Abstract

Optical microscopy is a well-established technique that has wide ranging applications for imaging molecular dynamics of biological systems. Typically, these applications rely on external temperature controllers to maintain or change reactions rates of these biological systems. With increasing interest in applying low power microwaves to drive biological and chemical reactions, we have combined optical and microwave based technologies and developed a fluorescence microscope in a microwave cavity. With this instrument, we have found a means to optically image biological systems inside microwave cavities during the application of microwave pulses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Haduch, S. Baranski, and P. Czerski, "Effect of microwave radiations on the human organism," Acta physiologica Polonica 11, 717-719 (1960).
    [PubMed]
  2. S. Baranski, L. Czekalinski, P. Czerski, and S. Haduch, "Experimental research on the fatal effect of micrometric wave irradiation," Revue de medecine aeronautique 2, 108-111 (1963).
    [PubMed]
  3. Z. Bielicki, S. Baranski, P. Czerski, and S. Haduch, "Analysis of difficulties of occupational activity in personnel exposed to micrometric wave irradiation," Revue de medecine aeronautique 2, 106-107 (1963).
    [PubMed]
  4. S. Baranski and Z. Edelwejn, "Experimental morphologic and electroencephalographic studies of microwave effects on nervous system," Annals of the New York Academy of Sciences 247, 109-116 (1975).
    [CrossRef] [PubMed]
  5. E. H. Grant, R. J. Sheppard, and G. P. South, Dielectric Behavior of Biological Molecules in Solution (Oxford University Press, 1978).
  6. A. W. J. Dawkins, N. R. V. Nightingale, G. P. South, R. J. Sheppard, and E. H. Grant, "Role of water in microwave-absorption by biological-material with particular reference to microwave hazards," Phys. Med. Biol. 24, 1168-1176 (1979).
    [CrossRef] [PubMed]
  7. S. Takashima, C. Gabriel, R. Sheppard, and E. Grant, "Dielectric behavior of DNA solution at radio and microwave frequencies (at 20 degrees C)," Biophys. J. 46, 29-34 (1984).
    [CrossRef] [PubMed]
  8. I. Roy and M. N. Gupta, "Applications of microwaves in biological sciences," Curr. Sci. 85, 1685-1693 (2003).
  9. S. Jain, S. Sharma, and M. N. Gupta, "A microassay for protein determination using microwaves," Anal. Biochem. 311, 84-86 (2002).
    [CrossRef] [PubMed]
  10. H. Bohr and J. Bohr, "Microwave-enhanced folding and denaturation of globular proteins," Phys. Rev. E 61, 4310-4314 (2000).
    [CrossRef] [PubMed]
  11. K. R. Foster, "Thermal and nonthermal mechanisms of interaction of radio-frequency energy with biological systems," IEEE Trans. Plasma Sci. 28, 15-23 (2000).
    [CrossRef]
  12. K. Hamad-Schifferli, J. J. Schwartz, A. T. Santos, S. G. Zhang, and J. M. Jacobson, "Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna," Nature 415, 152-155 (2002).
    [CrossRef] [PubMed]
  13. M. Zimmer, "Green fluorescent protein (GFP): Applications, structure, and related photophysical behavior," Chemical Reviews 102, 759-781 (2002).
    [CrossRef] [PubMed]
  14. A. B. Copty, Y. Neve-Oz, I. Barak, M. Golosovsky, and D. Davidov, "Evidence for a specific microwave radiation effect on the green fluorescent protein," Biophys. J. 91, 1413-1423 (2006).
    [CrossRef] [PubMed]
  15. M. J. R. Previte, and C. D. Geddes, "Microwave-triggered chemiluminescence with planar geometrical aluminum substrates: Theory, simulation and experiment," J. Fluoresc. 17, 279-287 (2007).
    [CrossRef] [PubMed]
  16. K. Aslan, S. N. Malyn, and C. D. Geddes, "Microwave-accelerated surface plasmon coupled directional luminescence: Application to fast and sensitive assays in buffer, human serum and whole blood," J. Immunol. Methods 323, 55-64 (2007).
    [CrossRef] [PubMed]
  17. K. Aslan, and C. D. Geddes, "Microwave-accelerated metal-enhanced fluorescence: Platform technology for ultrafast and ultrabright assays," Anal. Chem. 77, 8057-8067 (2005).
    [CrossRef] [PubMed]
  18. K. Aslan, S. N. Malyn, and C. D. Geddes, "Fast and sensitive DNA hybridization assays using microwave-accelerated metal-enhanced fluorescence," Biochem. and Biophys. Res. Comm. 348, 612-617 (2006).
