Abstract

The optical resonances of individual plasmonic dimer antennas are investigated using confocal darkfield spectroscopy. Experiments on an array of antennas with varying arm lengths and interparticle gap sizes show large spectral shifts of the plasmon modes due to a combination of geometrical resonances and plasmon hybridization. The resonances of the coupled-dimer antennas are considerably broadened compared to those of single nanorods, which is attributed to a superradiant damping of the coupled antenna modes. The scattering spectra are compared with electrodynamic model calculations that demonstrate both the near-field and far-field characteristics of a half-wave antenna.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Volmer, "Optical Properties of Metal Clusters," Springer Series in Material Science Vol. 25 (Springer-Verlag, Berlin, 1995).
  2. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297,1160 (2002).
    [CrossRef] [PubMed]
  3. A. D. McFarland and R. P. van Duyne, "Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity," Nano Lett. 3, 1057 (2003).
    [CrossRef]
  4. W. L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature 424, 824 (2003).
    [CrossRef] [PubMed]
  5. T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005).
    [CrossRef] [PubMed]
  6. E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189 (2006).
    [CrossRef] [PubMed]
  7. J.C. Ashley and L.C. Emerson, ‘Dispersion relations for non-radiative surface plasmons on cylinders,’ Surf. Sci. 41, 615 (1974).
    [CrossRef]
  8. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061 (1999).
    [CrossRef]
  9. J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner,F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77(12), 3379 (2000).
    [CrossRef]
  10. K. Imura, T. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Phys. Chem. B 10816344 (2004).
    [CrossRef]
  11. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, "Silver Nanowires as Surface Plasmon Resonators," Phys. Rev. Lett. 95, 257403 (2005)
    [CrossRef] [PubMed]
  12. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garc’ýa de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
    [CrossRef]
  13. P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
    [CrossRef] [PubMed]
  14. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, andW. E. Moerner, "Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  15. J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
    [CrossRef] [PubMed]
  16. R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Near-field excitation of nanoantenna resonance," Opt. Express 15,13682 (2007).
    [CrossRef] [PubMed]
  17. T. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "l/4 Resonance of an Optical Monopole Antenna probed by single molecule fluorescence," Nano Lett. 7, 28 (2007).
    [CrossRef] [PubMed]
  18. O. L. Muskens, V. Giannini, J. A. S’anchez Gil, and J. G’omez Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871 (2007).
    [CrossRef] [PubMed]
  19. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley-VCH, 1998).
    [CrossRef]
  20. S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," J. Phys. Chem. B 103, 8410 (1999).
    [CrossRef]
  21. C. S¨onnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
    [CrossRef] [PubMed]
  22. A. Brioude, X. C. Jiang, M. P. Pileni, "Optical Properites of gold nanorods:DDA simulations supported by experiments," J. Phys. Chem. B 109, 13138 (2005).
    [CrossRef]
  23. S. W. Prescott, P. Mulvaney, "Gold Nanorod Extinction Spectra," J. Appl. Phys. 99,123504 (2006)
    [CrossRef]
  24. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef] [PubMed]
  25. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  26. T. Atay, J.-H. Song, and A. V. Nurmikko, "Strong interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627 (2004).
    [CrossRef]
  27. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109,1079, (2005).
    [CrossRef]
  28. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garc’ýa de Abajo, "Optics in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 149988 (2006).
    [CrossRef] [PubMed]
  29. T. Sondergaard and S. I. Bozhevolnyi, "Nano-strip Optical Resonators," Opt. Express 15,4198 (2007).
    [CrossRef] [PubMed]
  30. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties. of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
    [CrossRef]
  31. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003).
    [CrossRef]
  32. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M.I. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2005).
    [CrossRef]
  33. J. P. Kottmann and O. J. F. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. 26, 1096 (2001).
    [CrossRef]
  34. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (General Publishing Company, 1987).

