Abstract

To understand the fundamental mechanical and viscoelastic properties of RBCs, one needs laser tweezers in which cells can not only be trapped, but also be stretched, folded, and rotated. Stretching, folding and rotating an RBC is particularly important in order to reveal the shear elasticity of the RBC membrane. Here we show a single beam near-field laser trapping technique under focused evanescent wave illumination for optical stretching, folding and rotation of a single RBC. This multi-functional manipulation method will provide a new platform for measuring cell properties such as the membrane elasticity, viscoelasticity and deformability.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288 (1986).
    [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic,and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769 (1987).
    [CrossRef] [PubMed]
  3. A. Krantz, "Red-cell mediated therapy: opportunities and challenges," Blood Cells, Molecules and Diseases 23, 58 (1997).
    [CrossRef]
  4. A. Elgsaeter, B. T. Stokke, A. Mikkelsen, and D. Branton, "The molecular basis of erythrocyte shape," Science 234, 1217 (1986).
    [CrossRef] [PubMed]
  5. G. Bao, and S. Suresh, "Cell and molecular mechanics of biological materials," Nature Materials 2, 715 (2003).
    [CrossRef] [PubMed]
  6. S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser beams," Electron. Lett. 27, 1831 (1991).
    [CrossRef]
  7. J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Naturally occurring, optically driven, cellular rotor," Appl. Phys. Lett. 85, 6048 (2004).
    [CrossRef]
  8. J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Torque-generating malaria infected red blood cells in an optical trap," Opt. Express 12, 1179 (2004).
    [CrossRef] [PubMed]
  9. A Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma and D. Mathur, "Euler buckling-induced folding and rotation of red blood cells in an optical trap," Phys. Biol. 3,67 (2006).
    [CrossRef] [PubMed]
  10. S. C. Grover, R. C. Gauthier, and A. G. Skirtach, "Analysis of the behaviour of erythrocytes in an optical trapping system," Opt. Express 7, 533 (2005).
    [CrossRef]
  11. S. Hénon, G. Lenormand, A. Richert, and F. Gallet, "A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers," Biophys. J. 76, 1145 (1999).
    [CrossRef] [PubMed]
  12. M. Dao, C. T. Lim, and S. Suresh, "Mechanics of the human red blood cell deformed by optical tweezers," J. Mech. Phys. Solids 51, 2259 (2003).
    [CrossRef]
  13. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451 (2000).
    [CrossRef] [PubMed]
  14. S. K. Mohanty, K. S. Mohanty and P. K. Gupta, "Dynamics of Interaction of RBC with optical tweezers," Opt. Express 13, 4745 (2005).
    [CrossRef] [PubMed]
  15. J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, "Two-photon fluorescence scanning near-field microscopy based on a focused evanescent field under total internal reflection," Opt. Lett.,  28, 1930 (2003).
    [CrossRef] [PubMed]
  16. B. Jia, X. Gan, and M. Gu, "Direct observation of pure focused evanescent wave of a high numerical-aperture objective lens by scanning near-field optical microscopy," Appl. Phys. Lett. 86,131110 (2005).
    [CrossRef]
  17. V. Garcés-Chávez, and K. Dholakia, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86, 031106 (2005).
    [CrossRef]
  18. M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004).
    [CrossRef]
  19. D. Ganic, X. Gan, and M. Gu, "Trapping force and optical lifting under focused evanescent wave illumination," Opt. Express 12, 5533 (2004).
    [CrossRef] [PubMed]
  20. S. Kuriakose, X. Gan, J. W. M. Chon, and M. Gu, "Optical lifting force under focused evanescent wave illumination: a ray-optics model," J. Appl. Phys. 97, 083103 (2005).
    [CrossRef]
  21. J. Yu, J. Chen, Z. Lin, L. Xu, Wang, P.  and Gu, M , "Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation," J. Biomedical Opt. 10, 064013 (2005).
    [CrossRef]
  22. J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14 (1973).
    [CrossRef]
  23. C. D. Eggleton, and A. Popel, "Large deformation of red blood cells ghosts in a simple shear flow," Phys. Fluids. 10, 1834 (1998).
    [CrossRef]

