Abstract

Common-path in-line shearing interferometry, combined with pixel-array imaging, provides a surface metrology that achieves 15 pm surface height resolution. An eighth-wave thermal oxide on silicon generates a reference wave locked in the condition of phase quadrature for phase-to-intensity conversion that makes surface height or index variations directly detectable by an imaging system. The scaling surface mass sensitivity for the surface metrology application is Sscal=7 fg/mm under 40× magnification with a molecular resolution of approximately 12 IgG molecules within a pixel, limited by the surface roughness of the substrate. When applied to reverse-phase immunoassays in an antibody microarray format under 7× magnification, the current limit of detection is 10 ng/ml for 1 hour incubation, limited by biological and chemical variability. The biosensor is compatible with real-time binding measurements under active flow conditions with a binding dynamic range per well of 103 and a mass sensitivity of 2 pg/mm2.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. L. Anderson and N. G. Anderson, "The human plasma proteome - History, character, and diagnostic prospects," Mol. Cell. Proteomics 1, 845-867 (2002).
    [CrossRef] [PubMed]
  2. G. Gauglitz, "Direct optical sensors: principles and selected applications," Anal. Bioanal. Chem. 381, 141-155 (2005).
    [CrossRef] [PubMed]
  3. J. Homola, "Present and future of surface plasmon resonance biosensors," Anal.Bioanal. Chem. 377, 528-539 (2003).
    [CrossRef] [PubMed]
  4. B. Cunningham, P. Li, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
    [CrossRef]
  5. M. Armani, A. P. Kulkarni, S. E. Fraser, R. C. Flagen, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
    [CrossRef] [PubMed]
  6. M. M. Varma, D. D. Nolte, H. D. Inerowicz, and F. E. Regnier, "Spinning-disk self-referencing interferometry of antigen-antibody recognition," Opt. Lett. 29, 950-952 (2004).
    [CrossRef] [PubMed]
  7. D. D. Nolte and M. Zhao, "Scaling mass sensitivity of the BioCD at 0.25 pg/mm," Proc. SPIE 6380, 63800J (2006).
    [CrossRef]
  8. M. M. Varma, H. D. Inerowicz, F. E. Regnier, and D. D. Nolte, "High-speed label-free detection by spinning-disk micro-interferometry," Biosens. Bioelectron. 19, 1371-1376 (2004).
    [CrossRef] [PubMed]
  9. L. Peng, M. M. Varma, W. Cho, F. E. Regnier, and D. D. Nolte, "Adaptive interferometry of protein on a BioCD," Appl. Opt. 46, 5384-5395 (2007).
    [CrossRef] [PubMed]
  10. M. Zhao, W. R. Cho, F. Regnier, and D. Nolte, "Differential phase-contrast BioCD biosensor," Appl. Opt. 46, 6196-6209 (2007).
    [CrossRef] [PubMed]
  11. X. F. Wang, M. Zhao, and D. D. Nolte, "Common-path interferometric detection of protein monolayer on the BioCD," Appl. Opt. 46, 7836-7849 (2007).
    [CrossRef] [PubMed]
  12. M. Bras, V. Dugas, F. Bessueille, J. P. Cloared, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyrand, and M. Garrigues, "Optimization of a silicon/silicon dioxide substrate for fluorescence DNA microarray," Biosens. and Bioelectron. 20, 797-806 (2004).
    [CrossRef]
  13. T. J. Gao, J.H. Lu, and L. J. Rothberg, "Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry," Anal. Chem. 78, 6622-6627 (2006).
    [CrossRef] [PubMed]
  14. K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, "Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations," Rev. Sci. Instrum. 71, 3530-3538 (2000).
    [CrossRef]
  15. J. Dyson, "Common-Path Interferometer For Testing Purposes," J. Opt. Soc. Am. 47, 386-390 (1957).
    [CrossRef]
  16. P. Hariharan, Optical Interferometry (Elsevier, 2003).
  17. V. Kiessling and L. K. Tamm, "Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: Polymer supports and SNARE proteins," Biophys. J. 84, 408-418 (2003).
    [CrossRef] [PubMed]
  18. V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, "Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface," Opt. Express
    [PubMed]
  19. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, 1991).

