Abstract

We have developed a new detection mechanism for ultrabroadband multicolor fluorescence detection using an ultrafast supercontinuum white light source without spectral filtering to simultaneously excite different fluorophores. A nonlinear photonic crystal fiber was utilized in conjunction with a femtosecond laser to generate the supercontinuum. A time-resolved detector was tested to detect the whole spectrum fluorescence while gating out the excitation white light in the time domain.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. Y. Tsien, "Building and breeding molecules to spy on cells and tumors," FEBS Lett. 579, 927-932 (2005).
    [CrossRef] [PubMed]
  2. K. M. Marks and G. P. Nolan, "Chemical labeling strategies for cell biology," Nat. Methods 3, 591-596 (2006).
    [CrossRef] [PubMed]
  3. A. Brodeur and S. L. Chin, "Ultrafast white-light continuum generation and self-focusing in transparent condensed media," J. Opt. Soc. Am. B 16, 637-650 (1999).
    [CrossRef]
  4. A. L. Gaeta, "Nonlinear propagation and continuum generation in microstructured optical fibers," Opt. Lett. 27, 924-926 (2002).
    [CrossRef]
  5. A. V. Husakou and J. Herrmann, "Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers," J. Opt. Soc. Am. B 19, 2171-2182 (2002).
    [CrossRef]
  6. H. N. Paulsen, K. M. Hilligse, J. Thgersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003).
    [CrossRef] [PubMed]
  7. G. McConnell, "Confocal laser scanning fluorescence microscopy with a visible continuum source," Opt. Express 12, 2844-2850 (2004).
    [CrossRef] [PubMed]
  8. D. M. Grant, D. S. Elson, D. Schimpf, C. Dunsby, J. Requejo-Isidro, E. Auksorius, I. Munro, M. A. A. Neil, P. M. W. French, E. Nye, and G. Stamp, "Optically sectioned fluorescence lifetime imaging using a Nipkow disk microscope and a tunable ultrafast continuum excitation source," Opt. Lett. 30, 3353-3356 (2005).
    [CrossRef]
  9. R. R. Alfano, and S. L. Shapiro, "Emission in the region 4000 to 7000 Å via four-photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
    [CrossRef]
  10. J. R. Unruh, G. Gokulrangan, G. S. Wilson, and C. K. Johnson, "Fluorescence properties of Fluorescein, Tetramethylrhodamine and Texas Red linked to a DNA Aptamer." J. Photochem. Photobio. 81, 682-690 (2005).

2006

K. M. Marks and G. P. Nolan, "Chemical labeling strategies for cell biology," Nat. Methods 3, 591-596 (2006).
[CrossRef] [PubMed]

2005

R. Y. Tsien, "Building and breeding molecules to spy on cells and tumors," FEBS Lett. 579, 927-932 (2005).
[CrossRef] [PubMed]

D. M. Grant, D. S. Elson, D. Schimpf, C. Dunsby, J. Requejo-Isidro, E. Auksorius, I. Munro, M. A. A. Neil, P. M. W. French, E. Nye, and G. Stamp, "Optically sectioned fluorescence lifetime imaging using a Nipkow disk microscope and a tunable ultrafast continuum excitation source," Opt. Lett. 30, 3353-3356 (2005).
[CrossRef]

J. R. Unruh, G. Gokulrangan, G. S. Wilson, and C. K. Johnson, "Fluorescence properties of Fluorescein, Tetramethylrhodamine and Texas Red linked to a DNA Aptamer." J. Photochem. Photobio. 81, 682-690 (2005).

2004

2003

2002

1999

1970

R. R. Alfano, and S. L. Shapiro, "Emission in the region 4000 to 7000 Å via four-photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

FEBS Lett.

R. Y. Tsien, "Building and breeding molecules to spy on cells and tumors," FEBS Lett. 579, 927-932 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Photochem. Photobio.

J. R. Unruh, G. Gokulrangan, G. S. Wilson, and C. K. Johnson, "Fluorescence properties of Fluorescein, Tetramethylrhodamine and Texas Red linked to a DNA Aptamer." J. Photochem. Photobio. 81, 682-690 (2005).

Nat. Methods

K. M. Marks and G. P. Nolan, "Chemical labeling strategies for cell biology," Nat. Methods 3, 591-596 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. R. Alfano, and S. L. Shapiro, "Emission in the region 4000 to 7000 Å via four-photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Spectrum of the supercontinuum generated from a nonlinear PCF seeded by 50-fs pulses from a Ti:Sapphire oscillator.

Fig. 2.
Fig. 2.

Schematic diagram of the whole-spectrum fluorescence detection system.

Fig. 3.
Fig. 3.

Time-resolved fluorescence spectra of two different dye molecules, 6-TAMRA and Deep Red. The fluorescence emission peaks of 6-TAMRA and Deep Red are 573 and 662 nm, respectively. The delay of the trigger signal to the streak camera was adjusted so that the excitation supercontinuum was tuned out of the detection time window.

Fig. 4.
Fig. 4.

(a) Fluorescence spectra of 6-TAMRA and Deep Red 0.2 ns after excitation. (b) Fluorescence decay curves of 6-TAMRA and Deep Red with a 2.4 ns and 0.6 ns fluorescence lifetime respectively.

Fig. 5.
Fig. 5.

Measurements of fluorescent beads having different absorption and emission spectra with a single ultrafast supercontinuum excitation. Each peak represents a fluorescence burst from an individual bead passing through the excitation volume. The bin width was set to 1.3 ms. (a) Fluorescent beads with absorption maximum of 430 nm and emission maximum of 465 nm, and (b) fluorescent beads with absorption maximum of 665 nm and emission maximum of 680 nm.

Metrics