2007 (5)

T. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "l/4 Resonance of an Optical Monopole Antenna probed by single molecule fluorescence," Nano Lett. 7, 28 (2007).
[CrossRef] [PubMed]

O. L. Muskens, V. Giannini, J. A. S’anchez Gil, and J. G’omez Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871 (2007).
[CrossRef] [PubMed]

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

T. Sondergaard and S. I. Bozhevolnyi, "Nano-strip Optical Resonators," Opt. Express 15,4198 (2007).
[CrossRef] [PubMed]

R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Near-field excitation of nanoantenna resonance," Opt. Express 15,13682 (2007).
[CrossRef] [PubMed]

2006 (3)

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garc’ýa de Abajo, "Optics in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 149988 (2006).
[CrossRef] [PubMed]

S. W. Prescott, P. Mulvaney, "Gold Nanorod Extinction Spectra," J. Appl. Phys. 99,123504 (2006)
[CrossRef]

E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189 (2006).
[CrossRef] [PubMed]

2005 (9)

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, "Silver Nanowires as Surface Plasmon Resonators," Phys. Rev. Lett. 95, 257403 (2005)
[CrossRef] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garc’ýa de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, andW. E. Moerner, "Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

A. Brioude, X. C. Jiang, M. P. Pileni, "Optical Properites of gold nanorods:DDA simulations supported by experiments," J. Phys. Chem. B 109, 13138 (2005).
[CrossRef]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109,1079, (2005).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M.I. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2005).
[CrossRef]

2004 (2)

T. Atay, J.-H. Song, and A. V. Nurmikko, "Strong interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627 (2004).
[CrossRef]

K. Imura, T. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Phys. Chem. B 10816344 (2004).
[CrossRef]

2003 (4)

A. D. McFarland and R. P. van Duyne, "Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity," Nano Lett. 3, 1057 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties. of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
[CrossRef]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003).
[CrossRef]

2002 (2)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297,1160 (2002).
[CrossRef] [PubMed]

C. S¨onnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner,F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77(12), 3379 (2000).
[CrossRef]

1999 (2)

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061 (1999).
[CrossRef]

S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," J. Phys. Chem. B 103, 8410 (1999).
[CrossRef]

1974 (1)

J.C. Ashley and L.C. Emerson, ‘Dispersion relations for non-radiative surface plasmons on cylinders,’ Surf. Sci. 41, 615 (1974).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Abdelsalam, M.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005).
[CrossRef] [PubMed]

Aizpurua, J.

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garc’ýa de Abajo, "Optics in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 149988 (2006).
[CrossRef] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garc’ýa de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Ashley, J.C.

J.C. Ashley and L.C. Emerson, ‘Dispersion relations for non-radiative surface plasmons on cylinders,’ Surf. Sci. 41, 615 (1974).
[CrossRef]

Atay, T.

T. Atay, J.-H. Song, and A. V. Nurmikko, "Strong interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627 (2004).
[CrossRef]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties. of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
[CrossRef]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner,F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77(12), 3379 (2000).
[CrossRef]

Aussenegg, F.R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, "Silver Nanowires as Surface Plasmon Resonators," Phys. Rev. Lett. 95, 257403 (2005)
[CrossRef] [PubMed]

Bakker, R. M.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

Bartlett, P. N.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005).
[CrossRef] [PubMed]

Baumberg, J. J.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005).
[CrossRef] [PubMed]

Boltasseva, A.

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297,1160 (2002).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

Brioude, A.

A. Brioude, X. C. Jiang, M. P. Pileni, "Optical Properites of gold nanorods:DDA simulations supported by experiments," J. Phys. Chem. B 109, 13138 (2005).
[CrossRef]

Bryant, G. W.

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garc’ýa de Abajo, "Optics in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 149988 (2006).
[CrossRef] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garc’ýa de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061 (1999).
[CrossRef]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, "Silver Nanowires as Surface Plasmon Resonators," Phys. Rev. Lett. 95, 257403 (2005)
[CrossRef] [PubMed]

Drachev, V. P.

Ebbesen, T.W.

W. L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

Eisler, H.-J.

P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," J. Phys. Chem. B 103, 8410 (1999).
[CrossRef]

Emerson, L.C.

J.C. Ashley and L.C. Emerson, ‘Dispersion relations for non-radiative surface plasmons on cylinders,’ Surf. Sci. 41, 615 (1974).
[CrossRef]

Farahani, J. N.

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Feldmann, J.

C. S¨onnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Franzl, T.

C. S¨onnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, andW. E. Moerner, "Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Garc’ýa de Abajo, F. J.

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garc’ýa de Abajo, "Optics in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 149988 (2006).
[CrossRef] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garc’ýa de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Giannini, V.

