Abstract

We relate local cell gap variations to visible defects in LCD panels using psychophysical methods of human eye perception of intensity variations. Our analysis is applicable to general shape of cell gap variation for any LCD mode. We use our method in an explicit example to determine the visible cell gap variation threshold for TN LCD panels.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. W. Campbell, R. H. S. Carpenter, and J. Z. Levinson, "Visibility of aperiodic patterns compared with that of sinusoidal gratings," J. Physiol. 204, 283-298 (1969).
    [PubMed]
  2. F. W. Campbell and J. G. Robson, "Application of Fourier analysis to the visibility of gratings," J. Physiol. 197, 551-566 (1968).
    [PubMed]
  3. F. J. J. Blommaert and J. A. J. Roufs, "The foveal point spread function as a determinant for detail vision," Vision Res. 21, 1223-1233 (1981).
    [CrossRef] [PubMed]
  4. Izumi Ohzawa, Visual Neuroscience Laboratory, Osaka University, http://ohzawa-lab.bpe.es.osaka-u.ac.jp/ohzawa-lab/izumi/CSF/A_What_is_CSF.html>.
  5. F. L. van Ness and M. A. Bouman, "Spatial modulation transfer in the human eye," J. Opt. Soc. Am. 57, 401-406 (1967).
    [CrossRef]
  6. S. G. DeGroot and J. W. Gebhard, "Pupil size as determined by adapting luminance," J. Opt. Soc. Am. 42, 492-495 (1952).
    [CrossRef]
  7. A. Watson, "Visual detection of spatial contrast patterns: Evaluation of five simple models," Opt. Express 6, 12-33 (2000).
    [CrossRef]
  8. J. L. Mannos and D. J. Sakrison, "The effects of a visual fidelity criterion on the encoding of images," IEEE Trans. Inform. Theory IT-20, 525-536 (1974).
    [CrossRef]
  9. P. Yeh and C. Gu, Optics of liquid crystal displays, (John Wiley & Sons, Inc., 1999).

2000

1981

F. J. J. Blommaert and J. A. J. Roufs, "The foveal point spread function as a determinant for detail vision," Vision Res. 21, 1223-1233 (1981).
[CrossRef] [PubMed]

1974

J. L. Mannos and D. J. Sakrison, "The effects of a visual fidelity criterion on the encoding of images," IEEE Trans. Inform. Theory IT-20, 525-536 (1974).
[CrossRef]

1969

F. W. Campbell, R. H. S. Carpenter, and J. Z. Levinson, "Visibility of aperiodic patterns compared with that of sinusoidal gratings," J. Physiol. 204, 283-298 (1969).
[PubMed]

1968

F. W. Campbell and J. G. Robson, "Application of Fourier analysis to the visibility of gratings," J. Physiol. 197, 551-566 (1968).
[PubMed]

1967

1952

Blommaert, F. J. J.

F. J. J. Blommaert and J. A. J. Roufs, "The foveal point spread function as a determinant for detail vision," Vision Res. 21, 1223-1233 (1981).
[CrossRef] [PubMed]

Bouman, M. A.

Campbell, F. W.

F. W. Campbell, R. H. S. Carpenter, and J. Z. Levinson, "Visibility of aperiodic patterns compared with that of sinusoidal gratings," J. Physiol. 204, 283-298 (1969).
[PubMed]

F. W. Campbell and J. G. Robson, "Application of Fourier analysis to the visibility of gratings," J. Physiol. 197, 551-566 (1968).
[PubMed]

Carpenter, R. H. S.

F. W. Campbell, R. H. S. Carpenter, and J. Z. Levinson, "Visibility of aperiodic patterns compared with that of sinusoidal gratings," J. Physiol. 204, 283-298 (1969).
[PubMed]

DeGroot, S. G.

Gebhard, J. W.

Levinson, J. Z.

F. W. Campbell, R. H. S. Carpenter, and J. Z. Levinson, "Visibility of aperiodic patterns compared with that of sinusoidal gratings," J. Physiol. 204, 283-298 (1969).
[PubMed]

Mannos, J. L.

J. L. Mannos and D. J. Sakrison, "The effects of a visual fidelity criterion on the encoding of images," IEEE Trans. Inform. Theory IT-20, 525-536 (1974).
[CrossRef]

Robson, J. G.

F. W. Campbell and J. G. Robson, "Application of Fourier analysis to the visibility of gratings," J. Physiol. 197, 551-566 (1968).
[PubMed]

Roufs, J. A. J.

F. J. J. Blommaert and J. A. J. Roufs, "The foveal point spread function as a determinant for detail vision," Vision Res. 21, 1223-1233 (1981).
[CrossRef] [PubMed]

Sakrison, D. J.

J. L. Mannos and D. J. Sakrison, "The effects of a visual fidelity criterion on the encoding of images," IEEE Trans. Inform. Theory IT-20, 525-536 (1974).
[CrossRef]

van Ness, F. L.

Watson, A.

