Abstract

In this work, we report on the light focusing ability exploited by the microshell of a marine organism: the Coscinodiscus wailesii diatom. A 100 µm spot size of a red laser beam is narrowed up to less than 10 µm at a distance of 104 µm after the transmission through the regular geometry of the diatom structure, which thus acts as a microlens. Numerical simulations of the electromagnetic field propagation show a good qualitative agreement with the experimental results. The focusing effect is due to the superposition of the waves scattered by the holes present on the surface of the diatom valve. Very interesting applications in micro-optic devices are feasible due to the morphological and biological characteristic of these unicellular organisms.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Baltes, O. Brand, G. K. Fedder, C. Nierold, J. G. Korvink, O. Tabata, Enabling Technology for MEMS and Nanodevices, (Wiley-VCH, Weinheim, 2004).
  2. V. C. Sundar, A. D. Yablon, J. L. Grazul, M. Ilan, J. Aizenberg, "Fibre-optical features of a glass sponge," Nature 424, 899-900 (2003).
    [CrossRef] [PubMed]
  3. P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-5 (2003).
    [CrossRef] [PubMed]
  4. F. E. Round, R. M. Crawford, D. G. Mann, The Diatoms. Biology and Morphology of the Genera, (Cambridge University Press, Cambridge, 1990).
  5. M. Sumper, "A phase separation model for the nanopatterning of diatom biosilica," Science 295, 2430-33 (1990).
    [CrossRef]
  6. M. Sumper and E. Brunner, "Learning from diatoms: nature’s tools for the production of nanostructured silica,"Adv. Funct. Mater. 16, 17-26 (2006).
    [CrossRef]
  7. G. Josten, H. P. Weber, W. Luethy, "Lensless focusing with an array of phase-adjusted optical fibers," Appl. Opt. 28, 5133-37 (1989).
    [CrossRef] [PubMed]
  8. M. De Stefano and L. De Stefano, "Nanostructures in diatom frustules: functional morphology of valvocopulae in Cocconeidacean monoraphid taxa," Journal of Nanoscience and Nanotechnology 5, 15-24, (2005).
    [CrossRef] [PubMed]
  9. J. D. Joannopoulus, R. D. Meade, J. N. Winn, Photonic crystals. Molding the flow of light. (Princeton University Press, Princeton, NJ, 1995).
  10. Results are the subject of a different paper.
  11. S. S. Hong, B. K. P. Horn, D. M. Freeman, M. S. Mermelstein, "Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum," Appl. Phys. Lett. 88, 261107 (2006).
    [CrossRef]
  12. P. Xi, C. Zhou, E. Dai, and L. Liu, "Generation of near-field hexagonal array illumination with a phase grating," Opt. Lett. 27, 228 (2002).
    [CrossRef]
  13. F. M. Huang, N. Zheludev, Y. Chen, F. J. Garcia de Abajo, "Focusing of light by a nanohole array," Appl. Phys. Lett. 90, 091119 (2007).
    [CrossRef]
  14. M. Born and E. Wolf, Principles of Optics, 6th Edition, (Pergamon Press, 1980).
  15. G. R. Wein, "A video technique for the quantitative analysis of the Poisson spot and other diffraction patterns," Am. J. Phys. 67, 236 (1999).
    [CrossRef]
  16. R. L. Lucke, "Rayleigh-Sommerfeld diffraction and Poisson’s spot," Eur. J. Phys. 27, 193 (2006).
    [CrossRef]
  17. Q1. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, "Numerical Techniques for Modeling Guided-Wave Photonic Devices," IEEE J. Sel. Top. Quantum Electron. 6, 150 (2000).
    [CrossRef]
  18. G. R. Hadley, "Wide-angle beam propagation using Pade approximant operators," Opt. Lett. 17, 1426, (1992).
    [CrossRef] [PubMed]
  19. T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, M. Sumper, "Diatoms as living photonic crystals," Appl. Phys. B 78, 257-260 (2004).
    [CrossRef]
  20. H. Ottevaere and H. Thienpont, "Comparative study of glass and plastic refractive microlenses and their fabrication techniques," Proceedings of the Symposium IEEE/LEOS Benelux Chapter: 218-221 (2002).
  21. Q2. M. R. Weatherspoon, M. A. Allan, E. Hunt, Y. Cai, K. H. Sandhage, "Sol-gel synthesis on self-replicating single-cell scaffolds: applying complex chemistries to nature’s 3-D nanostructured templates," Chem. Commun. 651-653, (2005).
    [CrossRef]
  22. C. E. Hamm, R. Merkel, O. Springer, P. Jurkojc, C. Maier, K. Prechtel, V. Smetacek, "Architecture and material properties of diatom shells provide effective mechanical protection," Nature 421, 841-843 (2003).
    [CrossRef] [PubMed]
  23. B. Stager, M. T. Gale, M. Rossi, "Replicated micro-optics for automotive applications," Proc. SPIE 5663, 238-245 (2005).
    [CrossRef]