2006 (1)

A Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma and D. Mathur, "Euler buckling-induced folding and rotation of red blood cells in an optical trap," Phys. Biol. 3,67 (2006).
[CrossRef] [PubMed]

2005 (6)

S. C. Grover, R. C. Gauthier, and A. G. Skirtach, "Analysis of the behaviour of erythrocytes in an optical trapping system," Opt. Express 7, 533 (2005).
[CrossRef]

B. Jia, X. Gan, and M. Gu, "Direct observation of pure focused evanescent wave of a high numerical-aperture objective lens by scanning near-field optical microscopy," Appl. Phys. Lett. 86,131110 (2005).
[CrossRef]

V. Garcés-Chávez, and K. Dholakia, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

S. K. Mohanty, K. S. Mohanty and P. K. Gupta, "Dynamics of Interaction of RBC with optical tweezers," Opt. Express 13, 4745 (2005).
[CrossRef] [PubMed]

S. Kuriakose, X. Gan, J. W. M. Chon, and M. Gu, "Optical lifting force under focused evanescent wave illumination: a ray-optics model," J. Appl. Phys. 97, 083103 (2005).
[CrossRef]

J. Yu, J. Chen, Z. Lin, L. Xu, Wang, P.  and Gu, M , "Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation," J. Biomedical Opt. 10, 064013 (2005).
[CrossRef]

2004 (4)

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

D. Ganic, X. Gan, and M. Gu, "Trapping force and optical lifting under focused evanescent wave illumination," Opt. Express 12, 5533 (2004).
[CrossRef] [PubMed]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Naturally occurring, optically driven, cellular rotor," Appl. Phys. Lett. 85, 6048 (2004).
[CrossRef]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Torque-generating malaria infected red blood cells in an optical trap," Opt. Express 12, 1179 (2004).
[CrossRef] [PubMed]

2003 (3)

G. Bao, and S. Suresh, "Cell and molecular mechanics of biological materials," Nature Materials 2, 715 (2003).
[CrossRef] [PubMed]

M. Dao, C. T. Lim, and S. Suresh, "Mechanics of the human red blood cell deformed by optical tweezers," J. Mech. Phys. Solids 51, 2259 (2003).
[CrossRef]

J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, "Two-photon fluorescence scanning near-field microscopy based on a focused evanescent field under total internal reflection," Opt. Lett.,  28, 1930 (2003).
[CrossRef] [PubMed]

2000 (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451 (2000).
[CrossRef] [PubMed]

1999 (1)

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, "A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers," Biophys. J. 76, 1145 (1999).
[CrossRef] [PubMed]

1998 (1)

C. D. Eggleton, and A. Popel, "Large deformation of red blood cells ghosts in a simple shear flow," Phys. Fluids. 10, 1834 (1998).
[CrossRef]

1997 (1)

A. Krantz, "Red-cell mediated therapy: opportunities and challenges," Blood Cells, Molecules and Diseases 23, 58 (1997).
[CrossRef]

1991 (1)

S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser beams," Electron. Lett. 27, 1831 (1991).
[CrossRef]

1987 (1)

A. Ashkin, J. M. Dziedzic,and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769 (1987).
[CrossRef] [PubMed]

1986 (2)

1973 (1)

J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14 (1973).
[CrossRef]

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451 (2000).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, J. M. Dziedzic,and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288 (1986).
[CrossRef] [PubMed]

Bao, G.

G. Bao, and S. Suresh, "Cell and molecular mechanics of biological materials," Nature Materials 2, 715 (2003).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Branton, D.