IEEE Trans. Inform. Theory

J. L. Mannos and D. J. Sakrison, "The effects of a visual fidelity criterion on the encoding of images," IEEE Trans. Inform. Theory IT-20, 525-536 (1974).
[CrossRef]

J. Opt. Soc. Am.

J. Physiol.

F. W. Campbell, R. H. S. Carpenter, and J. Z. Levinson, "Visibility of aperiodic patterns compared with that of sinusoidal gratings," J. Physiol. 204, 283-298 (1969).
[PubMed]

F. W. Campbell and J. G. Robson, "Application of Fourier analysis to the visibility of gratings," J. Physiol. 197, 551-566 (1968).
[PubMed]

Opt. Express

Vision Res.

F. J. J. Blommaert and J. A. J. Roufs, "The foveal point spread function as a determinant for detail vision," Vision Res. 21, 1223-1233 (1981).
[CrossRef] [PubMed]

Other

Izumi Ohzawa, Visual Neuroscience Laboratory, Osaka University, http://ohzawa-lab.bpe.es.osaka-u.ac.jp/ohzawa-lab/izumi/CSF/A_What_is_CSF.html>.

P. Yeh and C. Gu, Optics of liquid crystal displays, (John Wiley & Sons, Inc., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Sinusoidal grating with variable contrast and spatial frequency for Campbell-Robson experiment [2, 4].

Fig. 2.
Fig. 2.

Sensitivity plotted as a function of angular frequency; see Eq. (15).

Fig. 3.
Fig. 3.

κ is plotted as a function of the u parameter for a TN LCD device.

Fig. 4.
Fig. 4.

Visible height threshold of the cell gap variation (normalized to the cell gap) as a function of the width parameter. The results are plotted for a single hump and periodic features with the shape of a raised cosine.

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

Ĩ = ʃ + dyI ( y ) Λ ( x y ) .
s ( u ) = 2 ʃ + dx cos ( 2 πux ) Λ ( x ) ,
Λ ( x ) = 2 ʃ 0 + du cos ( 2 πux ) s ( u ) .
Ĩ ( x ) = 2 Re ( ʃ 0 + du I u ( u ) s ( u ) e 2 πiux ) ,
PC = Ĩ max Ĩ min 2 Ĩ 0 ,
I ( x ) = a 1 cos ( 2 π u 1 x ) + I 0 ,
C = a 1 I 0
Ĩ ( x ) = a 1 s ( u 1 ) cos ( 2 π u 1 x ) + I 0 s ( 0 ) ,
PC = a 1 s ( u 1 ) I 0 s ( 0 ) .
P C th = a 1 s ( u 1 ) I 0 s ( 0 ) | th .
u 0 P C th = a 1 I 0 = C th .
1 s ( u 1 ) = a 1 I 0 th .
Td = L ( cd m 2 ) × A pupil ( mm 2 ) .
d pupil = 10 0.8558 0.000401 [ log ( L ) + 8.6 ] 3 .
( ν ) = K [ exp ( 2 παν ) exp ( 2 πβν ) ] ,
K , α , β 761.868 , 0.01182 deg cycles , 0.05897 deg cycles .
( πPu 180 ) = s ( u ) ,
s ( u ) = K [ exp ( 2 πau ) exp ( 2 πbu ) ] ,
a b = πP 180 α β .
Λ ( x ) = K π [ a a 2 + x 2 b b 2 + x 2 ] .
z ( x ) = z 0 f ( x ) .
I z x = I 0 [ 1 + κ z 0 ( z z 0 ) ] = I 0 ( 1 κ z 0 f ( x ) ) .
κ = z I I z | z = z 0 .
τ ( u ) = I 0 δ ( u ) I 0 κ z 0 ϕ ( u ) ,
Ĩ ( x ) = I 0 s ( 0 ) I 0 κ z 0 ( x ) ,
( x ) = 2 Re ( ʃ 0 + du ϕ ( u ) s ( u ) e 2 πiux ) .
PC = Ĩ max Ĩ min 2 I 0 = κ 2 z 0 ( max min ) .
( max min ) th = 2 z 0 κ .
f x w = h 2 ( 1 + cos ( π x x 0 w ) ) ,
ϕ u w = h sin ( 2 πnuw ) 2 πu ( 1 4 u 2 w 2 ) ,
x w = x w ,
Ω x w = 2 ʃ 0 + du sin ( 2 πnuw ) cos ( 2 πux ) s ( u ) 2 πu ( 1 4 u 2 w 2 ) .
h th = 2 z 0 κ [ Ω max ( w ) Ω min ( w ) ] .
h th = 2 z 0 κs ( 1 2 w ) .
T T max = 1 sin 2 ( X ) 1 + u 2 ,
X = π 2 1 + u 2 , u = 2 z Δ n λ ,
κ = u 0 2 [ 2 sin 2 ( X 0 ) X 0 sin ( 2 X 0 ) ] ( 1 + u 0 2 ) [ cos 2 ( X 0 ) + u 0 2 ] ,

Metrics