Abstract

We present an improved adaptive mesh process that allows the accurate control of the numerical solution of interest derived from the solution of the partial differential equation. In the cases of two-dimensional studies, such an adaptive meshing is applied to compute phenomenon involving high field gradients in near-field (electric intensity, Poynting’s vector, optical forces,…). We show, that this improved scheme permits to decrease drastically the computationnal time and the memory requirements.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods

Thomas Grosges, Alexandre Vial, and Dominique Barchiesi
Opt. Express 13(21) 8483-8497 (2005)

Dynamically adaptive mesh refinement technique for image reconstruction in optical tomography

Vadim Y. Soloviev and Lada V. Krasnosselskaia
Appl. Opt. 45(12) 2828-2837 (2006)

References

  • View by:
  • |
  • |
  • |

  1. J.P. Kottmann and O.J.F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48,1719–1726 (2000).
    [Crossref]
  2. D. Barchiesi, B. Guizal, and T. Grosges, “Accuracy of local field enhancement models: toward predictive models?,” Appl. Phys. B, 84,55–60 (2006).
    [Crossref]
  3. D. Barchiesi, C. Girard, O.J.F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different methods,” Phys. Rev. E 54,4285–4292 (1996).
    [Crossref]
  4. B. Guizal, D. Barchiesi, and D. Felbacq, “Electromagnetic beam diffraction by a finite lamellar structure,” J. Opt. Soc. Am. A 20,2274–2280 (2003).
    [Crossref]
  5. T. Grosges, A. Vial, and D. Barchiesi, “Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods,” Opt. Express 13,8483–8497 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-21-8483.
    [Crossref] [PubMed]
  6. M. Born and E. Wolf, Principle of Optics (Pergamon Press, Oxford, 1993).
  7. J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, New York,1993).
  8. P. Ingelström and A. Bondeson, “Goal-Oriented error estimation and h-adaptivity for Maxwell’s equations,” Comput. Methods Appl. Mech. Eng. 192,2597’2616 (2003).
    [Crossref]
  9. P. Houston, I. Perugia, and D. Schotzau, “Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator,” Comput. Methods Appl. Mech. Eng. 194,499–510 (2005).
    [Crossref]
  10. D. Pardo, L. Demkowicz, C. Torre-Verdìn, and L. Tabarovsky, “A goal-oriented hp-adaptive nite element method with electromagnetic applications. Part I: Electrostatics,” Int. J. Numer. Methods Eng. 65,1269–1309 (2005).
    [Crossref]
  11. D. Xue and L. Demkowicz, “Modeling of electromagnetic absorption/scattering problems on curvilinear geometries using hp finite/infinite element method,” Finite Elem. Anal. Design 42,570–579 (2006).
    [Crossref]
  12. H. Borouchaki, P. Lang, A. Cherouat, and K. Saanouni, “Adaptive remeshing in large plastic strain with damage,” Int. J. Numer. Methods Eng. 63,1–36 (2005).
    [Crossref]
  13. M. Berzins, “Mesh quality: a function of geometry, error estimates or both?,” Eng. Comput. 15,236–247 (1999).
    [Crossref]
  14. M. Ainsworth and J.T. Oden, “A posteriori error estimation in finite element analysis,” Comput. Methods Appl. Mech. Eng. 142,1–88 (1997).
    [Crossref]
  15. R. Radovitzky and M. Ortiz, “Error estimation and adaptive meshing in strongly non-linear dynamic problems,” Comput. Methods Appl. Mech. Eng. 172,203–240 (1999).
    [Crossref]
  16. P Laug and H Borouchaki 2003 “BL2D-V2: mailleur bidimensionnel adaptatif,” Report INRIA RT-0275http://www-rocq1.inria.fr/gamma/cdrom/www/bl2d-v2/INDEX.html
  17. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25,377–445 (1908).
    [Crossref]
  18. H. Du, “Mie-scattering calculation,” Appl. Opt. 43,1951–1956 (2004).
    [Crossref] [PubMed]
  19. C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94,113901–4 (2005).
    [Crossref] [PubMed]
  20. T.A. Davis and I.S. Duff, “A combined unifrontal multifrontal method for unsymmetric sparse matrices,” ACM T. Math Software 25,1–20 (1999).
    [Crossref]

2006 (2)

D. Barchiesi, B. Guizal, and T. Grosges, “Accuracy of local field enhancement models: toward predictive models?,” Appl. Phys. B, 84,55–60 (2006).
[Crossref]

D. Xue and L. Demkowicz, “Modeling of electromagnetic absorption/scattering problems on curvilinear geometries using hp finite/infinite element method,” Finite Elem. Anal. Design 42,570–579 (2006).
[Crossref]