    [CrossRef] [PubMed]
  19. V. Sridar, "Rate acceleration of Fischer-indole cyclization by microwave irradiation," Indian J. Chem. 36, 86-87 (1997).
    [PubMed]
  20. "Technology Vision 2020," (The U.S. Chemical Industry, 1996).
  21. V. Sridar, "Microwave radiation as a catalyst for chemical reactions," Curr. Sci. 74, 446-450 (1998).
    [PubMed]
  22. R. S. Varma, "Advances in Green chemistry: Chemical Synthesis using microwave irradiation," (Astrazeneca Research Foundation, India, Banglore, 2002).
  23. C. O. Kappe, "High-speed combinatorial synthesis utilizing microwave irradiation," Curr. Opin. Chem. Biol. 6, 314-320 (2002).
    [CrossRef] [PubMed]
  24. D. Adam, "Microwave chemistry: Out of the kitchen," Nature 421, 571-572 (2003).
    [CrossRef] [PubMed]
  25. K. Aslan, S. N. Malyn, and C. D. Geddes, "Multicolor microwave-triggered metal-enhanced chemiluminescence," J. Am. Chem. Soc. 128, 13372-13373 (2006).
    [CrossRef] [PubMed]
  26. R. S. Varma, "Solvent-free organic syntheses - using supported reagents and microwave irradiation," Green Chemistry 1, 43-55 (1999).
    [CrossRef]
  27. R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, and J. Rousell, "The use of microwave-ovens for rapid organic-synthesis," Tetrahedron Lett. 27, 279-282 (1986).
    [CrossRef] [PubMed]
  28. A. G. Whittaker, and D. M. P. Mingos, "Microwave-assisted solid-state reactions involving metal powders," J. Chem. Soc. Dalton Trans. 12, 2073-2079 (1995).
    [CrossRef]
  29. S. Caddick, "Microwave assisted organic reactions," Tetrahedron 51, 10403-10432 (1995).
    [CrossRef]
  30. M. Pagnotta, C. L. F. Pooley, B. Gurland, and M. Choi, "Microwave activation of the mutarotation of alpha-D-glucose - an example of an intrinsic microwave effect," J. Phys. Org. Chem. 6, 407-411 (1993).
    [CrossRef]
  31. A. Shaman, S. Mizrahi, U. Cogan, and E. Shimoni, "Examining for possible non-thermal effects during heating in a microwave oven," Food Chemistry 103, 444-453 (2007).
    [CrossRef]
  32. R. K. Adair, "Biophysical limits on athermal effects of RF and microwave radiation," Bioelectromagnetics 24, 39-48 (2003).
    [CrossRef]
  33. R. Weissenborn, K. Diederichs, W. Welte, G. Maret, and T. Gisler, "Non-thermal microwave effects on protein dynamics? An X-ray diffraction study on tetragonal lysozyme crystals," Acta Crystallogr. 61, 163-172 (2005).
  34. J. Gellermann, W. Wlodarczyk, B. Hildebrandt, H. Ganter, A. Nicolau, B. Rau, W. Tilly, H. Fahling, J. Nadobny, R. Felix, and P. Wust, "Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system," Cancer Res. 65, 5872-5880 (2005).
    [CrossRef] [PubMed]
  35. M. J. R. Previte, and C. D. Geddes, "Spatial and temporal control of microwave triggered chemiluminescence: A rapid and sensitive protein detection platform," Anal. Chem.in press (2007).
    [CrossRef] [PubMed]
  36. C. L. R. Catherall, T. F. Palmer, and R. B. Cundall, "Chemiluminescence from reactions of bis(Pentachrlophenyl)oxalate, hydrogen-peroxide and fluorescent compounds - kinetics and mechanism," J. Chem. Soc. Faraday Trans. Trans 11 80, 823-836 (1984).
    [CrossRef]
  37. O. Filevich, and R. Etchenique, "1D and 2D temperature imaging with a fluorescent ruthenium complex," Anal. Chem. 78, 7499-7503 (2006).
    [CrossRef] [PubMed]
  38. B. Durham, J. V. Caspar, J. K. Nagle, and T. J. Meyer, "Photochemistry of Ru(bpy)32+," J. Am. Chem. Soc. 104, 4803-4810 (1982).
    [CrossRef]
  39. J. Vanhouten and R. J. Watts, "Temperature-dependence of photophysical and photochemical properties of Tris(2,2’-bypridyl)Ruthenium(II) ion in aqueous solution," J. Am. Chem. Soc. 98, 4853-4858 (1976).
    [CrossRef]
  40. O. Filevich, and R. Etchenique, "1D and 2D temperature imaging with a fluorescent ruthenium complex," Anal. Chem. 78, 7499-7503 (2006).
    [CrossRef] [PubMed]
  41. N. A. Nemkovich, A. N. Rubinov, and A. T. Tomin, "Inhomogeneous Broadening of Electronic Spectra of Dye Molecules in Solutions," in Topics in Fluorescence Spectroscopy, Vol. 2, Principles, J. R. Lakowicz, ed., (Plenum Press, New York, 1991), pp. 367-428.

