Abstract

Abstract

Widely tunable display pixels are reported. The pixel consists of a subwavelength silicon-nitride/air membrane containing complementary fixed and mobile gratings. By altering the device refractive index profile and symmetry, using MEMS actuation methods, wavelength tuning across ~100 nm per pixel in the visible spectral region is shown to be possible. Initial results illustrating the influence of structural symmetry, pixel thickness, and polarization on the spectral response are provided. These pixels exhibit ~±4° angular acceptance aperture. Applications in compact display systems are envisioned.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC press, 2002).
  2. Texas Instruments, DLP site: http://www.dlp.com/
  3. D. M. Bloom, "The grating light valve: revolutionizing display technology," Proc. SPIE 3013, 165-171 (1997).
    [CrossRef]
  4. J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, "Overview and applications of Grating Light ValveTM based optical write engines for high-speed digital imaging," Proc. SPIE 5348, 1-13 (2004).
    [CrossRef]
  5. Qualcomm, IMOD displays site: http://www.qualcomm.com/technology/imod
  6. S. S. Wang and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. 32, 2606-2613 (1993).
    [CrossRef] [PubMed]
  7. R. Magnusson and S. S. Wang, "Optical guided-mode resonance filter," US patent number 5,216,680, June 1, 1993.
  8. R. Magnusson and Y. Ding, "MEMS tunable resonant leaky mode filters," IEEE Photon. Technol. Lett. 18, 1479-1481 (2006).
    [CrossRef]
  9. W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonances in photonic crystal slabs," Appl. Phys. Lett 82, 1999-2001 (2003).
    [CrossRef]
  10. D. W. Carr, J. P. Sullivan, and T. A. Friedman, "Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave theory," Opt. Lett. 28, 1636-1638 (2003).
    [CrossRef] [PubMed]
  11. B. E. N. Keeler, D. W. Carr, J. P. Sullivan, T. A. Friedman, and J. R. Wendt, "Experimental demonstration of a laterally deformable optical nanoelectromechanical system grating transducer," Opt. Lett. 29, 1182-1184 (2004).
    [CrossRef] [PubMed]
  12. Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007).
    [CrossRef]
  13. Y. Ding and R. Magnusson, "Band gaps and leaky-wave effects in resonant photonic-crystal waveguides," Opt. Express 15, 680-694 (2007).
    [CrossRef] [PubMed]
  14. R. F. Kazarinov and C. H. Henry, "Second-order distributed feedback lasers with mode selection provided by first-order radiation losses," IEEE J. Quantum Electron. 21, 144-150 (1985).
    [CrossRef]
  15. P. Vincent and M. Nevière, "Corrugated dielectric waveguides: a numerical study of the second-order stop bands," Appl. Phys. 20, 345-351 (1979).
    [CrossRef]
  16. Y. Ding and R. Magnusson, "Use of nondegenerate resonant leaky modes to fashion diverse optical spectra," Opt. Express 12, 1885-1891 (2004).
    [CrossRef] [PubMed]
  17. Y. Ding and R. Magnusson, "Resonant leaky-mode spectral-band engineering and device applications," Opt. Express 12, 5661-5674 (2004).
    [CrossRef] [PubMed]
  18. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
    [CrossRef]
  19. I. A. Avrutsky and V. A. Sychugov, "Reflection of a beam of finite size from a corrugated waveguide," J. Mod. Opt. 36, 1527-1539 (1989).
    [CrossRef]

2007

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007).
[CrossRef]

Y. Ding and R. Magnusson, "Band gaps and leaky-wave effects in resonant photonic-crystal waveguides," Opt. Express 15, 680-694 (2007).
[CrossRef] [PubMed]

2006

R. Magnusson and Y. Ding, "MEMS tunable resonant leaky mode filters," IEEE Photon. Technol. Lett. 18, 1479-1481 (2006).
[CrossRef]

2004

2003

D. W. Carr, J. P. Sullivan, and T. A. Friedman, "Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave theory," Opt. Lett. 28, 1636-1638 (2003).
[CrossRef] [PubMed]