2005 (5)

H. Borouchaki, P. Lang, A. Cherouat, and K. Saanouni, “Adaptive remeshing in large plastic strain with damage,” Int. J. Numer. Methods Eng. 63,1–36 (2005).
[Crossref]

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94,113901–4 (2005).
[Crossref] [PubMed]

T. Grosges, A. Vial, and D. Barchiesi, “Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods,” Opt. Express 13,8483–8497 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-21-8483.
[Crossref] [PubMed]

P. Houston, I. Perugia, and D. Schotzau, “Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator,” Comput. Methods Appl. Mech. Eng. 194,499–510 (2005).
[Crossref]

D. Pardo, L. Demkowicz, C. Torre-Verdìn, and L. Tabarovsky, “A goal-oriented hp-adaptive nite element method with electromagnetic applications. Part I: Electrostatics,” Int. J. Numer. Methods Eng. 65,1269–1309 (2005).
[Crossref]

2004 (1)

2003 (2)

P. Ingelström and A. Bondeson, “Goal-Oriented error estimation and h-adaptivity for Maxwell’s equations,” Comput. Methods Appl. Mech. Eng. 192,2597’2616 (2003).
[Crossref]

B. Guizal, D. Barchiesi, and D. Felbacq, “Electromagnetic beam diffraction by a finite lamellar structure,” J. Opt. Soc. Am. A 20,2274–2280 (2003).
[Crossref]

2000 (1)

J.P. Kottmann and O.J.F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48,1719–1726 (2000).
[Crossref]

1999 (3)

T.A. Davis and I.S. Duff, “A combined unifrontal multifrontal method for unsymmetric sparse matrices,” ACM T. Math Software 25,1–20 (1999).
[Crossref]

R. Radovitzky and M. Ortiz, “Error estimation and adaptive meshing in strongly non-linear dynamic problems,” Comput. Methods Appl. Mech. Eng. 172,203–240 (1999).
[Crossref]

M. Berzins, “Mesh quality: a function of geometry, error estimates or both?,” Eng. Comput. 15,236–247 (1999).
[Crossref]

1997 (1)

M. Ainsworth and J.T. Oden, “A posteriori error estimation in finite element analysis,” Comput. Methods Appl. Mech. Eng. 142,1–88 (1997).
[Crossref]

1996 (1)

D. Barchiesi, C. Girard, O.J.F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different methods,” Phys. Rev. E 54,4285–4292 (1996).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25,377–445 (1908).
[Crossref]

Ainsworth, M.

M. Ainsworth and J.T. Oden, “A posteriori error estimation in finite element analysis,” Comput. Methods Appl. Mech. Eng. 142,1–88 (1997).
[Crossref]

Barchiesi, D.

D. Barchiesi, B. Guizal, and T. Grosges, “Accuracy of local field enhancement models: toward predictive models?,” Appl. Phys. B, 84,55–60 (2006).
[Crossref]

T. Grosges, A. Vial, and D. Barchiesi, “Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods,” Opt. Express 13,8483–8497 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-21-8483.
[Crossref] [PubMed]

B. Guizal, D. Barchiesi, and D. Felbacq, “Electromagnetic beam diffraction by a finite lamellar structure,” J. Opt. Soc. Am. A 20,2274–2280 (2003).
[Crossref]

D. Barchiesi, C. Girard, O.J.F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different methods,” Phys. Rev. E 54,4285–4292 (1996).
[Crossref]

Berzins, M.

M. Berzins, “Mesh quality: a function of geometry, error estimates or both?,” Eng. Comput. 15,236–247 (1999).
[Crossref]

Bondeson, A.

P. Ingelström and A. Bondeson, “Goal-Oriented error estimation and h-adaptivity for Maxwell’s equations,” Comput. Methods Appl. Mech. Eng. 192,2597’2616 (2003).
[Crossref]

Born, M.

M. Born and E. Wolf, Principle of Optics (Pergamon Press, Oxford, 1993).

Borouchaki, H

P Laug and H Borouchaki 2003 “BL2D-V2: mailleur bidimensionnel adaptatif,” Report INRIA RT-0275http://www-rocq1.inria.fr/gamma/cdrom/www/bl2d-v2/INDEX.html

Borouchaki, H.

H. Borouchaki, P. Lang, A. Cherouat, and K. Saanouni, “Adaptive remeshing in large plastic strain with damage,” Int. J. Numer. Methods Eng. 63,1–36 (2005).
[Crossref]

Cherouat, A.