2007 (4)

M. J. R. Previte, and C. D. Geddes, "Microwave-triggered chemiluminescence with planar geometrical aluminum substrates: Theory, simulation and experiment," J. Fluoresc. 17, 279-287 (2007).
[CrossRef] [PubMed]

K. Aslan, S. N. Malyn, and C. D. Geddes, "Microwave-accelerated surface plasmon coupled directional luminescence: Application to fast and sensitive assays in buffer, human serum and whole blood," J. Immunol. Methods 323, 55-64 (2007).
[CrossRef] [PubMed]

A. Shaman, S. Mizrahi, U. Cogan, and E. Shimoni, "Examining for possible non-thermal effects during heating in a microwave oven," Food Chemistry 103, 444-453 (2007).
[CrossRef]

M. J. R. Previte, and C. D. Geddes, "Spatial and temporal control of microwave triggered chemiluminescence: A rapid and sensitive protein detection platform," Anal. Chem.in press (2007).
[CrossRef] [PubMed]

2006 (5)

O. Filevich, and R. Etchenique, "1D and 2D temperature imaging with a fluorescent ruthenium complex," Anal. Chem. 78, 7499-7503 (2006).
[CrossRef] [PubMed]

A. B. Copty, Y. Neve-Oz, I. Barak, M. Golosovsky, and D. Davidov, "Evidence for a specific microwave radiation effect on the green fluorescent protein," Biophys. J. 91, 1413-1423 (2006).
[CrossRef] [PubMed]

K. Aslan, S. N. Malyn, and C. D. Geddes, "Multicolor microwave-triggered metal-enhanced chemiluminescence," J. Am. Chem. Soc. 128, 13372-13373 (2006).
[CrossRef] [PubMed]

K. Aslan, S. N. Malyn, and C. D. Geddes, "Fast and sensitive DNA hybridization assays using microwave-accelerated metal-enhanced fluorescence," Biochem. and Biophys. Res. Comm. 348, 612-617 (2006).
[CrossRef] [PubMed]

O. Filevich, and R. Etchenique, "1D and 2D temperature imaging with a fluorescent ruthenium complex," Anal. Chem. 78, 7499-7503 (2006).
[CrossRef] [PubMed]

2005 (3)

K. Aslan, and C. D. Geddes, "Microwave-accelerated metal-enhanced fluorescence: Platform technology for ultrafast and ultrabright assays," Anal. Chem. 77, 8057-8067 (2005).
[CrossRef] [PubMed]

R. Weissenborn, K. Diederichs, W. Welte, G. Maret, and T. Gisler, "Non-thermal microwave effects on protein dynamics? An X-ray diffraction study on tetragonal lysozyme crystals," Acta Crystallogr. 61, 163-172 (2005).

