Abstract

This study aims to develop a novel imaging technique to improve the accuracy of the colposcolpic diagnosis of cervical cancer. An optical imaging system based on active stereo vision is built to measure the 3-D surface topology of cervix and track the motion of patient. The information of motion tracking are used to register the time-sequenced images of cervix recorded over the period of examination. The imaging system is evaluated by tracking the movements of cervix models. The results show that the error of 2-D image registration is 0.8 pixels, equivalent to the motion tracking error of 0.05 mm in the field-of-view. The imaging technique holds the promise to enable quantitative mapping of the acetowhitening kinetics over cervical surface for more accurate diagnosis of cervical cancer.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. W. Pogue, H. B. Kaufman, A. Zelenchuk, W. Harper, G. C. Burke, E. E. Burke, and D. M. Harper, "Analysis of acetic acid-induced whitening of high-grade squamous intraepithelial lesions," J. Biomed. Opt. 6, 397-403 (2001).
    [CrossRef] [PubMed]
  2. C. Balas, "A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix," IEEE Trans. Biomed. Eng. 48, 96-104 (2001).
    [CrossRef] [PubMed]
  3. T. T. Wu, J. Y. Qu, T. H. Cheung, S. F. Yim, and Y. F. Wong, "Study of dynamic process of acetic acid induced-whitening in epithelial tissues at cellular level," Opt. Express 13, 4963-4973 (2005).
    [CrossRef] [PubMed]
  4. Y. F. Wang and J. K. Aggarwal, "An overview of geometric modeling using active sensing," IEEE Control Syst. Mag. 8, 5-13 (1988).
    [CrossRef]
  5. J. Batlle, E. Mouaddib, and J. Salvi, "Recent progress in coded structured light as a technique to solve the correspondence problem: a survey," Pattern Recogn. 31, 963-982 (1998).
    [CrossRef]
  6. K. Hasegawa, K. Noda, and Y. Sato, "Electronic endoscope system for shape measurement," in Proceedings of the 16th International Conference on Pattern Recognition (IEEE Computer Society, 2002), pp. 761-764.
  7. T. Wu, J. Qu, T. -H. Cheung, K. Lo, and M. -Y. Yu, "Preliminary study of detecting neoplastic growths in vivo with real time calibrated autofluorescence imaging," Opt. Express 11, 291-298 (2003).
    [CrossRef] [PubMed]
  8. R. Y. Tsai, "A versatile camera calibration technique for highaccuracy 3D machine vision metrology using off-the-shelf TV camera and lenses," IEEE J. Rob. Autom. 3, 323-344 (1987).
    [CrossRef]
  9. D. Q. Huynh, R. A. Owens, and P. E. Hartmann, "Calibrating a structured light stripe system: a novel approach," Int. J. Comput. Vis. 33, 73-86 (1999).
    [CrossRef]
  10. P. J. Besl and N. D. McKay, "A method for registration of 3-D shapes," IEEE Trans. Pattern Anal. Mach. Intell. 14, 239-256 (1992).
    [CrossRef]
  11. Y. Chen and G. Medioni, "Object modeling by registration of multiple range images," Image Vis. Comput. 10, 145-155 (1992).
    [CrossRef]
  12. Z. Zhang, "Iterative point matching for registration of free-form curves and surfaces," Int. J. Comput. Vis. 13, 119-152 (1994).
    [CrossRef]
  13. S. Rusinkiewicz and M. Levoy, "Efficient variants of the ICP algorithm," in Proceedings of 3rd International Conference on 3-D Digital Imaging and Modeling (3DIM'01) (IEEE Computer Society, 2001), pp. 145-152.
  14. J. L. Bentley, "Multidimensional binary search trees used for associative searching," Commun. ACM 18, 509-517 (1975).
    [CrossRef]
  15. A. Goshtasby, "Image registration by local approximation methods," Image Vis. Comput. 6, 255-261 (1988).
    [CrossRef]

2005 (1)

2003 (1)

2001 (2)

B. W. Pogue, H. B. Kaufman, A. Zelenchuk, W. Harper, G. C. Burke, E. E. Burke, and D. M. Harper, "Analysis of acetic acid-induced whitening of high-grade squamous intraepithelial lesions," J. Biomed. Opt. 6, 397-403 (2001).
[CrossRef] [PubMed]

C. Balas, "A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix," IEEE Trans. Biomed. Eng. 48, 96-104 (2001).
[CrossRef] [PubMed]

1999 (1)

D. Q. Huynh, R. A. Owens, and P. E. Hartmann, "Calibrating a structured light stripe system: a novel approach," Int. J. Comput. Vis. 33, 73-86 (1999).
[CrossRef]

1998 (1)

