Abstract

We demonstrate a novel index-guided (IG) photonic crystal fiber (PCF) surface-enhanced Raman probe. Different from a regular PCF, the IGPCF has four big air holes inserted between the solid silica core and the photonic crystal cladding holes. The gold nanoparticles, serving as the surface enhanced Raman scattering (SERS) substrate, are either coated on the inner surface of the holes or mixed in the analyte solution in two separate experiments, respectively. The analyte solution enters the holes via the capillary effect. The excitation light propagating in the silica core interacts with the gold nanoparticles and the analyte through the evanescent wave which extends significantly into the four big holes when they are filled with liquid leading to a large interaction volume between the excitation light and the nanoparticles/analyte.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004).
    [CrossRef] [PubMed]
  2. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
    [CrossRef] [PubMed]
  3. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
    [CrossRef] [PubMed]
  4. S. O. Konorov and A. M. Zheltikov, "Photonic-crystal fiber as a multifunctional optical sensor and sample collector," Opt. Express 13, 3454-3459 (2005).
    [CrossRef] [PubMed]
  5. S. Smolka, M. Barth, and O. Benson, "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007).
    [CrossRef]
  6. S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12783-12791 (2007).
    [CrossRef] [PubMed]
  7. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, "Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy," Opt. Lett. 31, 1911-1913 (2006).
    [CrossRef] [PubMed]
  8. H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89, 204101 (2006).
    [CrossRef]
  9. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, "Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering," Appl. Phys. Lett. 90, 193504 (2007).
    [CrossRef]
  10. F. M. Cox, A. Argyros, M. C. J. Large, and S. Kalluri, "Surface enhanced Raman scattering in a hollow core microstructured optical fiber," Opt. Express  15, 13675-13681 (2007).
    [CrossRef] [PubMed]
  11. S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
    [CrossRef] [PubMed]
  12. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
    [CrossRef]
  13. K. Kneipp, H. Kneipp, I. Itzkan, R. R Dasari, and M. S Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter 14, R597-R624 (2002).
    [CrossRef]
  14. C. L. Haynes, C. R. Yonzon, X. Zhang, and R. P. V. Duyne, "Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection," J. Raman Spectrosc. 36, 471-484 (2005).
    [CrossRef]
  15. Y. Zhu, H. Du, and R. Bise, "Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing," Opt. Express 14, 3541 (2006).
    [CrossRef] [PubMed]
  16. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
    [CrossRef]
  17. J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
    [CrossRef]
  18. Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang. "Surface-enhanced Raman scattering sensor based on D-shaped fiber," Appl. Phys. Lett. 87, 123105 (2005).
    [CrossRef]
  19. D. Pristinski and H. Du, "Solid-core photonic crystal fiber as a Raman spectroscopy platform with a silica core as an internal reference," Opt. Lett. 31, 3246-3248 (2006).
    [CrossRef] [PubMed]
  20. M. Volkan, D. L. Stokes, and T. Vo-Dinh, "Surface-enhanced Raman of dopamine and neurotransmitters using sol-gel substrates and polymer-coated fiber-optic probes," Appl. Spectrosc. 54, 1842-1848 (2000).
    [CrossRef]
  21. D. L. Stokes and T. Vo-Dinh, "Development of an integrated single-fiber SERS sensor," Sens. Actuators 69, 28-36 (2000).
    [CrossRef]
  22. E. Polwart, R. L. Keir, C. M. Davidson, W. E. Smith, and D. A. Sadler, "Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles," Appl. Spectrosc. 54, 522-527 (2000).
    [CrossRef]
  23. T. K. Sau and C. J. Murphy, "Self-assembly patterns formed upon solvent evaporation of Aqueous Cetyltrimethylammonium Bromide-Coated Gold Nanoparticles of various shapes," Langmuir 21, 2923-2929 (2005).
    [CrossRef] [PubMed]
  24. J. Ma and Y. Li, "Fiber Raman background study and its application in setting up optical fiber Raman probes," Appl. Opt. 35, 2527-2533 (1996).
    [CrossRef] [PubMed]

2007 (4)

S. Smolka, M. Barth, and O. Benson, "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12783-12791 (2007).
[CrossRef] [PubMed]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, "Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering," Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