A. Elgsaeter, B. T. Stokke, A. Mikkelsen, and D. Branton, "The molecular basis of erythrocyte shape," Science 234, 1217 (1986).
[CrossRef] [PubMed]

Bullen, C.

Chen, J.

J. Yu, J. Chen, Z. Lin, L. Xu, Wang, P.  and Gu, M , "Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation," J. Biomedical Opt. 10, 064013 (2005).
[CrossRef]

Chon, J. W. M.

S. Kuriakose, X. Gan, J. W. M. Chon, and M. Gu, "Optical lifting force under focused evanescent wave illumination: a ray-optics model," J. Appl. Phys. 97, 083103 (2005).
[CrossRef]

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, "Two-photon fluorescence scanning near-field microscopy based on a focused evanescent field under total internal reflection," Opt. Lett.,  28, 1930 (2003).
[CrossRef] [PubMed]

Chu, S.

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451 (2000).
[CrossRef] [PubMed]

Dao, M.

M. Dao, C. T. Lim, and S. Suresh, "Mechanics of the human red blood cell deformed by optical tweezers," J. Mech. Phys. Solids 51, 2259 (2003).
[CrossRef]

Dharmadhikari, A. K.

A Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma and D. Mathur, "Euler buckling-induced folding and rotation of red blood cells in an optical trap," Phys. Biol. 3,67 (2006).
[CrossRef] [PubMed]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Naturally occurring, optically driven, cellular rotor," Appl. Phys. Lett. 85, 6048 (2004).
[CrossRef]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Torque-generating malaria infected red blood cells in an optical trap," Opt. Express 12, 1179 (2004).
[CrossRef] [PubMed]

Dharmadhikari, J. A.

A Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma and D. Mathur, "Euler buckling-induced folding and rotation of red blood cells in an optical trap," Phys. Biol. 3,67 (2006).
[CrossRef] [PubMed]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Torque-generating malaria infected red blood cells in an optical trap," Opt. Express 12, 1179 (2004).
[CrossRef] [PubMed]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Naturally occurring, optically driven, cellular rotor," Appl. Phys. Lett. 85, 6048 (2004).
[CrossRef]

Dholakia, K.

V. Garcés-Chávez, and K. Dholakia, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic,and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288 (1986).
[CrossRef] [PubMed]

Eggleton, C. D.

C. D. Eggleton, and A. Popel, "Large deformation of red blood cells ghosts in a simple shear flow," Phys. Fluids. 10, 1834 (1998).
[CrossRef]

Elgsaeter, A.

A. Elgsaeter, B. T. Stokke, A. Mikkelsen, and D. Branton, "The molecular basis of erythrocyte shape," Science 234, 1217 (1986).
[CrossRef] [PubMed]

Gallet, F.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, "A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers," Biophys. J. 76, 1145 (1999).
[CrossRef] [PubMed]

Gan, X.

B. Jia, X. Gan, and M. Gu, "Direct observation of pure focused evanescent wave of a high numerical-aperture objective lens by scanning near-field optical microscopy," Appl. Phys. Lett. 86,131110 (2005).
[CrossRef]

S. Kuriakose, X. Gan, J. W. M. Chon, and M. Gu, "Optical lifting force under focused evanescent wave illumination: a ray-optics model," J. Appl. Phys. 97, 083103 (2005).
[CrossRef]

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

D. Ganic, X. Gan, and M. Gu, "Trapping force and optical lifting under focused evanescent wave illumination," Opt. Express 12, 5533 (2004).
[CrossRef] [PubMed]

Ganic, D.

Garcés-Chávez, V.

V. Garcés-Chávez, and K. Dholakia, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

Gauthier, R. C.

Ghosh, A

A Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma and D. Mathur, "Euler buckling-induced folding and rotation of red blood cells in an optical trap," Phys. Biol. 3,67 (2006).
[CrossRef] [PubMed]

Gordon, J. P.

J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14 (1973).
[CrossRef]

Grover, S. C.

Gu, M.