J. Gellermann, W. Wlodarczyk, B. Hildebrandt, H. Ganter, A. Nicolau, B. Rau, W. Tilly, H. Fahling, J. Nadobny, R. Felix, and P. Wust, "Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system," Cancer Res. 65, 5872-5880 (2005).
[CrossRef] [PubMed]

2003 (3)

R. K. Adair, "Biophysical limits on athermal effects of RF and microwave radiation," Bioelectromagnetics 24, 39-48 (2003).
[CrossRef]

D. Adam, "Microwave chemistry: Out of the kitchen," Nature 421, 571-572 (2003).
[CrossRef] [PubMed]

I. Roy and M. N. Gupta, "Applications of microwaves in biological sciences," Curr. Sci. 85, 1685-1693 (2003).

2002 (4)

S. Jain, S. Sharma, and M. N. Gupta, "A microassay for protein determination using microwaves," Anal. Biochem. 311, 84-86 (2002).
[CrossRef] [PubMed]

K. Hamad-Schifferli, J. J. Schwartz, A. T. Santos, S. G. Zhang, and J. M. Jacobson, "Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna," Nature 415, 152-155 (2002).
[CrossRef] [PubMed]

M. Zimmer, "Green fluorescent protein (GFP): Applications, structure, and related photophysical behavior," Chemical Reviews 102, 759-781 (2002).
[CrossRef] [PubMed]

C. O. Kappe, "High-speed combinatorial synthesis utilizing microwave irradiation," Curr. Opin. Chem. Biol. 6, 314-320 (2002).
[CrossRef] [PubMed]

2000 (2)

H. Bohr and J. Bohr, "Microwave-enhanced folding and denaturation of globular proteins," Phys. Rev. E 61, 4310-4314 (2000).
[CrossRef] [PubMed]

K. R. Foster, "Thermal and nonthermal mechanisms of interaction of radio-frequency energy with biological systems," IEEE Trans. Plasma Sci. 28, 15-23 (2000).
[CrossRef]

1999 (1)

R. S. Varma, "Solvent-free organic syntheses - using supported reagents and microwave irradiation," Green Chemistry 1, 43-55 (1999).
[CrossRef]

1998 (1)

V. Sridar, "Microwave radiation as a catalyst for chemical reactions," Curr. Sci. 74, 446-450 (1998).
[PubMed]

1997 (1)

V. Sridar, "Rate acceleration of Fischer-indole cyclization by microwave irradiation," Indian J. Chem. 36, 86-87 (1997).
[PubMed]

1995 (2)

A. G. Whittaker, and D. M. P. Mingos, "Microwave-assisted solid-state reactions involving metal powders," J. Chem. Soc. Dalton Trans. 12, 2073-2079 (1995).
[CrossRef]

S. Caddick, "Microwave assisted organic reactions," Tetrahedron 51, 10403-10432 (1995).
[CrossRef]

1993 (1)

M. Pagnotta, C. L. F. Pooley, B. Gurland, and M. Choi, "Microwave activation of the mutarotation of alpha-D-glucose - an example of an intrinsic microwave effect," J. Phys. Org. Chem. 6, 407-411 (1993).
[CrossRef]

1986 (1)

R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, and J. Rousell, "The use of microwave-ovens for rapid organic-synthesis," Tetrahedron Lett. 27, 279-282 (1986).
[CrossRef] [PubMed]

1984 (1)