F. M. Cox, A. Argyros, M. C. J. Large, and S. Kalluri, "Surface enhanced Raman scattering in a hollow core microstructured optical fiber," Opt. Express  15, 13675-13681 (2007).
[CrossRef] [PubMed]

2006 (5)

2005 (4)

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang. "Surface-enhanced Raman scattering sensor based on D-shaped fiber," Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

T. K. Sau and C. J. Murphy, "Self-assembly patterns formed upon solvent evaporation of Aqueous Cetyltrimethylammonium Bromide-Coated Gold Nanoparticles of various shapes," Langmuir 21, 2923-2929 (2005).
[CrossRef] [PubMed]

S. O. Konorov and A. M. Zheltikov, "Photonic-crystal fiber as a multifunctional optical sensor and sample collector," Opt. Express 13, 3454-3459 (2005).
[CrossRef] [PubMed]

C. L. Haynes, C. R. Yonzon, X. Zhang, and R. P. V. Duyne, "Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection," J. Raman Spectrosc. 36, 471-484 (2005).
[CrossRef]

2004 (3)

2002 (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R Dasari, and M. S Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter 14, R597-R624 (2002).
[CrossRef]

2001 (1)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

2000 (3)

1997 (2)

S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

1996 (1)

Addison, C. J.

Argyros, A.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Barth, M.

S. Smolka, M. Barth, and O. Benson, "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12783-12791 (2007).
[CrossRef] [PubMed]

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Benson, O.

S. Smolka, M. Barth, and O. Benson, "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12783-12791 (2007).
[CrossRef] [PubMed]

Bise, R.

Bjarklev, A.

Blades, M. W.

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Carlsen, A.

Cox, F. M.

Dasari, R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Dasari, R. R

K. Kneipp, H. Kneipp, I. Itzkan, R. R Dasari, and M. S Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter 14, R597-R624 (2002).
[CrossRef]

Davidson, C. M.

Du, H.

Duyne, R. P. V.

C. L. Haynes, C. R. Yonzon, X. Zhang, and R. P. V. Duyne, "Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection," J. Raman Spectrosc. 36, 471-484 (2005).
[CrossRef]

Emery, S. R.

S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Feld, M. S

K. Kneipp, H. Kneipp, I. Itzkan, R. R Dasari, and M. S Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter 14, R597-R624 (2002).
[CrossRef]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Fini, J. M.

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Folkenberg, J. R.

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Gu, C.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, "Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering," Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang. "Surface-enhanced Raman scattering sensor based on D-shaped fiber," Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

Hansen, T. P.

Haynes, C. L.

C. L. Haynes, C. R. Yonzon, X. Zhang, and R. P. V. Duyne, "Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection," J. Raman Spectrosc. 36, 471-484 (2005).
[CrossRef]

Hoiby, P. E.

Hou, L.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R Dasari, and M. S Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter 14, R597-R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Jensen, J. B.

Jin, G.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Kalluri, S.

Keir, R. L.

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R Dasari, and M. S Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter 14, R597-R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R Dasari, and M. S Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter 14, R597-R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Konorov, S. O.

Large, M. C. J.

Li, Y.

Liu, J.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Ludvigsen, H.

Ma, J.

Monro, T. M.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Murphy, C. J.

T. K. Sau and C. J. Murphy, "Self-assembly patterns formed upon solvent evaporation of Aqueous Cetyltrimethylammonium Bromide-Coated Gold Nanoparticles of various shapes," Langmuir 21, 2923-2929 (2005).
[CrossRef] [PubMed]

Nie, S. M.

S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Nielsen, K.

Nielsen, L. B.

Noordegraaf, D.

Pedersen, L. H.

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Petersen, J. C.

Polwart, E.

Pristinski, D.

Richardson, D. J.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Riishede, J.

Ritari, T.

Sadler, D. A.

Sau, T. K.

T. K. Sau and C. J. Murphy, "Self-assembly patterns formed upon solvent evaporation of Aqueous Cetyltrimethylammonium Bromide-Coated Gold Nanoparticles of various shapes," Langmuir 21, 2923-2929 (2005).
[CrossRef] [PubMed]

Schulze, H. G.