2007

F. M. Huang, N. Zheludev, Y. Chen, F. J. Garcia de Abajo, "Focusing of light by a nanohole array," Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

2006

S. S. Hong, B. K. P. Horn, D. M. Freeman, M. S. Mermelstein, "Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum," Appl. Phys. Lett. 88, 261107 (2006).
[CrossRef]

M. Sumper and E. Brunner, "Learning from diatoms: nature’s tools for the production of nanostructured silica,"Adv. Funct. Mater. 16, 17-26 (2006).
[CrossRef]

R. L. Lucke, "Rayleigh-Sommerfeld diffraction and Poisson’s spot," Eur. J. Phys. 27, 193 (2006).
[CrossRef]

2005

M. De Stefano and L. De Stefano, "Nanostructures in diatom frustules: functional morphology of valvocopulae in Cocconeidacean monoraphid taxa," Journal of Nanoscience and Nanotechnology 5, 15-24, (2005).
[CrossRef] [PubMed]

Q2. M. R. Weatherspoon, M. A. Allan, E. Hunt, Y. Cai, K. H. Sandhage, "Sol-gel synthesis on self-replicating single-cell scaffolds: applying complex chemistries to nature’s 3-D nanostructured templates," Chem. Commun. 651-653, (2005).
[CrossRef]

B. Stager, M. T. Gale, M. Rossi, "Replicated micro-optics for automotive applications," Proc. SPIE 5663, 238-245 (2005).
[CrossRef]

2004

T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, M. Sumper, "Diatoms as living photonic crystals," Appl. Phys. B 78, 257-260 (2004).
[CrossRef]

2003

C. E. Hamm, R. Merkel, O. Springer, P. Jurkojc, C. Maier, K. Prechtel, V. Smetacek, "Architecture and material properties of diatom shells provide effective mechanical protection," Nature 421, 841-843 (2003).
[CrossRef] [PubMed]

V. C. Sundar, A. D. Yablon, J. L. Grazul, M. Ilan, J. Aizenberg, "Fibre-optical features of a glass sponge," Nature 424, 899-900 (2003).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-5 (2003).
[CrossRef] [PubMed]

2002

2000

Q1. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, "Numerical Techniques for Modeling Guided-Wave Photonic Devices," IEEE J. Sel. Top. Quantum Electron. 6, 150 (2000).
[CrossRef]

1999

G. R. Wein, "A video technique for the quantitative analysis of the Poisson spot and other diffraction patterns," Am. J. Phys. 67, 236 (1999).
[CrossRef]

1992

1990

M. Sumper, "A phase separation model for the nanopatterning of diatom biosilica," Science 295, 2430-33 (1990).
[CrossRef]

1989

Aizenberg, J.

V. C. Sundar, A. D. Yablon, J. L. Grazul, M. Ilan, J. Aizenberg, "Fibre-optical features of a glass sponge," Nature 424, 899-900 (2003).
[CrossRef] [PubMed]

Allan, M. A.

Q2. M. R. Weatherspoon, M. A. Allan, E. Hunt, Y. Cai, K. H. Sandhage, "Sol-gel synthesis on self-replicating single-cell scaffolds: applying complex chemistries to nature’s 3-D nanostructured templates," Chem. Commun. 651-653, (2005).
[CrossRef]

Brunner, E.

M. Sumper and E. Brunner, "Learning from diatoms: nature’s tools for the production of nanostructured silica,"Adv. Funct. Mater. 16, 17-26 (2006).
[CrossRef]

Cai, Y.

Q2. M. R. Weatherspoon, M. A. Allan, E. Hunt, Y. Cai, K. H. Sandhage, "Sol-gel synthesis on self-replicating single-cell scaffolds: applying complex chemistries to nature’s 3-D nanostructured templates," Chem. Commun. 651-653, (2005).
[CrossRef]

Chen, Y.

F. M. Huang, N. Zheludev, Y. Chen, F. J. Garcia de Abajo, "Focusing of light by a nanohole array," Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

Dai, E.

De Stefano, L.

M. De Stefano and L. De Stefano, "Nanostructures in diatom frustules: functional morphology of valvocopulae in Cocconeidacean monoraphid taxa," Journal of Nanoscience and Nanotechnology 5, 15-24, (2005).
[CrossRef] [PubMed]

De Stefano, M.