S. Takashima, C. Gabriel, R. Sheppard, and E. Grant, "Dielectric behavior of DNA solution at radio and microwave frequencies (at 20 degrees C)," Biophys. J. 46, 29-34 (1984).
[CrossRef] [PubMed]

1982 (1)

B. Durham, J. V. Caspar, J. K. Nagle, and T. J. Meyer, "Photochemistry of Ru(bpy)32+," J. Am. Chem. Soc. 104, 4803-4810 (1982).
[CrossRef]

1979 (1)

A. W. J. Dawkins, N. R. V. Nightingale, G. P. South, R. J. Sheppard, and E. H. Grant, "Role of water in microwave-absorption by biological-material with particular reference to microwave hazards," Phys. Med. Biol. 24, 1168-1176 (1979).
[CrossRef] [PubMed]

1976 (1)

J. Vanhouten and R. J. Watts, "Temperature-dependence of photophysical and photochemical properties of Tris(2,2’-bypridyl)Ruthenium(II) ion in aqueous solution," J. Am. Chem. Soc. 98, 4853-4858 (1976).
[CrossRef]

1975 (1)

S. Baranski and Z. Edelwejn, "Experimental morphologic and electroencephalographic studies of microwave effects on nervous system," Annals of the New York Academy of Sciences 247, 109-116 (1975).
[CrossRef] [PubMed]

1963 (2)

S. Baranski, L. Czekalinski, P. Czerski, and S. Haduch, "Experimental research on the fatal effect of micrometric wave irradiation," Revue de medecine aeronautique 2, 108-111 (1963).
[PubMed]

Z. Bielicki, S. Baranski, P. Czerski, and S. Haduch, "Analysis of difficulties of occupational activity in personnel exposed to micrometric wave irradiation," Revue de medecine aeronautique 2, 106-107 (1963).
[PubMed]

1960 (1)

S. Haduch, S. Baranski, and P. Czerski, "Effect of microwave radiations on the human organism," Acta physiologica Polonica 11, 717-719 (1960).
[PubMed]

Acta Crystallogr. (1)

R. Weissenborn, K. Diederichs, W. Welte, G. Maret, and T. Gisler, "Non-thermal microwave effects on protein dynamics? An X-ray diffraction study on tetragonal lysozyme crystals," Acta Crystallogr. 61, 163-172 (2005).

Acta physiologica Polonica (1)

S. Haduch, S. Baranski, and P. Czerski, "Effect of microwave radiations on the human organism," Acta physiologica Polonica 11, 717-719 (1960).
[PubMed]

Anal. Biochem. (1)

S. Jain, S. Sharma, and M. N. Gupta, "A microassay for protein determination using microwaves," Anal. Biochem. 311, 84-86 (2002).
[CrossRef] [PubMed]

Anal. Chem. (4)

K. Aslan, and C. D. Geddes, "Microwave-accelerated metal-enhanced fluorescence: Platform technology for ultrafast and ultrabright assays," Anal. Chem. 77, 8057-8067 (2005).
[CrossRef] [PubMed]

M. J. R. Previte, and C. D. Geddes, "Spatial and temporal control of microwave triggered chemiluminescence: A rapid and sensitive protein detection platform," Anal. Chem.in press (2007).
[CrossRef] [PubMed]

O. Filevich, and R. Etchenique, "1D and 2D temperature imaging with a fluorescent ruthenium complex," Anal. Chem. 78, 7499-7503 (2006).
[CrossRef] [PubMed]

O. Filevich, and R. Etchenique, "1D and 2D temperature imaging with a fluorescent ruthenium complex," Anal. Chem. 78, 7499-7503 (2006).
[CrossRef] [PubMed]

Annals of the New York Academy of Sciences (1)

S. Baranski and Z. Edelwejn, "Experimental morphologic and electroencephalographic studies of microwave effects on nervous system," Annals of the New York Academy of Sciences 247, 109-116 (1975).
[CrossRef] [PubMed]