Schwartzberg, A. M.

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang. "Surface-enhanced Raman scattering sensor based on D-shaped fiber," Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

Seballos, L.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, "Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering," Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

Shi, C.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, "Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering," Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

Simonsen, H. R.

Smith, W. E.

Smolka, S.

S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12783-12791 (2007).
[CrossRef] [PubMed]

S. Smolka, M. Barth, and O. Benson, "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007).
[CrossRef]

Sorensen, T.

Stokes, D. L.

Tuominen, J.

Turner, R. F. B.

Vo-Dinh, T.

Volkan, M.

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Yan, H.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Yang, C.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Yao, Y.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Yonzon, C. R.

C. L. Haynes, C. R. Yonzon, X. Zhang, and R. P. V. Duyne, "Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection," J. Raman Spectrosc. 36, 471-484 (2005).
[CrossRef]

Zhang, J.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Zhang, J. Z.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, "Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering," Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang. "Surface-enhanced Raman scattering sensor based on D-shaped fiber," Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

Zhang, X.

C. L. Haynes, C. R. Yonzon, X. Zhang, and R. P. V. Duyne, "Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection," J. Raman Spectrosc. 36, 471-484 (2005).
[CrossRef]

Zhang, Y.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, "Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering," Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang. "Surface-enhanced Raman scattering sensor based on D-shaped fiber," Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

Zheltikov, A. M.

Zhu, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (4)

S. Smolka, M. Barth, and O. Benson, "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007).
[CrossRef]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, "Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering," Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang. "Surface-enhanced Raman scattering sensor based on D-shaped fiber," Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

Appl. Spectrosc. (2)

J. Phys. Condens. Matter (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R Dasari, and M. S Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter 14, R597-R624 (2002).
[CrossRef]

J. Raman Spectrosc. (1)

C. L. Haynes, C. R. Yonzon, X. Zhang, and R. P. V. Duyne, "Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection," J. Raman Spectrosc. 36, 471-484 (2005).
[CrossRef]

Langmuir (1)

T. K. Sau and C. J. Murphy, "Self-assembly patterns formed upon solvent evaporation of Aqueous Cetyltrimethylammonium Bromide-Coated Gold Nanoparticles of various shapes," Langmuir 21, 2923-2929 (2005).
[CrossRef] [PubMed]

Meas. Sci. Technol. (2)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Science (1)

S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Sens. Actuators (1)

D. L. Stokes and T. Vo-Dinh, "Development of an integrated single-fiber SERS sensor," Sens. Actuators 69, 28-36 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Cross section of photonic crystal fiber (Scale: micrometers); (b) Near-field light pattern at the exit, taken with a charge-coupled device camera with different exposures.

Fig. 2.
Fig. 2.

(a). Schematic of the experimental setup; (b) SEM image taken from the side surface of the silica core.

Fig. 3.
Fig. 3.

(a). SERS spectrum of 10-5M RhB: Curve A: obtained using a SERS substrate coated on a Si wafer (excitation power 0.47 mW, scan time 20 s, and accumulation times 1); Curve B, taken with a SERS substrate coated on the inner surface of the IGPCF holes. (Excitation power 4.7mW; scan time 10s; accumulation times 3); (b) Raman backgrounds of uncoated and coated IGPCF.

Fig. 4.
Fig. 4.

(a). Curve A: SERS spectrum of 10-7M RhB mixed with gold nanoparticles (excitation power 4.7mW; scan time 10s; accumulation times 3). Curve B: the IGPCF background. Curve C: Subtraction between Curve A and Curve B. Curve D: SERS spectrum of 10-6M RhB mixed with gold nanoparticles (background was subtracted, excitation power 4.7mW; scan time 10s; accumulation times 3); (b). SERS spectrum of 10-5M RhB mixed with gold nanoparticles (excitation power 4.7mW; scan time 10s; accumulation times 1).

Fig. 5.
Fig. 5.

Simulation results of the mode profiles of the photonic crystal fiber with d/Λ=0.8, d1/Λ=2.6, Λ=1µm. (a) holes are filled with air; (b) holes are filled with water.

Metrics