M. De Stefano and L. De Stefano, "Nanostructures in diatom frustules: functional morphology of valvocopulae in Cocconeidacean monoraphid taxa," Journal of Nanoscience and Nanotechnology 5, 15-24, (2005).
[CrossRef] [PubMed]

El Rharbi-Kucki, M.

T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, M. Sumper, "Diatoms as living photonic crystals," Appl. Phys. B 78, 257-260 (2004).
[CrossRef]

Freeman, D. M.

S. S. Hong, B. K. P. Horn, D. M. Freeman, M. S. Mermelstein, "Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum," Appl. Phys. Lett. 88, 261107 (2006).
[CrossRef]

Fuhrmann, T.

T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, M. Sumper, "Diatoms as living photonic crystals," Appl. Phys. B 78, 257-260 (2004).
[CrossRef]

Gale, M. T.

B. Stager, M. T. Gale, M. Rossi, "Replicated micro-optics for automotive applications," Proc. SPIE 5663, 238-245 (2005).
[CrossRef]

Garcia de Abajo, F. J.

F. M. Huang, N. Zheludev, Y. Chen, F. J. Garcia de Abajo, "Focusing of light by a nanohole array," Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

Gopinath, A.

Q1. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, "Numerical Techniques for Modeling Guided-Wave Photonic Devices," IEEE J. Sel. Top. Quantum Electron. 6, 150 (2000).
[CrossRef]

Grazul, J. L.

V. C. Sundar, A. D. Yablon, J. L. Grazul, M. Ilan, J. Aizenberg, "Fibre-optical features of a glass sponge," Nature 424, 899-900 (2003).
[CrossRef] [PubMed]

Hadley, G. R.

Hamm, C. E.

C. E. Hamm, R. Merkel, O. Springer, P. Jurkojc, C. Maier, K. Prechtel, V. Smetacek, "Architecture and material properties of diatom shells provide effective mechanical protection," Nature 421, 841-843 (2003).
[CrossRef] [PubMed]

Helfert, S.

Q1. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, "Numerical Techniques for Modeling Guided-Wave Photonic Devices," IEEE J. Sel. Top. Quantum Electron. 6, 150 (2000).
[CrossRef]

Hong, S. S.

S. S. Hong, B. K. P. Horn, D. M. Freeman, M. S. Mermelstein, "Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum," Appl. Phys. Lett. 88, 261107 (2006).
[CrossRef]

Horn, B. K. P.

S. S. Hong, B. K. P. Horn, D. M. Freeman, M. S. Mermelstein, "Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum," Appl. Phys. Lett. 88, 261107 (2006).
[CrossRef]

Huang, F. M.

F. M. Huang, N. Zheludev, Y. Chen, F. J. Garcia de Abajo, "Focusing of light by a nanohole array," Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

Hunt, E.

Q2. M. R. Weatherspoon, M. A. Allan, E. Hunt, Y. Cai, K. H. Sandhage, "Sol-gel synthesis on self-replicating single-cell scaffolds: applying complex chemistries to nature’s 3-D nanostructured templates," Chem. Commun. 651-653, (2005).
[CrossRef]

Ilan, M.

V. C. Sundar, A. D. Yablon, J. L. Grazul, M. Ilan, J. Aizenberg, "Fibre-optical features of a glass sponge," Nature 424, 899-900 (2003).
[CrossRef] [PubMed]

Josten, G.

Jurkojc, P.

C. E. Hamm, R. Merkel, O. Springer, P. Jurkojc, C. Maier, K. Prechtel, V. Smetacek, "Architecture and material properties of diatom shells provide effective mechanical protection," Nature 421, 841-843 (2003).
[CrossRef] [PubMed]

Landwehr, S.

T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, M. Sumper, "Diatoms as living photonic crystals," Appl. Phys. B 78, 257-260 (2004).
[CrossRef]

Liu, L.

Lucke, R. L.

R. L. Lucke, "Rayleigh-Sommerfeld diffraction and Poisson’s spot," Eur. J. Phys. 27, 193 (2006).
[CrossRef]

Luethy, W.

Maier, C.

C. E. Hamm, R. Merkel, O. Springer, P. Jurkojc, C. Maier, K. Prechtel, V. Smetacek, "Architecture and material properties of diatom shells provide effective mechanical protection," Nature 421, 841-843 (2003).
[CrossRef] [PubMed]

Merkel, R.