Biochem. and Biophys. Res. Comm. (1)

K. Aslan, S. N. Malyn, and C. D. Geddes, "Fast and sensitive DNA hybridization assays using microwave-accelerated metal-enhanced fluorescence," Biochem. and Biophys. Res. Comm. 348, 612-617 (2006).
[CrossRef] [PubMed]

Bioelectromagnetics (1)

R. K. Adair, "Biophysical limits on athermal effects of RF and microwave radiation," Bioelectromagnetics 24, 39-48 (2003).
[CrossRef]

Biophys. J. (2)

A. B. Copty, Y. Neve-Oz, I. Barak, M. Golosovsky, and D. Davidov, "Evidence for a specific microwave radiation effect on the green fluorescent protein," Biophys. J. 91, 1413-1423 (2006).
[CrossRef] [PubMed]

S. Takashima, C. Gabriel, R. Sheppard, and E. Grant, "Dielectric behavior of DNA solution at radio and microwave frequencies (at 20 degrees C)," Biophys. J. 46, 29-34 (1984).
[CrossRef] [PubMed]

Cancer Res. (1)

J. Gellermann, W. Wlodarczyk, B. Hildebrandt, H. Ganter, A. Nicolau, B. Rau, W. Tilly, H. Fahling, J. Nadobny, R. Felix, and P. Wust, "Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system," Cancer Res. 65, 5872-5880 (2005).
[CrossRef] [PubMed]

Chemical Reviews (1)

M. Zimmer, "Green fluorescent protein (GFP): Applications, structure, and related photophysical behavior," Chemical Reviews 102, 759-781 (2002).
[CrossRef] [PubMed]

Curr. Opin. Chem. Biol. (1)

C. O. Kappe, "High-speed combinatorial synthesis utilizing microwave irradiation," Curr. Opin. Chem. Biol. 6, 314-320 (2002).
[CrossRef] [PubMed]

Curr. Sci. (2)

V. Sridar, "Microwave radiation as a catalyst for chemical reactions," Curr. Sci. 74, 446-450 (1998).
[PubMed]

I. Roy and M. N. Gupta, "Applications of microwaves in biological sciences," Curr. Sci. 85, 1685-1693 (2003).

Food Chemistry (1)

A. Shaman, S. Mizrahi, U. Cogan, and E. Shimoni, "Examining for possible non-thermal effects during heating in a microwave oven," Food Chemistry 103, 444-453 (2007).
[CrossRef]

Green Chemistry (1)

R. S. Varma, "Solvent-free organic syntheses - using supported reagents and microwave irradiation," Green Chemistry 1, 43-55 (1999).
[CrossRef]

IEEE Trans. Plasma Sci. (1)

K. R. Foster, "Thermal and nonthermal mechanisms of interaction of radio-frequency energy with biological systems," IEEE Trans. Plasma Sci. 28, 15-23 (2000).
[CrossRef]

Indian J. Chem. (1)

V. Sridar, "Rate acceleration of Fischer-indole cyclization by microwave irradiation," Indian J. Chem. 36, 86-87 (1997).
[PubMed]

J. Am. Chem. Soc. (3)

K. Aslan, S. N. Malyn, and C. D. Geddes, "Multicolor microwave-triggered metal-enhanced chemiluminescence," J. Am. Chem. Soc. 128, 13372-13373 (2006).
[CrossRef] [PubMed]

B. Durham, J. V. Caspar, J. K. Nagle, and T. J. Meyer, "Photochemistry of Ru(bpy)32+," J. Am. Chem. Soc. 104, 4803-4810 (1982).
[CrossRef]

J. Vanhouten and R. J. Watts, "Temperature-dependence of photophysical and photochemical properties of Tris(2,2’-bypridyl)Ruthenium(II) ion in aqueous solution," J. Am. Chem. Soc. 98, 4853-4858 (1976).
[CrossRef]