O. L. Muskens, V. Giannini, J. A. S’anchez Gil, and J. G’omez Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871 (2007).
[CrossRef] [PubMed]

Girard, C.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061 (1999).
[CrossRef]

Goudonnet, J.-P.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061 (1999).
[CrossRef]

Gresillon, S.

Gunnarsson, L.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109,1079, (2005).
[CrossRef]

Hecht, B.

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, "Silver Nanowires as Surface Plasmon Resonators," Phys. Rev. Lett. 95, 257403 (2005)
[CrossRef] [PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, "Silver Nanowires as Surface Plasmon Resonators," Phys. Rev. Lett. 95, 257403 (2005)
[CrossRef] [PubMed]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties. of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
[CrossRef]

Imura, K.

K. Imura, T. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Phys. Chem. B 10816344 (2004).
[CrossRef]

Jiang, X. C.

A. Brioude, X. C. Jiang, M. P. Pileni, "Optical Properites of gold nanorods:DDA simulations supported by experiments," J. Phys. Chem. B 109, 13138 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kasemo, B.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109,1079, (2005).
[CrossRef]

Kelf, T. A.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005).
[CrossRef] [PubMed]

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garc’ýa de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Kildishev, A. V.

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, andW. E. Moerner, "Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Kll, M.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109,1079, (2005).
[CrossRef]

Kottmann, J. P.

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, "Silver Nanowires as Surface Plasmon Resonators," Phys. Rev. Lett. 95, 257403 (2005)
[CrossRef] [PubMed]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties. of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
[CrossRef]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner,F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77(12), 3379 (2000).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061 (1999).
[CrossRef]

Krenn, J.R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, "Silver Nanowires as Surface Plasmon Resonators," Phys. Rev. Lett. 95, 257403 (2005)
[CrossRef] [PubMed]

Kuipers, L.

T. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "l/4 Resonance of an Optical Monopole Antenna probed by single molecule fluorescence," Nano Lett. 7, 28 (2007).
[CrossRef] [PubMed]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties. of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
[CrossRef]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner,F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77(12), 3379 (2000).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties. of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
[CrossRef]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner,F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77(12), 3379 (2000).
[CrossRef]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M.I. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2005).
[CrossRef]

Link, S.

S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," J. Phys. Chem. B 103, 8410 (1999).
[CrossRef]

Liu, Z.

Lounis, B.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297,1160 (2002).
[CrossRef] [PubMed]

M¨uhlschlegel, P.

P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297,1160 (2002).
[CrossRef] [PubMed]

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garc’ýa de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Martin, O. J. F.

P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

J. P. Kottmann and O. J. F. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. 26, 1096 (2001).
[CrossRef]

McFarland, A. D.

A. D. McFarland and R. P. van Duyne, "Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity," Nano Lett. 3, 1057 (2003).
[CrossRef]

Mock, J. J.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003).
[CrossRef]

Moerland, R. J.

T. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "l/4 Resonance of an Optical Monopole Antenna probed by single molecule fluorescence," Nano Lett. 7, 28 (2007).
[CrossRef] [PubMed]

Mulvaney, P.

S. W. Prescott, P. Mulvaney, "Gold Nanorod Extinction Spectra," J. Appl. Phys. 99,123504 (2006)
[CrossRef]

C. S¨onnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. S’anchez Gil, and J. G’omez Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871 (2007).
[CrossRef] [PubMed]

Nagahara, T.

K. Imura, T. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Phys. Chem. B 10816344 (2004).
[CrossRef]

Nordlander, P.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M.I. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2005).
[CrossRef]

Novotny, L.

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Nurmikko, A. V.

T. Atay, J.-H. Song, and A. V. Nurmikko, "Strong interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627 (2004).
[CrossRef]

Okamoto, H.

K. Imura, T. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Phys. Chem. B 10816344 (2004).
[CrossRef]

Orrit, M.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297,1160 (2002).
[CrossRef] [PubMed]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M.I. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2005).
[CrossRef]

Ozbay, E.

E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189 (2006).
[CrossRef] [PubMed]

Pedersen, R. H.

Pileni, M. P.