2007

2006

T. J. Gao, J.H. Lu, and L. J. Rothberg, "Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry," Anal. Chem. 78, 6622-6627 (2006).
[CrossRef] [PubMed]

2005

G. Gauglitz, "Direct optical sensors: principles and selected applications," Anal. Bioanal. Chem. 381, 141-155 (2005).
[CrossRef] [PubMed]

2004

M. M. Varma, H. D. Inerowicz, F. E. Regnier, and D. D. Nolte, "High-speed label-free detection by spinning-disk micro-interferometry," Biosens. Bioelectron. 19, 1371-1376 (2004).
[CrossRef] [PubMed]

M. Bras, V. Dugas, F. Bessueille, J. P. Cloared, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyrand, and M. Garrigues, "Optimization of a silicon/silicon dioxide substrate for fluorescence DNA microarray," Biosens. and Bioelectron. 20, 797-806 (2004).
[CrossRef]

M. M. Varma, D. D. Nolte, H. D. Inerowicz, and F. E. Regnier, "Spinning-disk self-referencing interferometry of antigen-antibody recognition," Opt. Lett. 29, 950-952 (2004).
[CrossRef] [PubMed]

2003

J. Homola, "Present and future of surface plasmon resonance biosensors," Anal.Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

V. Kiessling and L. K. Tamm, "Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: Polymer supports and SNARE proteins," Biophys. J. 84, 408-418 (2003).
[CrossRef] [PubMed]

2002

B. Cunningham, P. Li, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

N. L. Anderson and N. G. Anderson, "The human plasma proteome - History, character, and diagnostic prospects," Mol. Cell. Proteomics 1, 845-867 (2002).
[CrossRef] [PubMed]

2000

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, "Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations," Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

1957

Anderson, N. G.

N. L. Anderson and N. G. Anderson, "The human plasma proteome - History, character, and diagnostic prospects," Mol. Cell. Proteomics 1, 845-867 (2002).
[CrossRef] [PubMed]

Anderson, N. L.

N. L. Anderson and N. G. Anderson, "The human plasma proteome - History, character, and diagnostic prospects," Mol. Cell. Proteomics 1, 845-867 (2002).
[CrossRef] [PubMed]

Armani, M.

M. Armani, A. P. Kulkarni, S. E. Fraser, R. C. Flagen, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Arwin, H.

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, "Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations," Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

Bessueille, F.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloared, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyrand, and M. Garrigues, "Optimization of a silicon/silicon dioxide substrate for fluorescence DNA microarray," Biosens. and Bioelectron. 20, 797-806 (2004).
[CrossRef]

Bras, M.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloared, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyrand, and M. Garrigues, "Optimization of a silicon/silicon dioxide substrate for fluorescence DNA microarray," Biosens. and Bioelectron. 20, 797-806 (2004).
[CrossRef]

Brunner, C.

V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, "Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface," Opt. Express
[PubMed]

Cabrera, M.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloared, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyrand, and M. Garrigues, "Optimization of a silicon/silicon dioxide substrate for fluorescence DNA microarray," Biosens. and Bioelectron. 20, 797-806 (2004).
[CrossRef]

Chauvet, J. P.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloared, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyrand, and M. Garrigues, "Optimization of a silicon/silicon dioxide substrate for fluorescence DNA microarray," Biosens. and Bioelectron. 20, 797-806 (2004).
[CrossRef]

Cho, W.

Cho, W. R.

Cloared, J. P.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloared, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyrand, and M. Garrigues, "Optimization of a silicon/silicon dioxide substrate for fluorescence DNA microarray," Biosens. and Bioelectron. 20, 797-806 (2004).
[CrossRef]

Cunningham, B.

B. Cunningham, P. Li, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

Dugas, V.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloared, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyrand, and M. Garrigues, "Optimization of a silicon/silicon dioxide substrate for fluorescence DNA microarray," Biosens. and Bioelectron. 20, 797-806 (2004).
[CrossRef]

Dyson, J.

Flagen, R. C.

M. Armani, A. P. Kulkarni, S. E. Fraser, R. C. Flagen, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

M. Armani, A. P. Kulkarni, S. E. Fraser, R. C. Flagen, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Gao, T. J.

T. J. Gao, J.H. Lu, and L. J. Rothberg, "Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry," Anal. Chem. 78, 6622-6627 (2006).
[CrossRef] [PubMed]

Garrigues, M.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloared, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyrand, and M. Garrigues, "Optimization of a silicon/silicon dioxide substrate for fluorescence DNA microarray," Biosens. and Bioelectron. 20, 797-806 (2004).
[CrossRef]

Gauglitz, G.

G. Gauglitz, "Direct optical sensors: principles and selected applications," Anal. Bioanal. Chem. 381, 141-155 (2005).
[CrossRef] [PubMed]

Homola, J.

J. Homola, "Present and future of surface plasmon resonance biosensors," Anal.Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

Inerowicz, H. D.

M. M. Varma, D. D. Nolte, H. D. Inerowicz, and F. E. Regnier, "Spinning-disk self-referencing interferometry of antigen-antibody recognition," Opt. Lett. 29, 950-952 (2004).
[CrossRef] [PubMed]

M. M. Varma, H. D. Inerowicz, F. E. Regnier, and D. D. Nolte, "High-speed label-free detection by spinning-disk micro-interferometry," Biosens. Bioelectron. 19, 1371-1376 (2004).
[CrossRef] [PubMed]

Jacobsen, V.