H. Borouchaki, P. Lang, A. Cherouat, and K. Saanouni, “Adaptive remeshing in large plastic strain with damage,” Int. J. Numer. Methods Eng. 63,1–36 (2005).
[Crossref]

Courjon, D.

D. Barchiesi, C. Girard, O.J.F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different methods,” Phys. Rev. E 54,4285–4292 (1996).
[Crossref]

Davis, T.A.

T.A. Davis and I.S. Duff, “A combined unifrontal multifrontal method for unsymmetric sparse matrices,” ACM T. Math Software 25,1–20 (1999).
[Crossref]

Demkowicz, L.

D. Xue and L. Demkowicz, “Modeling of electromagnetic absorption/scattering problems on curvilinear geometries using hp finite/infinite element method,” Finite Elem. Anal. Design 42,570–579 (2006).
[Crossref]

D. Pardo, L. Demkowicz, C. Torre-Verdìn, and L. Tabarovsky, “A goal-oriented hp-adaptive nite element method with electromagnetic applications. Part I: Electrostatics,” Int. J. Numer. Methods Eng. 65,1269–1309 (2005).
[Crossref]

Du, H.

Duff, I.S.

T.A. Davis and I.S. Duff, “A combined unifrontal multifrontal method for unsymmetric sparse matrices,” ACM T. Math Software 25,1–20 (1999).
[Crossref]

Felbacq, D.

Girard, C.

D. Barchiesi, C. Girard, O.J.F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different methods,” Phys. Rev. E 54,4285–4292 (1996).
[Crossref]

Grosges, T.

Guizal, B.

D. Barchiesi, B. Guizal, and T. Grosges, “Accuracy of local field enhancement models: toward predictive models?,” Appl. Phys. B, 84,55–60 (2006).
[Crossref]

B. Guizal, D. Barchiesi, and D. Felbacq, “Electromagnetic beam diffraction by a finite lamellar structure,” J. Opt. Soc. Am. A 20,2274–2280 (2003).
[Crossref]

Houston, P.

P. Houston, I. Perugia, and D. Schotzau, “Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator,” Comput. Methods Appl. Mech. Eng. 194,499–510 (2005).
[Crossref]

Ingelström, P.

P. Ingelström and A. Bondeson, “Goal-Oriented error estimation and h-adaptivity for Maxwell’s equations,” Comput. Methods Appl. Mech. Eng. 192,2597’2616 (2003).
[Crossref]

Jin, J.

J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, New York,1993).

Kim, D.S.

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94,113901–4 (2005).
[Crossref] [PubMed]

Kim, J.

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94,113901–4 (2005).
[Crossref] [PubMed]

Kottmann, J.P.

J.P. Kottmann and O.J.F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48,1719–1726 (2000).
[Crossref]

Labeke, D. Van

D. Barchiesi, C. Girard, O.J.F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different methods,” Phys. Rev. E 54,4285–4292 (1996).
[Crossref]

Lang, P.

H. Borouchaki, P. Lang, A. Cherouat, and K. Saanouni, “Adaptive remeshing in large plastic strain with damage,” Int. J. Numer. Methods Eng. 63,1–36 (2005).
[Crossref]

Laug, P

P Laug and H Borouchaki 2003 “BL2D-V2: mailleur bidimensionnel adaptatif,” Report INRIA RT-0275http://www-rocq1.inria.fr/gamma/cdrom/www/bl2d-v2/INDEX.html

Lienau, C.

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94,113901–4 (2005).
[Crossref] [PubMed]

Martin, O.J.F.

J.P. Kottmann and O.J.F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48,1719–1726 (2000).
[Crossref]

D. Barchiesi, C. Girard, O.J.F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different methods,” Phys. Rev. E 54,4285–4292 (1996).
[Crossref]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25,377–445 (1908).
[Crossref]

Oden, J.T.

M. Ainsworth and J.T. Oden, “A posteriori error estimation in finite element analysis,” Comput. Methods Appl. Mech. Eng. 142,1–88 (1997).
[Crossref]

Ortiz, M.

R. Radovitzky and M. Ortiz, “Error estimation and adaptive meshing in strongly non-linear dynamic problems,” Comput. Methods Appl. Mech. Eng. 172,203–240 (1999).
[Crossref]

Pardo, D.

D. Pardo, L. Demkowicz, C. Torre-Verdìn, and L. Tabarovsky, “A goal-oriented hp-adaptive nite element method with electromagnetic applications. Part I: Electrostatics,” Int. J. Numer. Methods Eng. 65,1269–1309 (2005).
[Crossref]

Park, D.J.