B. Jia, X. Gan, and M. Gu, "Direct observation of pure focused evanescent wave of a high numerical-aperture objective lens by scanning near-field optical microscopy," Appl. Phys. Lett. 86,131110 (2005).
[CrossRef]

S. Kuriakose, X. Gan, J. W. M. Chon, and M. Gu, "Optical lifting force under focused evanescent wave illumination: a ray-optics model," J. Appl. Phys. 97, 083103 (2005).
[CrossRef]

D. Ganic, X. Gan, and M. Gu, "Trapping force and optical lifting under focused evanescent wave illumination," Opt. Express 12, 5533 (2004).
[CrossRef] [PubMed]

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, "Two-photon fluorescence scanning near-field microscopy based on a focused evanescent field under total internal reflection," Opt. Lett.,  28, 1930 (2003).
[CrossRef] [PubMed]

Gu, P.

J. Yu, J. Chen, Z. Lin, L. Xu, Wang, P.  and Gu, M , "Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation," J. Biomedical Opt. 10, 064013 (2005).
[CrossRef]

Guck, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451 (2000).
[CrossRef] [PubMed]

Gupta, P. K.

Haumonte, J. B.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

Hénon, S.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, "A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers," Biophys. J. 76, 1145 (1999).
[CrossRef] [PubMed]

Inaba, H.

S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser beams," Electron. Lett. 27, 1831 (1991).
[CrossRef]

Ishigure, M.

S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser beams," Electron. Lett. 27, 1831 (1991).
[CrossRef]

Jia, B.

B. Jia, X. Gan, and M. Gu, "Direct observation of pure focused evanescent wave of a high numerical-aperture objective lens by scanning near-field optical microscopy," Appl. Phys. Lett. 86,131110 (2005).
[CrossRef]

Käs, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451 (2000).
[CrossRef] [PubMed]

Krantz, A.

A. Krantz, "Red-cell mediated therapy: opportunities and challenges," Blood Cells, Molecules and Diseases 23, 58 (1997).
[CrossRef]

Kuriakose, S.

S. Kuriakose, X. Gan, J. W. M. Chon, and M. Gu, "Optical lifting force under focused evanescent wave illumination: a ray-optics model," J. Appl. Phys. 97, 083103 (2005).
[CrossRef]

Lenormand, G.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, "A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers," Biophys. J. 76, 1145 (1999).
[CrossRef] [PubMed]

Lim, C. T.

M. Dao, C. T. Lim, and S. Suresh, "Mechanics of the human red blood cell deformed by optical tweezers," J. Mech. Phys. Solids 51, 2259 (2003).
[CrossRef]

Lin, Z.

J. Yu, J. Chen, Z. Lin, L. Xu, Wang, P.  and Gu, M , "Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation," J. Biomedical Opt. 10, 064013 (2005).
[CrossRef]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451 (2000).
[CrossRef] [PubMed]

Mathur, D.

A Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma and D. Mathur, "Euler buckling-induced folding and rotation of red blood cells in an optical trap," Phys. Biol. 3,67 (2006).
[CrossRef] [PubMed]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Naturally occurring, optically driven, cellular rotor," Appl. Phys. Lett. 85, 6048 (2004).
[CrossRef]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Torque-generating malaria infected red blood cells in an optical trap," Opt. Express 12, 1179 (2004).
[CrossRef] [PubMed]

Micheau, Y.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

Mikkelsen, A.

A. Elgsaeter, B. T. Stokke, A. Mikkelsen, and D. Branton, "The molecular basis of erythrocyte shape," Science 234, 1217 (1986).
[CrossRef] [PubMed]

Mohanty, K. S.

Mohanty, S. K.

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451 (2000).
[CrossRef] [PubMed]

Mulvaney, P.

Popel, A.