V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, "Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface," Opt. Express
[PubMed]

Johansen, K.

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, "Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations," Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

Kiessling, V.

V. Kiessling and L. K. Tamm, "Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: Polymer supports and SNARE proteins," Biophys. J. 84, 408-418 (2003).
[CrossRef] [PubMed]

Kulkarni, A. P.

M. Armani, A. P. Kulkarni, S. E. Fraser, R. C. Flagen, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Li, P.

B. Cunningham, P. Li, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

Liedberg, B.

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, "Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations," Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

Lu, J.H.

T. J. Gao, J.H. Lu, and L. J. Rothberg, "Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry," Anal. Chem. 78, 6622-6627 (2006).
[CrossRef] [PubMed]

Lundstrom, I.

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, "Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations," Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

Martin, J. R.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloared, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyrand, and M. Garrigues, "Optimization of a silicon/silicon dioxide substrate for fluorescence DNA microarray," Biosens. and Bioelectron. 20, 797-806 (2004).
[CrossRef]

Nolte, D.

Nolte, D. D.

Peng, L.

Pepper, J.

B. Cunningham, P. Li, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

Regnier, F.

Regnier, F. E.

Rothberg, L. J.

T. J. Gao, J.H. Lu, and L. J. Rothberg, "Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry," Anal. Chem. 78, 6622-6627 (2006).
[CrossRef] [PubMed]

Sandoghdar, V.

V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, "Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface," Opt. Express
[PubMed]

Souteyrand, E.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloared, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyrand, and M. Garrigues, "Optimization of a silicon/silicon dioxide substrate for fluorescence DNA microarray," Biosens. and Bioelectron. 20, 797-806 (2004).
[CrossRef]

Stoller, P.

V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, "Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface," Opt. Express
[PubMed]

Tamm, L. K.

V. Kiessling and L. K. Tamm, "Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: Polymer supports and SNARE proteins," Biophys. J. 84, 408-418 (2003).
[CrossRef] [PubMed]

Vahala, K. J.

M. Armani, A. P. Kulkarni, S. E. Fraser, R. C. Flagen, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Varma, M. M.

Vogel, V.

V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, "Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface," Opt. Express
[PubMed]

Wang, X. F.

Zhao, M.

Anal. Bioanal. Chem.

G. Gauglitz, "Direct optical sensors: principles and selected applications," Anal. Bioanal. Chem. 381, 141-155 (2005).
[CrossRef] [PubMed]

Anal. Chem.

T. J. Gao, J.H. Lu, and L. J. Rothberg, "Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry," Anal. Chem. 78, 6622-6627 (2006).
[CrossRef] [PubMed]

Anal.Bioanal. Chem.

J. Homola, "Present and future of surface plasmon resonance biosensors," Anal.Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

Appl. Opt.

Biophys. J.

V. Kiessling and L. K. Tamm, "Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: Polymer supports and SNARE proteins," Biophys. J. 84, 408-418 (2003).
[CrossRef] [PubMed]

Biosens. and Bioelectron.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloared, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyrand, and M. Garrigues, "Optimization of a silicon/silicon dioxide substrate for fluorescence DNA microarray," Biosens. and Bioelectron. 20, 797-806 (2004).
[CrossRef]

Biosens. Bioelectron.

M. M. Varma, H. D. Inerowicz, F. E. Regnier, and D. D. Nolte, "High-speed label-free detection by spinning-disk micro-interferometry," Biosens. Bioelectron. 19, 1371-1376 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

Mol. Cell. Proteomics

N. L. Anderson and N. G. Anderson, "The human plasma proteome - History, character, and diagnostic prospects," Mol. Cell. Proteomics 1, 845-867 (2002).
[CrossRef] [PubMed]

Opt. Lett.

Rev. Sci. Instrum.

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, "Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations," Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

Science

M. Armani, A. P. Kulkarni, S. E. Fraser, R. C. Flagen, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Sens. Actuators B

B. Cunningham, P. Li, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

Other

D. D. Nolte and M. Zhao, "Scaling mass sensitivity of the BioCD at 0.25 pg/mm," Proc. SPIE 6380, 63800J (2006).
[CrossRef]

P. Hariharan, Optical Interferometry (Elsevier, 2003).

V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, "Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface," Opt. Express
[PubMed]

O. S. Heavens, Optical Properties of Thin Solid Films (Dover, 1991).

Supplementary Material (1)

» Media 1: AVI (2873 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Thermal oxide layer on silicon for an in-line common-path interferometric condition that converts phase to intensity through the phase quadrature condition set by an eighth-wave thickness.