J. Chem. Soc. Dalton Trans. (1)

A. G. Whittaker, and D. M. P. Mingos, "Microwave-assisted solid-state reactions involving metal powders," J. Chem. Soc. Dalton Trans. 12, 2073-2079 (1995).
[CrossRef]

J. Fluoresc. (1)

M. J. R. Previte, and C. D. Geddes, "Microwave-triggered chemiluminescence with planar geometrical aluminum substrates: Theory, simulation and experiment," J. Fluoresc. 17, 279-287 (2007).
[CrossRef] [PubMed]

J. Immunol. Methods (1)

K. Aslan, S. N. Malyn, and C. D. Geddes, "Microwave-accelerated surface plasmon coupled directional luminescence: Application to fast and sensitive assays in buffer, human serum and whole blood," J. Immunol. Methods 323, 55-64 (2007).
[CrossRef] [PubMed]

J. Phys. Org. Chem. (1)

M. Pagnotta, C. L. F. Pooley, B. Gurland, and M. Choi, "Microwave activation of the mutarotation of alpha-D-glucose - an example of an intrinsic microwave effect," J. Phys. Org. Chem. 6, 407-411 (1993).
[CrossRef]

Nature (2)

D. Adam, "Microwave chemistry: Out of the kitchen," Nature 421, 571-572 (2003).
[CrossRef] [PubMed]

K. Hamad-Schifferli, J. J. Schwartz, A. T. Santos, S. G. Zhang, and J. M. Jacobson, "Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna," Nature 415, 152-155 (2002).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

A. W. J. Dawkins, N. R. V. Nightingale, G. P. South, R. J. Sheppard, and E. H. Grant, "Role of water in microwave-absorption by biological-material with particular reference to microwave hazards," Phys. Med. Biol. 24, 1168-1176 (1979).
[CrossRef] [PubMed]

Phys. Rev. E (1)

H. Bohr and J. Bohr, "Microwave-enhanced folding and denaturation of globular proteins," Phys. Rev. E 61, 4310-4314 (2000).
[CrossRef] [PubMed]

Revue de medecine aeronautique (2)

S. Baranski, L. Czekalinski, P. Czerski, and S. Haduch, "Experimental research on the fatal effect of micrometric wave irradiation," Revue de medecine aeronautique 2, 108-111 (1963).
[PubMed]

Z. Bielicki, S. Baranski, P. Czerski, and S. Haduch, "Analysis of difficulties of occupational activity in personnel exposed to micrometric wave irradiation," Revue de medecine aeronautique 2, 106-107 (1963).
[PubMed]

Tetrahedron (1)

S. Caddick, "Microwave assisted organic reactions," Tetrahedron 51, 10403-10432 (1995).
[CrossRef]

Tetrahedron Lett. (1)

R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, and J. Rousell, "The use of microwave-ovens for rapid organic-synthesis," Tetrahedron Lett. 27, 279-282 (1986).
[CrossRef] [PubMed]

Other (5)

R. S. Varma, "Advances in Green chemistry: Chemical Synthesis using microwave irradiation," (Astrazeneca Research Foundation, India, Banglore, 2002).

E. H. Grant, R. J. Sheppard, and G. P. South, Dielectric Behavior of Biological Molecules in Solution (Oxford University Press, 1978).

"Technology Vision 2020," (The U.S. Chemical Industry, 1996).

C. L. R. Catherall, T. F. Palmer, and R. B. Cundall, "Chemiluminescence from reactions of bis(Pentachrlophenyl)oxalate, hydrogen-peroxide and fluorescent compounds - kinetics and mechanism," J. Chem. Soc. Faraday Trans. Trans 11 80, 823-836 (1984).
[CrossRef]

N. A. Nemkovich, A. N. Rubinov, and A. T. Tomin, "Inhomogeneous Broadening of Electronic Spectra of Dye Molecules in Solutions," in Topics in Fluorescence Spectroscopy, Vol. 2, Principles, J. R. Lakowicz, ed., (Plenum Press, New York, 1991), pp. 367-428.

