Abstract

A new differential imaging technique to obtain contrast improvement in coherent anti-Stokes Raman scattering (CARS) microscopy is proposed through a spatial spiral phase modulation in the collected signal of CARS microscopy. A spiral phase mask makes the CARS signal from the bulk material to be distributed in a ring centered at the detecting pinhole of a confocal microscope resulting in a weak detected CARS signal from a bulk material. When tiny scatters are included in the focal volume of a CARS setup, the ring-shaped distribution of CARS field is distorted, leading to an increase in the detected signal through the pinhole. The sensitivity and the size selectivity of this proposed technique is studied with varying the particle size, and it is found that this method is to be efficient in edge detection. Simulation results obtained by finite difference time domain (FDTD) methods show that the image contrast is enhanced by many times as it is able to highlight the details of the specimen by suppressing the CARS signal from a bulk or a uniform material.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. X. Cheng and X. S. Xie, "Coherent anti-Stokes scattering microscopy: instrumentation, theory, and application," J. Phys. Chem. B. 108, 827-840 (2004).
    [CrossRef]
  2. J. X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B. 19, 1363-1375 (2002).
    [CrossRef]
  3. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues," Biophysical Journal 89, 581-591 (2005).
    [CrossRef]
  4. R. J.H. Clark and R. E. Hester, Advances in Nonlinear Spectroscopy (Wiley New York, 1988).
  5. P. D. Maker and R. W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Phys, Rev., A 137801-818 (1965).
    [CrossRef]
  6. Y. R. Shen, The principles of nonlinear optics (Wiley New York, 1984).
  7. E. O. Potma, C. L. Evans, and X. S. Xie, "Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging," Opt. Lett. 31, 241-243 (2006).
    [CrossRef] [PubMed]
  8. A. Volkmer, J. X. Cheng, and X. S. Xie, "Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy," Phys. Rev. Lett. 87, 023901-1-023901-4 (2001).
    [CrossRef]
  9. J. X. Cheng, L. D. Book, and X. S. Xie, "Polarization coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 26, 1341-1343 (2001)
    [CrossRef]
  10. J. X. Cheng, Andreas Volkmer, Lewis D. Book, and X. Sunney Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B,  105, 1277 -1280 (2001).
    [CrossRef]
  11. V. V. Krishnamachari, E. O. Potma, "Focus-engineered coherent anti-Stokes Raman scattering microscopy: a numerical investigation," J. Opt. Soc. Am. A 24, 1138-1147 (2007).
    [CrossRef]
  12. C. Liu, D. Y. Kim, "Differential imaging in coherent anti-Stokes Raman scattering microscopy with Laguerre- Gaussian excitation beams," Opt. Express 15, 10123-10135 (2007)
    [CrossRef]
  13. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press New York, 1995).
  14. R. W. Boyd, Nonlinear Optics (Academic Boston, 1992).
  15. K. S. Yee, "Numerical solution of initial boundary value problem involving Maxwell equations in isotropic media," IEEE Trans. Antennas Propagat. 14, 302-307 (1966).
    [CrossRef]
  16. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Boston, 1995).
  17. M. Hashimoto, T. Araki, "Three-dimensional transfer functions of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. A 18,771-776 (2001)
    [CrossRef]
  18. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, "Spiral phase contrast imaging in microscopy," Opt. Express 13, 689-694 (2005)
    [CrossRef] [PubMed]
  19. J. A. Davis, D. E. McNamara, D. M. Cottrell, and J. Campos, "Image processing with the radial Hilbert transform: theory and experiments," Opt. Lett. 25, 99-101 (2000).
    [CrossRef]

2007 (2)

C. Liu, D. Y. Kim, "Differential imaging in coherent anti-Stokes Raman scattering microscopy with Laguerre- Gaussian excitation beams," Opt. Express 15, 10123-10135 (2007)
[CrossRef]

V. V. Krishnamachari, E. O. Potma, "Focus-engineered coherent anti-Stokes Raman scattering microscopy: a numerical investigation," J. Opt. Soc. Am. A 24, 1138-1147 (2007).
[CrossRef]

2006 (1)

2005 (2)

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, "Spiral phase contrast imaging in microscopy," Opt. Express 13, 689-694 (2005)
[CrossRef] [PubMed]

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues," Biophysical Journal 89, 581-591 (2005).
[CrossRef]

2004 (1)

J. X. Cheng and X. S. Xie, "Coherent anti-Stokes scattering microscopy: instrumentation, theory, and application," J. Phys. Chem. B. 108, 827-840 (2004).
[CrossRef]

2002 (1)

J. X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B. 19, 1363-1375 (2002).
[CrossRef]

2001 (4)

A. Volkmer, J. X. Cheng, and X. S. Xie, "Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy," Phys. Rev. Lett. 87, 023901-1-023901-4 (2001).
[CrossRef]

J. X. Cheng, Andreas Volkmer, Lewis D. Book, and X. Sunney Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B,  105, 1277 -1280 (2001).
[CrossRef]

M. Hashimoto, T. Araki, "Three-dimensional transfer functions of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. A 18,771-776 (2001)
[CrossRef]

J. X. Cheng, L. D. Book, and X. S. Xie, "Polarization coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 26, 1341-1343 (2001)
[CrossRef]

2000 (1)

1966 (1)

K. S. Yee, "Numerical solution of initial boundary value problem involving Maxwell equations in isotropic media," IEEE Trans. Antennas Propagat. 14, 302-307 (1966).
[CrossRef]

1965 (1)

P. D. Maker and R. W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Phys, Rev., A 137801-818 (1965).
[CrossRef]

Biophysical Journal (1)