W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonances in photonic crystal slabs," Appl. Phys. Lett 82, 1999-2001 (2003).
[CrossRef]

1997

D. M. Bloom, "The grating light valve: revolutionizing display technology," Proc. SPIE 3013, 165-171 (1997).
[CrossRef]

1995

1993

1989

I. A. Avrutsky and V. A. Sychugov, "Reflection of a beam of finite size from a corrugated waveguide," J. Mod. Opt. 36, 1527-1539 (1989).
[CrossRef]

1985

R. F. Kazarinov and C. H. Henry, "Second-order distributed feedback lasers with mode selection provided by first-order radiation losses," IEEE J. Quantum Electron. 21, 144-150 (1985).
[CrossRef]

1979

P. Vincent and M. Nevière, "Corrugated dielectric waveguides: a numerical study of the second-order stop bands," Appl. Phys. 20, 345-351 (1979).
[CrossRef]

Avrutsky, I. A.

I. A. Avrutsky and V. A. Sychugov, "Reflection of a beam of finite size from a corrugated waveguide," J. Mod. Opt. 36, 1527-1539 (1989).
[CrossRef]

Bloom, D. M.

D. M. Bloom, "The grating light valve: revolutionizing display technology," Proc. SPIE 3013, 165-171 (1997).
[CrossRef]

Carlisle, C. B.

J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, "Overview and applications of Grating Light ValveTM based optical write engines for high-speed digital imaging," Proc. SPIE 5348, 1-13 (2004).
[CrossRef]

Carr, D. W.

Ding, Y.

Fan, S.

W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonances in photonic crystal slabs," Appl. Phys. Lett 82, 1999-2001 (2003).
[CrossRef]

Friedman, T. A.

Gaylord, T. K.

Grann, E. B.

Hane, K.

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007).
[CrossRef]

Henry, C. H.

R. F. Kazarinov and C. H. Henry, "Second-order distributed feedback lasers with mode selection provided by first-order radiation losses," IEEE J. Quantum Electron. 21, 144-150 (1985).
[CrossRef]

Kanamori, Y.

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007).
[CrossRef]

Kazarinov, R. F.

R. F. Kazarinov and C. H. Henry, "Second-order distributed feedback lasers with mode selection provided by first-order radiation losses," IEEE J. Quantum Electron. 21, 144-150 (1985).
[CrossRef]

Keeler, B. E. N.

Kitani, T.

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007).
[CrossRef]

Magnusson, R.

Moharam, M. G.

Monteverde, R.

J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, "Overview and applications of Grating Light ValveTM based optical write engines for high-speed digital imaging," Proc. SPIE 5348, 1-13 (2004).
[CrossRef]

Nevière, M.

P. Vincent and M. Nevière, "Corrugated dielectric waveguides: a numerical study of the second-order stop bands," Appl. Phys. 20, 345-351 (1979).
[CrossRef]

Pommet, D. A.

Shu, W.

W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonances in photonic crystal slabs," Appl. Phys. Lett 82, 1999-2001 (2003).
[CrossRef]

Solgaard, O.

W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonances in photonic crystal slabs," Appl. Phys. Lett 82, 1999-2001 (2003).
[CrossRef]

Sullivan, J. P.

Sychugov, V. A.

I. A. Avrutsky and V. A. Sychugov, "Reflection of a beam of finite size from a corrugated waveguide," J. Mod. Opt. 36, 1527-1539 (1989).
[CrossRef]

Trisnadi, J. I.

J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, "Overview and applications of Grating Light ValveTM based optical write engines for high-speed digital imaging," Proc. SPIE 5348, 1-13 (2004).
[CrossRef]

Vincent, P.

P. Vincent and M. Nevière, "Corrugated dielectric waveguides: a numerical study of the second-order stop bands," Appl. Phys. 20, 345-351 (1979).
[CrossRef]

Wang, S. S.

Wendt, J. R.

Yanik, M. F.

W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonances in photonic crystal slabs," Appl. Phys. Lett 82, 1999-2001 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys.