C. D. Eggleton, and A. Popel, "Large deformation of red blood cells ghosts in a simple shear flow," Phys. Fluids. 10, 1834 (1998).
[CrossRef]

Richert, A.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, "A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers," Biophys. J. 76, 1145 (1999).
[CrossRef] [PubMed]

Roy, S.

A Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma and D. Mathur, "Euler buckling-induced folding and rotation of red blood cells in an optical trap," Phys. Biol. 3,67 (2006).
[CrossRef] [PubMed]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Naturally occurring, optically driven, cellular rotor," Appl. Phys. Lett. 85, 6048 (2004).
[CrossRef]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Torque-generating malaria infected red blood cells in an optical trap," Opt. Express 12, 1179 (2004).
[CrossRef] [PubMed]

Samuel, J.

A Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma and D. Mathur, "Euler buckling-induced folding and rotation of red blood cells in an optical trap," Phys. Biol. 3,67 (2006).
[CrossRef] [PubMed]

Sato, S.

S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser beams," Electron. Lett. 27, 1831 (1991).
[CrossRef]

Sharma, S.

A Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma and D. Mathur, "Euler buckling-induced folding and rotation of red blood cells in an optical trap," Phys. Biol. 3,67 (2006).
[CrossRef] [PubMed]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Torque-generating malaria infected red blood cells in an optical trap," Opt. Express 12, 1179 (2004).
[CrossRef] [PubMed]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Naturally occurring, optically driven, cellular rotor," Appl. Phys. Lett. 85, 6048 (2004).
[CrossRef]

Sinha, S.

A Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma and D. Mathur, "Euler buckling-induced folding and rotation of red blood cells in an optical trap," Phys. Biol. 3,67 (2006).
[CrossRef] [PubMed]

Skirtach, A. G.

Stokke, B. T.

A. Elgsaeter, B. T. Stokke, A. Mikkelsen, and D. Branton, "The molecular basis of erythrocyte shape," Science 234, 1217 (1986).
[CrossRef] [PubMed]

Suresh, S.

G. Bao, and S. Suresh, "Cell and molecular mechanics of biological materials," Nature Materials 2, 715 (2003).
[CrossRef] [PubMed]

M. Dao, C. T. Lim, and S. Suresh, "Mechanics of the human red blood cell deformed by optical tweezers," J. Mech. Phys. Solids 51, 2259 (2003).
[CrossRef]

Wang, L.

J. Yu, J. Chen, Z. Lin, L. Xu, Wang, P.  and Gu, M , "Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation," J. Biomedical Opt. 10, 064013 (2005).
[CrossRef]

Xu, L.

J. Yu, J. Chen, Z. Lin, L. Xu, Wang, P.  and Gu, M , "Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation," J. Biomedical Opt. 10, 064013 (2005).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic,and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769 (1987).
[CrossRef] [PubMed]

Yu, J.

J. Yu, J. Chen, Z. Lin, L. Xu, Wang, P.  and Gu, M , "Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation," J. Biomedical Opt. 10, 064013 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Naturally occurring, optically driven, cellular rotor," Appl. Phys. Lett. 85, 6048 (2004).
[CrossRef]

B. Jia, X. Gan, and M. Gu, "Direct observation of pure focused evanescent wave of a high numerical-aperture objective lens by scanning near-field optical microscopy," Appl. Phys. Lett. 86,131110 (2005).
[CrossRef]

V. Garcés-Chávez, and K. Dholakia, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

Biophys. J. (1)

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, "A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers," Biophys. J. 76, 1145 (1999).
[CrossRef] [PubMed]

Blood Cells, Molecules and Diseases (1)

A. Krantz, "Red-cell mediated therapy: opportunities and challenges," Blood Cells, Molecules and Diseases 23, 58 (1997).
[CrossRef]

Electron. Lett. (1)

S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser beams," Electron. Lett. 27, 1831 (1991).
[CrossRef]