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94,113901–4 (2005).
[Crossref] [PubMed]

Perugia, I.

P. Houston, I. Perugia, and D. Schotzau, “Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator,” Comput. Methods Appl. Mech. Eng. 194,499–510 (2005).
[Crossref]

Radovitzky, R.

R. Radovitzky and M. Ortiz, “Error estimation and adaptive meshing in strongly non-linear dynamic problems,” Comput. Methods Appl. Mech. Eng. 172,203–240 (1999).
[Crossref]

Ropers, C.

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94,113901–4 (2005).
[Crossref] [PubMed]

Saanouni, K.

H. Borouchaki, P. Lang, A. Cherouat, and K. Saanouni, “Adaptive remeshing in large plastic strain with damage,” Int. J. Numer. Methods Eng. 63,1–36 (2005).
[Crossref]

Schotzau, D.

P. Houston, I. Perugia, and D. Schotzau, “Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator,” Comput. Methods Appl. Mech. Eng. 194,499–510 (2005).
[Crossref]

Steinmeyer, G.

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94,113901–4 (2005).
[Crossref] [PubMed]

Stibenz, G.

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94,113901–4 (2005).
[Crossref] [PubMed]

Tabarovsky, L.

D. Pardo, L. Demkowicz, C. Torre-Verdìn, and L. Tabarovsky, “A goal-oriented hp-adaptive nite element method with electromagnetic applications. Part I: Electrostatics,” Int. J. Numer. Methods Eng. 65,1269–1309 (2005).
[Crossref]

Torre-Verdìn, C.

D. Pardo, L. Demkowicz, C. Torre-Verdìn, and L. Tabarovsky, “A goal-oriented hp-adaptive nite element method with electromagnetic applications. Part I: Electrostatics,” Int. J. Numer. Methods Eng. 65,1269–1309 (2005).
[Crossref]

Vial, A.

Wolf, E.

M. Born and E. Wolf, Principle of Optics (Pergamon Press, Oxford, 1993).

Xue, D.

D. Xue and L. Demkowicz, “Modeling of electromagnetic absorption/scattering problems on curvilinear geometries using hp finite/infinite element method,” Finite Elem. Anal. Design 42,570–579 (2006).
[Crossref]

ACM T. Math Software (1)

T.A. Davis and I.S. Duff, “A combined unifrontal multifrontal method for unsymmetric sparse matrices,” ACM T. Math Software 25,1–20 (1999).
[Crossref]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25,377–445 (1908).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

D. Barchiesi, B. Guizal, and T. Grosges, “Accuracy of local field enhancement models: toward predictive models?,” Appl. Phys. B, 84,55–60 (2006).
[Crossref]

Comput. Methods Appl. Mech. Eng. (4)

P. Ingelström and A. Bondeson, “Goal-Oriented error estimation and h-adaptivity for Maxwell’s equations,” Comput. Methods Appl. Mech. Eng. 192,2597’2616 (2003).
[Crossref]

P. Houston, I. Perugia, and D. Schotzau, “Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator,” Comput. Methods Appl. Mech. Eng. 194,499–510 (2005).
[Crossref]

M. Ainsworth and J.T. Oden, “A posteriori error estimation in finite element analysis,” Comput. Methods Appl. Mech. Eng. 142,1–88 (1997).
[Crossref]

R. Radovitzky and M. Ortiz, “Error estimation and adaptive meshing in strongly non-linear dynamic problems,” Comput. Methods Appl. Mech. Eng. 172,203–240 (1999).
[Crossref]

Eng. Comput. (1)

M. Berzins, “Mesh quality: a function of geometry, error estimates or both?,” Eng. Comput. 15,236–247 (1999).
[Crossref]

Finite Elem. Anal. Design (1)

D. Xue and L. Demkowicz, “Modeling of electromagnetic absorption/scattering problems on curvilinear geometries using hp finite/infinite element method,” Finite Elem. Anal. Design 42,570–579 (2006).
[Crossref]

IEEE Trans. Antennas Propag. (1)

J.P. Kottmann and O.J.F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48,1719–1726 (2000).
[Crossref]

Int. J. Numer. Methods Eng. (2)

H. Borouchaki, P. Lang, A. Cherouat, and K. Saanouni, “Adaptive remeshing in large plastic strain with damage,” Int. J. Numer. Methods Eng. 63,1–36 (2005).
[Crossref]

D. Pardo, L. Demkowicz, C. Torre-Verdìn, and L. Tabarovsky, “A goal-oriented hp-adaptive nite element method with electromagnetic applications. Part I: Electrostatics,” Int. J. Numer. Methods Eng. 65,1269–1309 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Phys. Rev. E (1)

D. Barchiesi, C. Girard, O.J.F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different methods,” Phys. Rev. E 54,4285–4292 (1996).
[Crossref]

Phys. Rev. Lett. (1)

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94,113901–4 (2005).
[Crossref] [PubMed]

Other (3)

M. Born and E. Wolf, Principle of Optics (Pergamon Press, Oxford, 1993).

J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, New York,1993).