A. Brioude, X. C. Jiang, M. P. Pileni, "Optical Properites of gold nanorods:DDA simulations supported by experiments," J. Phys. Chem. B 109, 13138 (2005).
[CrossRef]

Pohl, D. W.

P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Pohl, D.W.

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Prescott, S. W.

S. W. Prescott, P. Mulvaney, "Gold Nanorod Extinction Spectra," J. Appl. Phys. 99,123504 (2006)
[CrossRef]

Prikulis, J.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109,1079, (2005).
[CrossRef]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M.I. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2005).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties. of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
[CrossRef]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner,F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77(12), 3379 (2000).
[CrossRef]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garc’ýa de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Rindzevicius, T.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109,1079, (2005).
[CrossRef]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, "Silver Nanowires as Surface Plasmon Resonators," Phys. Rev. Lett. 95, 257403 (2005)
[CrossRef] [PubMed]

Romero, I.

S¨onnichsen, C.

C. S¨onnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Schatz, G. C.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109,1079, (2005).
[CrossRef]

Schider, G.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner,F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77(12), 3379 (2000).
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, andW. E. Moerner, "Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Schultz, S.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003).
[CrossRef]

Segerink, F. B.

T. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "l/4 Resonance of an Optical Monopole Antenna probed by single molecule fluorescence," Nano Lett. 7, 28 (2007).
[CrossRef] [PubMed]

Shalaev, V. M.

Smith, D. R.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003).
[CrossRef]

Sondergaard, T.

Song, J.-H.

T. Atay, J.-H. Song, and A. V. Nurmikko, "Strong interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627 (2004).
[CrossRef]

Stockman, M.I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M.I. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2005).
[CrossRef]

Su, K.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003).
[CrossRef]

Sugawara, Y.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005).
[CrossRef] [PubMed]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, andW. E. Moerner, "Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297,1160 (2002).
[CrossRef] [PubMed]

Taminiau, T.

T. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "l/4 Resonance of an Optical Monopole Antenna probed by single molecule fluorescence," Nano Lett. 7, 28 (2007).
[CrossRef] [PubMed]

van Duyne, R. P.

A. D. McFarland and R. P. van Duyne, "Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity," Nano Lett. 3, 1057 (2003).
[CrossRef]

van Hulst, N. F.

T. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "l/4 Resonance of an Optical Monopole Antenna probed by single molecule fluorescence," Nano Lett. 7, 28 (2007).
[CrossRef] [PubMed]

von Plessen, G.

C. S¨onnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, "Silver Nanowires as Surface Plasmon Resonators," Phys. Rev. Lett. 95, 257403 (2005)
[CrossRef] [PubMed]

Weeber, J. C.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner,F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77(12), 3379 (2000).
[CrossRef]

Weeber, J.-C.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061 (1999).
[CrossRef]

Wei, Q.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003).
[CrossRef]

Wilk, T.

C. S¨onnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Wilson, O.

C. S¨onnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Zhang, X.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003).
[CrossRef]

Zou, S.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109,1079, (2005).
[CrossRef]

Appl. Phys. Lett. (1)

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner,F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77(12), 3379 (2000).
[CrossRef]

J. Appl. Phys. (1)

S. W. Prescott, P. Mulvaney, "Gold Nanorod Extinction Spectra," J. Appl. Phys. 99,123504 (2006)
[CrossRef]

J. Phys. Chem. B (4)

A. Brioude, X. C. Jiang, M. P. Pileni, "Optical Properites of gold nanorods:DDA simulations supported by experiments," J. Phys. Chem. B 109, 13138 (2005).
[CrossRef]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109,1079, (2005).
[CrossRef]

K. Imura, T. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Phys. Chem. B 10816344 (2004).
[CrossRef]

S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," J. Phys. Chem. B 103, 8410 (1999).
[CrossRef]

Nano Lett. (6)

T. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "l/4 Resonance of an Optical Monopole Antenna probed by single molecule fluorescence," Nano Lett. 7, 28 (2007).
[CrossRef] [PubMed]

O. L. Muskens, V. Giannini, J. A. S’anchez Gil, and J. G’omez Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871 (2007).
[CrossRef] [PubMed]

A. D. McFarland and R. P. van Duyne, "Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity," Nano Lett. 3, 1057 (2003).
[CrossRef]

