2006).
[CrossRef]

Xu, X.

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, "Localized modes in defect-free dodecagonal quasiperiodic photonic crystals," Phys. Rev. B 68, 165106 (2003).
[CrossRef]

Yamilov, A.

A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, "Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser," Phys. Rev. Lett. 96, 083905 (2006).
[CrossRef] [PubMed]

Yariv, A.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications, and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005).
[CrossRef]

Yi, Y.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, "Photon bandgap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals," Appl. Phys. Lett. 84, 5186-5188 (2004).
[CrossRef]

Zanzucchi, P.

Zhang, D.

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, "Localized modes in defect-free dodecagonal quasiperiodic photonic crystals," Phys. Rev. B 68, 165106 (2003).
[CrossRef]

Zhang, Z.-Q.

Y. Lai, Z.-Q. Zhang, C.-H. Chan, and L. Tsang, "Anomalous properties of the band-edge states in large two-dimensional photonic quasicrystals," Phys. Rev. B 76, 165132 (2007).
[CrossRef]

Zhu, H.

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15, 9139-9146 (2007).
[CrossRef] [PubMed]

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE J. Sensors 7,28-35 (2007).
[CrossRef]

Zhukovsky, S. V.

Zourob, M.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE J. Sensors 7,28-35 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, "Photon bandgap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals," Appl. Phys. Lett. 84, 5186-5188 (2004).
[CrossRef]

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004).
[CrossRef]

Biophys. J. (1)

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications, and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005).
[CrossRef]

IEEE J. Sensors (1)

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE J. Sensors 7,28-35 (2007).
[CrossRef]

J. Am. Chem. Soc. (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol selfassembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

J. Eur. Opt. Soc. (1)

S. Xiao and N. A. Mortensen, "Highly dispersive photonic band-gap-edge optofluidic biosensors," J. Eur. Opt. Soc. 1, 06026 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A: Pure Appl. Opt. (1)

L. Dal Negro, N.-N. Feng and A. Gopinath, "Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays," J. Opt. A: Pure Appl. Opt. 10064013 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Phys. D: Appl. Phys. (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D: Appl. Phys. 36, R240-R249 (2003).
[CrossRef]

Microfluidics and Nanofluidics (1)

N. A. Mortensen, S. Xiao, and J. Pedersen, "Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications," Microfluidics and Nanofluidics 4, 117-127 (2008).
[CrossRef]

Nano Lett. (1)

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

Opt. Express (8)

A. Sharkawy, D. Pustai, S. Shi, D. Prather, S. McBride, and P. Zanzucchi, "Modulating dispersion properties of low index photonic crystal structures using microfluidics," Opt. Express 13, 2814-2827 (2005).
[CrossRef] [PubMed]

A. Della Villa, S. Enoch, G. Tayeb, F. Capolino, V. Pierro, and V. Galdi, "Localized modes in photonic quasicrystals with Penrose-type lattice," Opt. Express 14, 10021-10027 (2006).
[CrossRef] [PubMed]

M. R. Lee and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15, 4530-4535 (2007).
[CrossRef] [PubMed]

K. Mnaymneh and R. C. Gauthier, "Mode localization and band-gap formation in defect-free photonic quasicrystals," Opt. Express,  15, 5089-5099 (2007).
[CrossRef] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Opt. Express 15, 7610-7615 (2007).
[CrossRef] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15, 9139-9146 (2007).
[CrossRef] [PubMed]

L. Moretti and V. Mocella, "Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence," Opt. Express,  15, 15314-15323 (2007).
[CrossRef] [PubMed]

I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. B (6)

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, "Localized modes in defect-free dodecagonal quasiperiodic photonic crystals," Phys. Rev. B 68, 165106 (2003).
[CrossRef]

L. Kroon, E. Lennholm, and R. Riklund, "Localization-delocalization in aperiodic systems," Phys. Rev. B 66, 094204 (2002).
[CrossRef]

L. Kroon and R. Riklund, "Absence of localization in a model with correlation measure as a random lattice," Phys. Rev. B,  69, 094204 (2004).
[CrossRef]

Y. Lai, Z.-Q. Zhang, C.-H. Chan, and L. Tsang, "Anomalous properties of the band-edge states in large two-dimensional photonic quasicrystals," Phys. Rev. B 76, 165132 (2007).
[CrossRef]

J. M. Luck, "Cantor spectra and scaling of gap widths in deterministic aperiodic systems," Phys. Rev. B 39, 5834-5849 (1989).
[CrossRef]

M. Dulea, M. Johansson, and R. Riklund, "Localization of electrons and electromagnetic waves in a deterministic aperiodic system," Phys. Rev. B,  45, 105-114 (1992).
[CrossRef]

Phys. Rev. E (2)

A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, "Two-dimensional Green??s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length," Phys. Rev. E,  63, 046612 (2001).
[CrossRef]

J. Vu?kovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Phys. Rev. Lett. (3)

A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, "Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser," Phys. Rev. Lett. 96, 083905 (2006).
[CrossRef] [PubMed]

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef] [PubMed]

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

Phys. Status Solidi A (1)

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, "Porous silicon microcavities for biosensing applications," Phys. Status Solidi A,  182, 541-546 (2000).
[CrossRef]

Rep. Prog. Phys. (1)

E. Macia, "The role of aperiodic order in science and technology," Rep. Prog. Phys. 69, 397-441 (2006).
[CrossRef]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Talanta (1)

C.-S. Cheng, Y.-Q. Chen, and C.-J. Lu, "Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer," Talanta 73, 358-365 (2007).
[CrossRef] [PubMed]

Other (6)

S.G. Williams, ed., Symbolic dynamics and its applications, (American Mathematical Society, 2004).