J. Appl. Phys. (1)

S. Kuriakose, X. Gan, J. W. M. Chon, and M. Gu, "Optical lifting force under focused evanescent wave illumination: a ray-optics model," J. Appl. Phys. 97, 083103 (2005).
[CrossRef]

J. Biomedical Opt. (1)

J. Yu, J. Chen, Z. Lin, L. Xu, Wang, P.  and Gu, M , "Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation," J. Biomedical Opt. 10, 064013 (2005).
[CrossRef]

J. Mech. Phys. Solids (1)

M. Dao, C. T. Lim, and S. Suresh, "Mechanics of the human red blood cell deformed by optical tweezers," J. Mech. Phys. Solids 51, 2259 (2003).
[CrossRef]

Nature (1)

A. Ashkin, J. M. Dziedzic,and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769 (1987).
[CrossRef] [PubMed]

Nature Materials (1)

G. Bao, and S. Suresh, "Cell and molecular mechanics of biological materials," Nature Materials 2, 715 (2003).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Biol. (1)

A Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma and D. Mathur, "Euler buckling-induced folding and rotation of red blood cells in an optical trap," Phys. Biol. 3,67 (2006).
[CrossRef] [PubMed]

Phys. Fluids. (1)

C. D. Eggleton, and A. Popel, "Large deformation of red blood cells ghosts in a simple shear flow," Phys. Fluids. 10, 1834 (1998).
[CrossRef]

Phys. Rev. A (1)

J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14 (1973).
[CrossRef]

Phys. Rev. Lett. (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451 (2000).
[CrossRef] [PubMed]

Science (1)

A. Elgsaeter, B. T. Stokke, A. Mikkelsen, and D. Branton, "The molecular basis of erythrocyte shape," Science 234, 1217 (1986).
[CrossRef] [PubMed]

Supplementary Material (6)

» Media 1: AVI (1974 KB)     
» Media 2: AVI (3925 KB)     
» Media 3: AVI (3204 KB)     
» Media 4: AVI (5964 KB)     
» Media 5: AVI (2041 KB)     
» Media 6: AVI (5749 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(Color online) (a) Distribution of an evanescent wave focal spot at the interface between the cover slip (n=1.78) and water (n=1.33), produced by a high NA objective (NA=1.65) obstructed by a circular opaque disk. The 3D distribution represents the calculated modulus squared of the electric field in the focal region. The strength of the evanescent wave decays rapidly with the distance d. The evanescent focal spot exhibits two peaks that play a critical role in near-field trapping, rotation and folding. (b) Stress profile on a biconcave RBC oriented horizontally. (c) Stress profile on a biconcave RBC oriented vertically.

Fig. 2.
Fig. 2.

Optical rotation of a trapped RBC in near-field laser tweezers. (a) - (c) Successive frames taken from the video (Supplementary Movie 3) show the rotation of an RBC trapped in the horizontal plane. (d) The rotation speed ω as a function of the trapping power in the horizontal plane. The arrow indicates the change in the direction of the incident laser polarization. [Media 3]

Fig. 3.
Fig. 3.

(Color online) Optical squeezing and stretching of a trapped RBC in near-field laser tweezers. (a) - (c) Successive frames taken from the video (Supplementary Movie 4) show the squeezing and stretching of an RBC trapped in the horizontal plane. (d) - (f) Successive frames taken from the video (Supplementary Movie 5) show the squeezing of an RBC trapped in the vertical plane. (g) The dependence of the RBC size as a function of the trapping power in the horizontal and vertical planes, where the conditions corresponding to (a) - (f) are marked. [Media 4][Media 5]

Fig. 4.
Fig. 4.

Optical folding of a trapped RBC in near-field laser tweezers. (a) - (c) Successive frames taken from the video (Supplementary Movie 6) show the folding of an RBC trapped in the horizontal plane. (d) The dependence of the folding angle of an RBC trapped in the horizontal plane as a function of the trapping power, where the conditions corresponding to (a) - (c) are marked. [Media 6]

Metrics