C. E. Hamm, R. Merkel, O. Springer, P. Jurkojc, C. Maier, K. Prechtel, V. Smetacek, "Architecture and material properties of diatom shells provide effective mechanical protection," Nature 421, 841-843 (2003).
[CrossRef] [PubMed]

Mermelstein, M. S.

S. S. Hong, B. K. P. Horn, D. M. Freeman, M. S. Mermelstein, "Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum," Appl. Phys. Lett. 88, 261107 (2006).
[CrossRef]

Prechtel, K.

C. E. Hamm, R. Merkel, O. Springer, P. Jurkojc, C. Maier, K. Prechtel, V. Smetacek, "Architecture and material properties of diatom shells provide effective mechanical protection," Nature 421, 841-843 (2003).
[CrossRef] [PubMed]

Pregla, R.

Q1. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, "Numerical Techniques for Modeling Guided-Wave Photonic Devices," IEEE J. Sel. Top. Quantum Electron. 6, 150 (2000).
[CrossRef]

Rossi, M.

B. Stager, M. T. Gale, M. Rossi, "Replicated micro-optics for automotive applications," Proc. SPIE 5663, 238-245 (2005).
[CrossRef]

Sambles, J. R.

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-5 (2003).
[CrossRef] [PubMed]

Sandhage, K. H.

Q2. M. R. Weatherspoon, M. A. Allan, E. Hunt, Y. Cai, K. H. Sandhage, "Sol-gel synthesis on self-replicating single-cell scaffolds: applying complex chemistries to nature’s 3-D nanostructured templates," Chem. Commun. 651-653, (2005).
[CrossRef]

Scarmozzino, R.

Q1. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, "Numerical Techniques for Modeling Guided-Wave Photonic Devices," IEEE J. Sel. Top. Quantum Electron. 6, 150 (2000).
[CrossRef]

Smetacek, V.

C. E. Hamm, R. Merkel, O. Springer, P. Jurkojc, C. Maier, K. Prechtel, V. Smetacek, "Architecture and material properties of diatom shells provide effective mechanical protection," Nature 421, 841-843 (2003).
[CrossRef] [PubMed]

Springer, O.

C. E. Hamm, R. Merkel, O. Springer, P. Jurkojc, C. Maier, K. Prechtel, V. Smetacek, "Architecture and material properties of diatom shells provide effective mechanical protection," Nature 421, 841-843 (2003).
[CrossRef] [PubMed]

Stager, B.

B. Stager, M. T. Gale, M. Rossi, "Replicated micro-optics for automotive applications," Proc. SPIE 5663, 238-245 (2005).
[CrossRef]

Sumper, M.

M. Sumper and E. Brunner, "Learning from diatoms: nature’s tools for the production of nanostructured silica,"Adv. Funct. Mater. 16, 17-26 (2006).
[CrossRef]

T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, M. Sumper, "Diatoms as living photonic crystals," Appl. Phys. B 78, 257-260 (2004).
[CrossRef]

M. Sumper, "A phase separation model for the nanopatterning of diatom biosilica," Science 295, 2430-33 (1990).
[CrossRef]

Sundar, V. C.

V. C. Sundar, A. D. Yablon, J. L. Grazul, M. Ilan, J. Aizenberg, "Fibre-optical features of a glass sponge," Nature 424, 899-900 (2003).
[CrossRef] [PubMed]

Vukusic, P.

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-5 (2003).
[CrossRef] [PubMed]

Weatherspoon, M. R.

Q2. M. R. Weatherspoon, M. A. Allan, E. Hunt, Y. Cai, K. H. Sandhage, "Sol-gel synthesis on self-replicating single-cell scaffolds: applying complex chemistries to nature’s 3-D nanostructured templates," Chem. Commun. 651-653, (2005).
[CrossRef]

Weber, H. P.

Wein, G. R.

G. R. Wein, "A video technique for the quantitative analysis of the Poisson spot and other diffraction patterns," Am. J. Phys. 67, 236 (1999).
[CrossRef]

Xi, P.

Yablon, A. D.

V. C. Sundar, A. D. Yablon, J. L. Grazul, M. Ilan, J. Aizenberg, "Fibre-optical features of a glass sponge," Nature 424, 899-900 (2003).
[CrossRef] [PubMed]

Zheludev, N.

F. M. Huang, N. Zheludev, Y. Chen, F. J. Garcia de Abajo, "Focusing of light by a nanohole array," Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

Zhou, C.

Adv. Funct. Mater.

M. Sumper and E. Brunner, "Learning from diatoms: nature’s tools for the production of nanostructured silica,"Adv. Funct. Mater. 16, 17-26 (2006).
[CrossRef]

Am. J. Phys.