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues," Biophysical Journal 89, 581-591 (2005).
[CrossRef]

IEEE Trans. Antennas Propagat. (1)

K. S. Yee, "Numerical solution of initial boundary value problem involving Maxwell equations in isotropic media," IEEE Trans. Antennas Propagat. 14, 302-307 (1966).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B. (1)

J. X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B. 19, 1363-1375 (2002).
[CrossRef]

J. Phys. Chem. B (1)

J. X. Cheng, Andreas Volkmer, Lewis D. Book, and X. Sunney Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B,  105, 1277 -1280 (2001).
[CrossRef]

J. Phys. Chem. B. (1)

J. X. Cheng and X. S. Xie, "Coherent anti-Stokes scattering microscopy: instrumentation, theory, and application," J. Phys. Chem. B. 108, 827-840 (2004).
[CrossRef]

Opt. Express (2)

C. Liu, D. Y. Kim, "Differential imaging in coherent anti-Stokes Raman scattering microscopy with Laguerre- Gaussian excitation beams," Opt. Express 15, 10123-10135 (2007)
[CrossRef]

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, "Spiral phase contrast imaging in microscopy," Opt. Express 13, 689-694 (2005)
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys, Rev., A (1)

P. D. Maker and R. W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Phys, Rev., A 137801-818 (1965).
[CrossRef]

Phys. Rev. Lett. (1)

A. Volkmer, J. X. Cheng, and X. S. Xie, "Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy," Phys. Rev. Lett. 87, 023901-1-023901-4 (2001).
[CrossRef]

Other (5)

Y. R. Shen, The principles of nonlinear optics (Wiley New York, 1984).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Boston, 1995).

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press New York, 1995).

R. W. Boyd, Nonlinear Optics (Academic Boston, 1992).

R. J.H. Clark and R. E. Hester, Advances in Nonlinear Spectroscopy (Wiley New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Simulation setup

Fig. 2.
Fig. 2.

Point spread functions (PSF) of the illumination and collection lens and the corresponding phase (bottom row). Fig. 2(a) and Fig. 2(b) corresponds to the x and y components of the PSF of the illumination lens and Fig. 2(c) and Fig. 2(d) represents that of collection lens. The size of each figure is 5 µm×5 µm

Fig. 3.
Fig. 3.

The variation in nonlinear polarization, coherent transfer function and the corresponding phase modulation for different particle sizes. Fig. 3 (a)–(d) show the nonlinear polarization for water and particles with diameters 200 nm, 320 nm and 400 nm respectively. Fig. 3 (e)–(h) show the corresponding phase modulation and Fig. 3 (i)–(m) show the corresponding coherent transfer function. Phase distribution becomes asymmetric with increase in particle size leading to increased signal detection through the pinhole. The size of each figure is 5 µm×5 µm.

Fig. 4.
Fig. 4.

Transverse profiles of the intensity of coherent transfer function lines in Fig. 3 (i)–(m) shows an increase in intensity of detection with an increase in particle size

Fig. 5.
Fig. 5.

Images obtained (a) without a phase modulation on the CARS signal provides a very poor edge contrast compared to (b) the image obtained with a phase modulation. The size of each image is 10 µm×10 µm. (c) Corresponding line-scan intensity profiles along the crossed lines in CARS images in (a) and (b). The blue line represents the profile of 5(b).

Fig. 6.
Fig. 6.

a) Sensitivity of the CARS signal to the variation of particle size in the lateral direction. (b) Sensitivity of the CARS signal to the variation of particle size in the axial direction.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

× × E ( r , t ) + n 2 c 2 E ( r , t ) t 2 = 4 π c 2 2 P ( 3 ) ( r , t ) 2 t
P i ( 3 ) ( r , ω as , t ) = 3 jkl χ ijkl ( 3 ) E j p ( r , ω p , t ) E k p ( r , ω p , t ) E l s * ( r , ω s , t )
{ × H = D t × E = B t
{ E x n + 1 ( i + 0.5 , j , k ) = A ( m ) · E x n ( i + 0.5 , j , k ) + B ( m ) [ ( H z n + 0.5 ( i + 0.5 , j + 0.5 , k ) H z n + 0.5 ( i + 0.5 , j 0.5 , k ) ) Δ y ( H y n + 0.5 ( i + 0.5 , j , k + 0.5 ) H y n + 0.5 ( i + 0.5 , j , k 0.5 ) ) Δ z E y n + 1 ( i , j + 0.5 , k ) = A ( m ) · E x n ( i , j + 0.5 , k ) + B ( m ) [ ( H x n + 0.5 ( i , j + 0.5 , k + 0.5 ) H x n + 0.5 ( i , j + 0.5 , k 0.5 ) ) Δ z ( H y n + 0.5 ( i + 0.5 , j + 0.5 , k ) H z n + 0.5 ( i 0.5 , j + 0.5 , k ) ) Δ x E z n + 1 ( i , j , k + 0.5 ) = A ( m ) · E x n ( i , j , k + 0.5 ) + B ( m ) [ ( H y n + 0.5 ( i + 0.5 , j , k + 0.5 ) H y n + 0.5 ( i 0.5 , j , k + 0.5 ) ) Δ x ( H x n + 0.5 ( i , j + 0.5 , k + 0.5 ) H x n + 0.5 ( i , j 0.5 , k + 0.5 ) ) Δ y
u ( x 1 , y 1 ) = P ( 3 ) ( x , y , ω as ) g ( x 1 x , y 1 y ) d x d y
I Det = δ x δ x δ y δ y P ( 3 ) ( x , y , ω as ) g ( x 1 x , y 1 y ) d x d y 2 d x 1 d y 1

Metrics