Supplementary Material (4)

» Media 1: AVI (2320 KB)     
» Media 2: AVI (2320 KB)     
» Media 3: AVI (1826 KB)     
» Media 4: AVI (2192 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Optical scheme of a wide-field microscope in a microwave cavity.

Fig. 2.
Fig. 2.

Sample geometry scheme.

Fig. 3.
Fig. 3.

Normalized intensity spectra for 10 µM Ru(by)2Cl2 at different temperatures. Normalized intensity ratios of 10 µM Ru(by)2Cl2 solutions are marked with an arrow for the glass geometry (inset, sample geometry) and a dotted line for the ‘bow-tie’ sample geometries (inset, sample geometry). Normalized intensity ratios are calculated as the ratio of the time dependent emission intensity during to the maximum emission intensity before exposure to short microwave pulse.

Fig. 4.
Fig. 4.

Normalized spectra of Ru(by)2Cl2 emission (no dichroic) before (black dashed) and during the application of low power microwave pulses for ‘bow-tie’ (red dashed) and glass slide (blue dashed) sample geometries. Dichroic transmission curve is overlaid to show the filtering effect of the dichroic on Ru(by)2Cl2 emission (dotted gray line).

Fig. 5.
Fig. 5.

The normalized average fluorescence intensity over 100 pixel2 region (selected region approximated by box) time traces from CCD images for 10 µM Ru(by)2Cl2 solution at disjointed ‘bow-tie’ junction and on plain glass slides (control) during the application of 5 second low power microwave pulse (Mw pulse). Sample configurations are shown to the right of the CCD images.

Fig. 6.
Fig. 6.

The movies of the decrease in fluorescence intensity of 10 µM Ru(by)2Cl2 solutions during exposure to five second microwave pulse on A) plain glass substrates (2.3 MB) [Media 1] and B) on glass substrates modified with vapor deposited gold ‘bow-tie’ structures 75 nm thick (2.3 MB) [Media 2], demonstrate the functionality of the fluorescence microscope in a microwave cavity.

Fig. 7.
Fig. 7.

Maximum pixel intensity time traces from chemiluminescent solutions on plain glass slides (control) and in the gap of a disjointed ‘bow-tie’ geometry 75 nm thick. CCD images are collected at a rate of 10 Hz for approximately 10 seconds. Samples are exposed to five second microwave pulses (Mw pulse) that are initiated approximately 2 seconds after data collection. Discrete time intervals are labeled as a) 0 seconds or steady state emission b) emission upon initial exposure to microwave pulse c) during the application of the microwave pulse d) maximum ‘triggered’ emission and e) final emission intensity.

Fig. 8.
Fig. 8.

CCD images of chemiluminescent solutions on plain glass slides (control) at discrete time intervals. CCD images are collected at a rate of 10 Hz for approximately 10 seconds. Samples are exposed to five second microwave pulses (Mw pulse) that are initiated approximately 2 seconds after data collection. Discrete time intervals are labeled as A) 0 seconds or steady state emission B) emission upon initial exposure to microwave pulse C) during the application of the microwave pulse D) maximum ‘triggered’ emission and E) final emission intensity.

Fig. 9.
Fig. 9.

CCD images of chemiluminescent solutions on disjointed ‘bow-tie’ junction at discrete time intervals. CCD images are collected at a rate of 10 Hz for approximately 10 seconds. Samples are exposed to five second microwave pulses (Mw pulse) that are initiated approximately 2 seconds after data collection. Discrete time intervals are labeled as A) 0 seconds or steady state emission B) emission upon initial exposure to microwave pulse C) during the application of the microwave pulse D) maximum ‘triggered’ emission and E) final emission intensity.

Fig. 10.
Fig. 10.

CCD movie images for green for 6 µl of chemiluminescence solution A) on glass substrates (1.8 MB) [Media 3] and in the gap of B) disjointed ‘bow-tie’ geometries (2.3) [Media 4]. Dashed outlines denote triangle ‘bow-tie’ tips.

Metrics