P. Vincent and M. Nevière, "Corrugated dielectric waveguides: a numerical study of the second-order stop bands," Appl. Phys. 20, 345-351 (1979).
[CrossRef]

Appl. Phys. Lett

W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonances in photonic crystal slabs," Appl. Phys. Lett 82, 1999-2001 (2003).
[CrossRef]

Appl. Phys. Lett.

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007).
[CrossRef]

IEEE J. Quantum Electron.

R. F. Kazarinov and C. H. Henry, "Second-order distributed feedback lasers with mode selection provided by first-order radiation losses," IEEE J. Quantum Electron. 21, 144-150 (1985).
[CrossRef]

IEEE Photon. Technol. Lett.

R. Magnusson and Y. Ding, "MEMS tunable resonant leaky mode filters," IEEE Photon. Technol. Lett. 18, 1479-1481 (2006).
[CrossRef]

J. Mod. Opt.

I. A. Avrutsky and V. A. Sychugov, "Reflection of a beam of finite size from a corrugated waveguide," J. Mod. Opt. 36, 1527-1539 (1989).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Proc. SPIE

D. M. Bloom, "The grating light valve: revolutionizing display technology," Proc. SPIE 3013, 165-171 (1997).
[CrossRef]

J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, "Overview and applications of Grating Light ValveTM based optical write engines for high-speed digital imaging," Proc. SPIE 5348, 1-13 (2004).
[CrossRef]

Other

Qualcomm, IMOD displays site: http://www.qualcomm.com/technology/imod

R. Magnusson and S. S. Wang, "Optical guided-mode resonance filter," US patent number 5,216,680, June 1, 1993.

M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC press, 2002).

Texas Instruments, DLP site: http://www.dlp.com/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) A general schematic view of a subwavelength GMR device under normal incidence. When phase matching occurs between evanescent diffraction orders and a waveguide mode, a reflection resonance takes place. I, R, and T denote the incident wave, reflectance, and transmittance, respectively. (b) Schematic dispersion diagram of a GMR device at the second stop band (blue). For a grating with an asymmetric profile, a resonance occurs at each edge of the stop band as shown. For a symmetric element, a resonance appears only at one edge. Here, K=2π/Λ, k0=2π/λ, and β is the propagation constant.

Fig. 2.
Fig. 2.

Proposed idealized silicon nitride membrane structure for the tunable GMR pixels addressed in the paper with F1=0.15 and F3=0.1. For the blue-green pixel, Λ=0.385 µm and d=0.2 µm. For the red pixel, Λ=0.5 µm and d=0.25 µm.

Fig. 3.
Fig. 3.

Reflection spectra of the tunable pixels versus the air-gap fill factor F2 for TE polarization (electric field vector perpendicular to the incidence plane). (a) 2D map of reflectance R(λ,F2) for the blue-green pixel with Λ=0.385 µm and d=0.2 µm. (b) R(λ,F2) for the red pixel where Λ=0.5 µm and d=0.25 µm.

Fig. 4.
Fig. 4.

Samples of the reflection spectra for (a) blue-green and (b) red pixels for different values of F2 from the 2D maps in Fig. 3.

Fig. 5.
Fig. 5.

Angular spectra of the resonant peaks for two different values of F2 and wavelength for the red pixel.

Fig. 6.
Fig. 6.

Reflection spectra map R(λ,F2) of the red pixel for TM polarization.

Fig. 7.
Fig. 7.

Mode patterns (left) and cross-sectional mode profiles (right) for the red pixel. (a) λ=0.7125 µm (main branch TE), (b) λ=0.5365 µm (sub-branch TE) and (c) λ=0.5051 µm (TM). F2 is equal to 0.375. Electric field profiles due to the zero, first, and second diffraction orders are shown as blue, red, and purple, respectively.

Fig. 8.
Fig. 8.

Reflectance spectra map R(λ,F2) of the red pixel for (a) d=0.15 µm and (b) d=0.35 µm. Note that λ=0.5 µm defines the border between the zero order (subwavelength) and multiorder diffraction regimes for this structure.

Metrics