T. Atay, J.-H. Song, and A. V. Nurmikko, "Strong interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627 (2004).
[CrossRef]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M.I. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2005).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties. of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061 (1999).
[CrossRef]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garc’ýa de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Phys. Rev. Lett. (6)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, andW. E. Moerner, "Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

C. S¨onnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, "Silver Nanowires as Surface Plasmon Resonators," Phys. Rev. Lett. 95, 257403 (2005)
[CrossRef] [PubMed]

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Science (3)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297,1160 (2002).
[CrossRef] [PubMed]

E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189 (2006).
[CrossRef] [PubMed]

P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Surf. Sci. (1)

J.C. Ashley and L.C. Emerson, ‘Dispersion relations for non-radiative surface plasmons on cylinders,’ Surf. Sci. 41, 615 (1974).
[CrossRef]

Other (3)

U. Kreibig and M. Volmer, "Optical Properties of Metal Clusters," Springer Series in Material Science Vol. 25 (Springer-Verlag, Berlin, 1995).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley-VCH, 1998).
[CrossRef]

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (General Publishing Company, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) SEM image of a nanoantenna array with varied antenna arm lengths (vertical) and antenna gaps (horizontal), with detailed images of several single nanorods and dimer antennas. (b) Scattered intensity detected in a bandwidth of 730 nm±30 nm for polarizations parallel to the antenna long axes. (Circles, red) denote antennas with maximum scattering intensity for each of the columns with constant Δ.

Fig. 2.
Fig. 2.

(a–h) Experimental darkfield scattering spectra of individual gold nanorods with a width of 60 nm, height 20 nm, and lengths L varying from 70 nm to 140 nm for polarizations parallel (line, black) and perpendicular (dashed line, red) to the nanorod long axis. (i–p) Calculated scattering cross sections for longitudinal (line, black) and transverse (dashed line, red) polarizations. The vertical scales of the experimental and calculated spectra are normalized to the longitudinal modes of (a) and (i), respectively (see text).

Fig. 3.
Fig. 3.

(a–h) Experimental darkfield scattering spectra of dimer nanoantennas with an antenna gap Δ of 20 nm and arm lengths L varying from 70 nm to 140 nm. (i–p) Calculated scattering cross sections for longitudinal (line, black) and transverse (dashed line, red) polarizations. The vertical scales of experimental and calculated spectra are identical to those in Fig. 2(a–p).

Fig. 4.
Fig. 4.

Surface plasmon resonance wavelengths for (a) single nanorods and for (b) dimer antennas with a gap Δ of 20 nm, for longitudinal (open circles) and transverse (squares, black) polarizations. Solid black lines denote the resonances calculated using electro-dynamical model calculations. Dashed red lines in (a) are the resonances calculated using the quasistatic Mie-Gans model for an ellipsoid. In all calculations ε m =2.25.

Fig. 5.
Fig. 5.

Illustration of a three-dimensional nanorod with dimensions L×W×h, with respective two-dimensional systems 1 and 2 used in the calculation of scattering spectra for respectively longitudinal and transverse light polarizations.

Fig. 6.
Fig. 6.

Color density graph of calculated longitudinal antenna mode positions as a function of both antenna arm length L and antenna gap width Δ. (open circles, red) Positions of maximum intensity estimated from Fig. 1(b) as described in text, with (line, red) calculated isowavelength contour at λ=730 nm. (squares and dashed line, white) same for λ=660 nm.

Fig. 7.
Fig. 7.

(a) Color density graph showing the calculated scattering spectra for the L=100 nm antenna and for longitudinal polarization, as a function of gap width Δ. (b) Spectral resonance position λ0 and (c) full width-at-half maximum linewidth Δλ FWHM of the longitudinal mode of (a) against antenna gap width Δ, for (circles) electrodynamic calculations, and fits using (lines, black) exponential and (dashed line, red) dipole-dipole interactions. Horizontal dashed lines denote limiting values for single nanorod with L=100 nm [c.f. Fig. 2(m)].

Fig. 8.
Fig. 8.

(a) Near field intensity at the longitudinal resonance for an antenna with strongly coupled arms (Δ=20 nm, L=100 nm). (b) Far-field scattering pattern of the antenna (solid line, red), together with the emission patterns of a point dipole (dash-dotted line, blue), and a half-wave antenna (dashed line, black).

Metrics