Fig. 2
Fig. 2

Theoretical protein conversion coefficient, in percent change in reflectance per nm of protein, as a function of oxide thickness for three wavelengths of 440 nm (blue), 532 nm (green) and 635 nm (red). Data are experimental values measured at the 3 wavelengths and plotted with corresponding color. Error in the data are dominated by uncertainty in the printed protein thickness.

Fig. 3.
Fig. 3.

(a) A plot of Dij after local background normalization of two IgG spots. The red and blue images are of the same protein spot that has been shifted laterally. (b) 3D visualization of the lower protein spot. The lateral imaging resolution is 0.4 µm and vertical resolution is 23 pm, limited by surface roughness.

Fig. 4.
Fig. 4.

(a) Height repeatability for single pixels (M=1) as a function of the number of image acquisitions for 40× magnification for a spot, land and shot noise. (b) Comparison of temporal and spatial averaging. The temporal averaging is a function of N at fixed M=1. The spatial averageing is a function of M at fixed N=16. The single-pixel temporal averaging becomes surface-roughness limited at 23 pm for N>512.

Fig 5.
Fig 5.

Pixel height resolution and scaling mass sensitivity as a function of magnification for 32 averaged image acquisitions for idealized assay conditions (measurement protocol, but no chemistry). The scaling mass sensitivity depends inversely on the magnification. The best scaling mass sensitivity is 40 fg/mm at 40×.

Fig. 6.
Fig. 6.

Reverse immunoassay. (a) Prescan Dij of a 2×2 unit cell. Two rabbit and two mouse spots are printed on opposite diagonals. (b) The same area is scanned again after incubation against 1 µg/mL of anti-mouse IgG for 1 hour. The mouse spots increase significantly. (c) Difference of the two scans.

Fig. 7.
Fig. 7.

Histrograms of surface height change for one pair of specific and non-specific spots incubated against 1 µg/mL anti-mouse IgG. The signal-to-noise ratio is 150.

Fig. 8.
Fig. 8.

Concentration response curve for the reverse-phase assay against rabbit and mouse antibodies. Data are averaged over 16 wells. Specific binding increases, while cross-reactivity remains low, as functions of concentration. The limit of detection is approximately 10 ng/ml for rabbit, and 30 ng/ml for mouse. Error bars are dominated by spot-to-spot variability rather than metrology uncertainty.

Fig. 9.
Fig. 9.

Movie of real-time binding of anti-rabbit at 20 µg/ml against spotted rabbit IgG. File size 2.80 MB [Media 1]

Fig. 10.
Fig. 10.

(a) Kinetic binding of anti-rabbit against rabbit plotted as the average spot height increase versus incubation time. (b) The horizontal axis is rescaled by [C]t to collapse the data. The knee of the kinetic curves occurs at 3×104 mg sec/ml. The kinetic on rate Kon is determined to be 5×103 M-1sec-1.

Fig. 11.
Fig. 11.

Real-time binding of 10 µg/ml antibody to the fusion protein A/G, followed by elution at decreasing pH. The standard error of the measurements is at 3 pm averaged over 32 spots.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ ( re i ϕ ) = i 4 π λ nh p ( r L e i ϕ L + ( r p r L e i ϕ L ) ( 1 r p r L e i ϕ L ) ( 1 r p 2 ) )
Δ I ( x , y ) = C ( λ , d ) ( g 2 ( x , y ) h ( x , y ) )
C ( λ , d ) 8 π n λ Im ( ( r p r L e i ϕ L ) ( 1 r p r L e i ϕ L ) ( 1 r p 2 ) )
I ij = η F ij ( r L 2 + Δ I ij )
D ij = 2 ( I i + δ , j I i , j ) ( I i + δ , j + I i , j ) = 2 ( η F ij ( r L 2 + Δ I i + δ , j ) η F ij ( r L 2 + Δ I ij ) ) ( η F ij ( r L 2 + Δ I i + δ , j ) + η F ij ( r L 2 + Δ I ij ) ) C ( λ , d ) ( h i + δ , j h ij )
Δ h 2 min = h 2 pixel ( 1 N + 1 N max ) ( 1 M + 1 M max )
= h 2 pixel ( N max + N ) ( M max + M ) NMN max M max
S scal = ρ h pixel a pixel N max
S mm 2 = ρ h pixel a pixel A Tot N max = ρ h pixel MN max = ρ h min
σ measure 2 = σ surface 2 + σ shot noise 2
D ij ; Δ t = 2 I ij ; t + Δ t I ij ; t I ij ; t + Δ t + I ij ; t C ( λ , d ) ( h ij ; t + Δ t h ij ; t )

Metrics