P Laug and H Borouchaki 2003 “BL2D-V2: mailleur bidimensionnel adaptatif,” Report INRIA RT-0275http://www-rocq1.inria.fr/gamma/cdrom/www/bl2d-v2/INDEX.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Remeshing of one element e 1 1 into ek 2 for (a) the basic adaptation (k = 1−2, with 3 nodes), (b) the adaptation with the h-method interpolating the error on the PDE solution (Hz ) and (c) the improved adaptive scheme. The adaptives scheme (b) and the improved one (c) using h-method produce more than two new elements (k = 1−4, with 5 nodes). Moreover, with the basic adaptation (a) and the a posteriori h-method (b), the error is estimated on the computed PDE solution Hi k . This contrast to the improved scheme (c) for which Sϕk i denotes the interpolation error of the solution of interest (ϕ = E or ϕ = P,‥) on the remeshing with respect to the threshold δϕi for the iterative step i.

Fig. 2.
Fig. 2.

Geometry of the study for the infinite circular-cylinder along the z-axis illuminated by a p-polarized incident wave of vector k.

Fig. 3.
Fig. 3.

Normalized intensity of the electric field ∣E2/∣E0 2 in the xy-plane computed by the FEM with the classical adaptive remeshing (a,c,e) and the improved adaptive scheme (b,d,f). The number of nodes are (a) Nnodes = 892, (b) Nnodes = 768, (c) Nnodes = 4818, (d) Nnodes = 5556, (e) Nnodes = 71260 and (f) Nnodes = 31669, respectively.

Fig. 4.
Fig. 4.

Computational mesh for the classical adaptive remeshing (a,c,e) and the improved adaptive scheme (b,d,f).

Fig. 5.
Fig. 5.

Last computational mesh for (a) the improved adaptive scheme and (b) the classical adaptive remeshing. The adaptation to the solution of interest (intensity of the electric field) clearly appears with the improved remeshing.

Fig. 6.
Fig. 6.

Normalized intensity of the magnetic field ∣H2/∣H0 2 in the xy-plane computed by the FEM with classical adaptive remeshing (a,c,e) and improved adaptive scheme (b,d,f). The number of nodes are (a) Nnodes = 892, (b) Nnodes = 768, (c) Nnodes = 4818, (d) Nnodes = 5556, (e) Nnodes = 71260 and (f) Nnodes = 31669, respectively.

Fig. 7.
Fig. 7.

Evolution of the normalized intensity of the electric and magnetic field as a function of the mesh refinement (a,c) and (b,d) the errors, relatively to Mie computation, as a function of the distance from the center of the nano-object (radius a = 15 nm) along the x-axis for successive mesh refinements with the classical and the improved adaptive remeshing.

Fig. 8.
Fig. 8.

Geometry of the study for the infinite square-cylinder along the z-axis.

Fig. 9.
Fig. 9.

Normalized amplitude of the Poynting’s vector ∣P∣/∣P0 ∣ computed by the FEM with improved adaptive mesh scheme and the mesh view for (a,b) Nnodes = 3371, (c,d) Nnodes = 13205 and (e,f) Nnodes = 78175, respectively.

Fig. 10.
Fig. 10.

Evolution of the intensity as a function of the distance along (a) the x-axis and (b) the y-axis, for various mesh refinements.

Tables (1)

Tables Icon

Table 1. Number of nodes and computational time (in s) for each mesh step for the classical remeshing and the improved adaptive remeshing process.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

[ · ( 1 ε r ) + ω 2 c 2 ] H z = 0 in Ω ,
E x y = j ωε ( × H x y ) ,
P x y = 1 2 ( E x y × H * x y ) ,
η C η ˜
ψ u ν = P + ψ u u + ψ ν ν + 1 2 ( ψ uu ʺ u 2 + 2 ψ ʺ + ψ νν ʺ ν 2 ) + o ( u 2 + ν 2 ) e ̂
1 2 ( n ( P ) ψ uu ʺ u 2 + 2 n ( P ) ψ ʺ + n ( P ) ψ νν ʺ ) + o ( u 2 + ν 2 )
h ϕ ( w ) = δ ϕ η ( w , S ( w ) )

Metrics