G. R. Wein, "A video technique for the quantitative analysis of the Poisson spot and other diffraction patterns," Am. J. Phys. 67, 236 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. B

T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, M. Sumper, "Diatoms as living photonic crystals," Appl. Phys. B 78, 257-260 (2004).
[CrossRef]

Appl. Phys. Lett.

S. S. Hong, B. K. P. Horn, D. M. Freeman, M. S. Mermelstein, "Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum," Appl. Phys. Lett. 88, 261107 (2006).
[CrossRef]

F. M. Huang, N. Zheludev, Y. Chen, F. J. Garcia de Abajo, "Focusing of light by a nanohole array," Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

Chem. Commun.

Q2. M. R. Weatherspoon, M. A. Allan, E. Hunt, Y. Cai, K. H. Sandhage, "Sol-gel synthesis on self-replicating single-cell scaffolds: applying complex chemistries to nature’s 3-D nanostructured templates," Chem. Commun. 651-653, (2005).
[CrossRef]

Eur. J. Phys.

R. L. Lucke, "Rayleigh-Sommerfeld diffraction and Poisson’s spot," Eur. J. Phys. 27, 193 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Q1. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, "Numerical Techniques for Modeling Guided-Wave Photonic Devices," IEEE J. Sel. Top. Quantum Electron. 6, 150 (2000).
[CrossRef]

Journal of Nanoscience and Nanotechnology

M. De Stefano and L. De Stefano, "Nanostructures in diatom frustules: functional morphology of valvocopulae in Cocconeidacean monoraphid taxa," Journal of Nanoscience and Nanotechnology 5, 15-24, (2005).
[CrossRef] [PubMed]

Nature

V. C. Sundar, A. D. Yablon, J. L. Grazul, M. Ilan, J. Aizenberg, "Fibre-optical features of a glass sponge," Nature 424, 899-900 (2003).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-5 (2003).
[CrossRef] [PubMed]

C. E. Hamm, R. Merkel, O. Springer, P. Jurkojc, C. Maier, K. Prechtel, V. Smetacek, "Architecture and material properties of diatom shells provide effective mechanical protection," Nature 421, 841-843 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE

B. Stager, M. T. Gale, M. Rossi, "Replicated micro-optics for automotive applications," Proc. SPIE 5663, 238-245 (2005).
[CrossRef]

Science

M. Sumper, "A phase separation model for the nanopatterning of diatom biosilica," Science 295, 2430-33 (1990).
[CrossRef]

Other

H. Baltes, O. Brand, G. K. Fedder, C. Nierold, J. G. Korvink, O. Tabata, Enabling Technology for MEMS and Nanodevices, (Wiley-VCH, Weinheim, 2004).

F. E. Round, R. M. Crawford, D. G. Mann, The Diatoms. Biology and Morphology of the Genera, (Cambridge University Press, Cambridge, 1990).

J. D. Joannopoulus, R. D. Meade, J. N. Winn, Photonic crystals. Molding the flow of light. (Princeton University Press, Princeton, NJ, 1995).

Results are the subject of a different paper.

M. Born and E. Wolf, Principles of Optics, 6th Edition, (Pergamon Press, 1980).

H. Ottevaere and H. Thienpont, "Comparative study of glass and plastic refractive microlenses and their fabrication techniques," Proceedings of the Symposium IEEE/LEOS Benelux Chapter: 218-221 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Morphology and ultrastructure of Coscinodiscus walesii frustule. a, The valve showing the radial symmetric arrays of areolae arranged in a hexagonal pattern. b, Details of the fine structure of the valve with morphometric measurements of the areolae diameter, interareolae spaces, and thickness (where not reported, bar scale is 1 µm).

Fig. 2.
Fig. 2.

The experimental set-up used to investigate the light transmission characteristic of the diatom valve. Distances are not in scale.

Fig. 3.
Fig. 3.

(a) The intensity distribution of the transmitted light at the distance (z) of 4 µm (top plot) and 104 µm (bottom plot): the red line is the experimental recorded one, the black line is the numerical estimated. (b) The correspondent images of the diatom surface recorded by a CCD at the two distances considered.

Fig. 4.
Fig. 4.

Spot intensity as function of the distance: we have compared the experimental and numerical results due to the diatom with that due to a circular obstacle having the same dimension, which can be modelled by Rayleigh-Sommerfield diffraction theory.

Fig. 5.
Fig. 5.

Relative intensity of the light on the diatom valve surface.

Fig. 6.
Fig. 6.

The calculated focusing distances as a function of the light wavelength.

Metrics