M. R. Schroeder, Number Theory in Science and Communication (Springer-Verlag, 1985).

P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants, (Springer-Verlag, 1990).
[CrossRef]

M. Queffélec, "Substitution dynamical systems-spectral analysis," in Lecture Notes in Mathematics, 1294 (Springer, 1987).

S. V. Boriskina, A. Gopinath, and L. Dal Negro, "Optical gaps, mode patterns and dipole radiation in two-dimensional aperiodic photonic structures," Physica E (in the press); preprint at http://arxiv.org/abs/0807.4131

J. D. Joannopolous, S. Johnson, R. D. Meade, and J. N. Winn, Photonic crystals: Molding the flow of light (Princeton University, Princeton, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The radiation power spectra of a TM-polarized line source located at the center of (a) periodic square lattice and (b) aperiodic Rudin-Shapiro lattice of dielectric cylinders (ε=10.5, r/a=0.2) in air. Two cluster sizes are considered for each configuration: (a) 5a×5a, Nc =36 (red) and 9a×9a, Nc =100 (blue); (b) 7a×7a, Nc =32 (red) and 15a×15a, N=120 (blue). The green line in Fig. 1(a) shows the radiation spectrum of the 10a×10a (Nc =121) periodic structure with a single defect.

Fig. 2.
Fig. 2.

Electric field intensity profiles of: (a) lower-frequency band-edge mode (a/λ=0.29, Q=2866.75, Δλ(Δn=0.002)=0.29 nm), (b) point-defect monopole mode (a/λ=0.384, Q=51037.2, Δλ(Δn=0.002)=1.82 nm), and (c) higher-frequency band-edge mode (a/λ=0.434, Q=341.46, Δλ(Δn=0.002)=1.8 nm) of the square-lattice periodic structure.

Fig. 3.
Fig. 3.

Electric field intensity profiles of: (a,b) two critical modes (a/λ=0.443, Q=743.39, Δλ(Δn=0.002)=2.35 nm; a/λ=0.394, Q=6769.69, Δλ(Δn=0.002)=1.98 nm) and (c) a localized mode (a/λ=0.279, Q=1128.61, Δλ(Δn=0.002)=0.43 nm) of the RS aperiodic structure.

Fig. 4.
Fig. 4.

(a). Shifts of resonant wavelengths of TM modes of the Rudin-Shapiro structure (blue) as well as the TM band-edge modes and a point-defect monopole mode of the periodic structure (red) with the change of the analyte refractive index by Δn=0.002; (b) Q-factors of the corresponding modes. The gray area indicates the band-gap of the periodic lattice. The dashed line shows the level of the largest wavelength shift achievable in the periodic structure.

Fig. 5.
Fig. 5.

Sensitivities of TM modes of the Rudin-Shapiro structure (blue circles), the TM bandedge modes (red circles), and a point-defect monopole mode (red diamond) of the periodic PhC as a function of (a) the filling fraction of the mode field energy in the host medium and (b) the normalized effective mode volume. Dashed line is obtained by using Eq. 5 for λ=1.55 µm.

Fig. 6.
Fig. 6.

The radiation power spectra of a TE-polarized line source located at the center of (a) periodic square lattice and (b) aperiodic Rudin-Shapiro lattice of dielectric cylinders (ε=10.5, r/a=0.2) in air. Two cluster sizes are considered for each configuration: (a) 5a×5a, Nc =36 (red) and 9a×9a, Nc =100 (blue); (b) 7a×7a, Nc =32 (red) and 15a×15a, Nc =120 (blue).

Fig. 7.
Fig. 7.

(a). Shifts of resonant wavelengths of TE modes of the Rudin-Shapiro structure (blue) and a TE Bloch mode of the periodic structure (red) with the change of the analyte refractive index by Δn=0.002; (b) Q-factors of the corresponding modes. The dashed line shows the level of the largest wavelength shift achievable in the periodic structure.

Fig. 8.
Fig. 8.

Magnetic field intensity profiles of: (a) TE-polarized Bloch mode of the square-lattice periodic structure (a/λ=0.584, Q=2099.81, Δλ(Δn=0.002)=0.415 nm), and (b,c) two TEpolarized critical modes (a/λ=0.64, Q=275.28, Δλ(Δn=0.002)=2.29 nm; a/λ=0.575, Q=325.09, Δλ(Δn=0.002)=0.81 nm) of the Rudin-Shapiro aperiodic structure.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

a m p l p n = N N S m p H m n ( 1 ) ( k ε h r pl ) e i ( n m ) θ pl a n l = S m p Q m p , m = N . . N ; l , p = 1 . . N c
P rad = L S ( r ) · n d r
f h = host ε h E ( r ) 2 d V ε ( r ) E ( r ) 2 d V , 0 f h 1 .
V eff = ε ( r ) E ( r ) 2 d V ε ( r max ) E max 2 , V ~ eff = V eff ( 2 n ( r max ) λ ) 2 ,
S = f h · ( λ n h ) .

Metrics