J. Batlle, E. Mouaddib, and J. Salvi, "Recent progress in coded structured light as a technique to solve the correspondence problem: a survey," Pattern Recogn. 31, 963-982 (1998).
[CrossRef]

1994 (1)

Z. Zhang, "Iterative point matching for registration of free-form curves and surfaces," Int. J. Comput. Vis. 13, 119-152 (1994).
[CrossRef]

1992 (2)

P. J. Besl and N. D. McKay, "A method for registration of 3-D shapes," IEEE Trans. Pattern Anal. Mach. Intell. 14, 239-256 (1992).
[CrossRef]

Y. Chen and G. Medioni, "Object modeling by registration of multiple range images," Image Vis. Comput. 10, 145-155 (1992).
[CrossRef]

1988 (2)

Y. F. Wang and J. K. Aggarwal, "An overview of geometric modeling using active sensing," IEEE Control Syst. Mag. 8, 5-13 (1988).
[CrossRef]

A. Goshtasby, "Image registration by local approximation methods," Image Vis. Comput. 6, 255-261 (1988).
[CrossRef]

1987 (1)

R. Y. Tsai, "A versatile camera calibration technique for highaccuracy 3D machine vision metrology using off-the-shelf TV camera and lenses," IEEE J. Rob. Autom. 3, 323-344 (1987).
[CrossRef]

1975 (1)

J. L. Bentley, "Multidimensional binary search trees used for associative searching," Commun. ACM 18, 509-517 (1975).
[CrossRef]

Commun. ACM (1)

J. L. Bentley, "Multidimensional binary search trees used for associative searching," Commun. ACM 18, 509-517 (1975).
[CrossRef]

IEEE Control Syst. Mag. (1)

Y. F. Wang and J. K. Aggarwal, "An overview of geometric modeling using active sensing," IEEE Control Syst. Mag. 8, 5-13 (1988).
[CrossRef]

IEEE J. Rob. Autom. (1)

R. Y. Tsai, "A versatile camera calibration technique for highaccuracy 3D machine vision metrology using off-the-shelf TV camera and lenses," IEEE J. Rob. Autom. 3, 323-344 (1987).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

C. Balas, "A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix," IEEE Trans. Biomed. Eng. 48, 96-104 (2001).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

P. J. Besl and N. D. McKay, "A method for registration of 3-D shapes," IEEE Trans. Pattern Anal. Mach. Intell. 14, 239-256 (1992).
[CrossRef]

Image Vis. Comput. (2)

Y. Chen and G. Medioni, "Object modeling by registration of multiple range images," Image Vis. Comput. 10, 145-155 (1992).
[CrossRef]

A. Goshtasby, "Image registration by local approximation methods," Image Vis. Comput. 6, 255-261 (1988).
[CrossRef]

Int. J. Comput. Vis. (2)

D. Q. Huynh, R. A. Owens, and P. E. Hartmann, "Calibrating a structured light stripe system: a novel approach," Int. J. Comput. Vis. 33, 73-86 (1999).
[CrossRef]

Z. Zhang, "Iterative point matching for registration of free-form curves and surfaces," Int. J. Comput. Vis. 13, 119-152 (1994).
[CrossRef]

J. Biomed. Opt. (1)

B. W. Pogue, H. B. Kaufman, A. Zelenchuk, W. Harper, G. C. Burke, E. E. Burke, and D. M. Harper, "Analysis of acetic acid-induced whitening of high-grade squamous intraepithelial lesions," J. Biomed. Opt. 6, 397-403 (2001).
[CrossRef] [PubMed]

Opt. Express (2)

Pattern Recogn. (1)

J. Batlle, E. Mouaddib, and J. Salvi, "Recent progress in coded structured light as a technique to solve the correspondence problem: a survey," Pattern Recogn. 31, 963-982 (1998).
[CrossRef]

Other (2)

K. Hasegawa, K. Noda, and Y. Sato, "Electronic endoscope system for shape measurement," in Proceedings of the 16th International Conference on Pattern Recognition (IEEE Computer Society, 2002), pp. 761-764.

S. Rusinkiewicz and M. Levoy, "Efficient variants of the ICP algorithm," in Proceedings of 3rd International Conference on 3-D Digital Imaging and Modeling (3DIM'01) (IEEE Computer Society, 2001), pp. 145-152.

Supplementary Material (2)

» Media 1: MOV (3980 KB)     
» Media 2: MOV (13709 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic of the 3-D imaging system. P1 and P2 are the polarizers with their polarization orientations perpendicular to each other. (b) Image of a cervix model with white-light illumination. (c) Image of the 33×33 grid pattern projected on the model.

Fig. 2.
Fig. 2.

(a). Reconstructed 3-D grid projected on the surface of a cervix model. (b) Reconstructed continuous surface by using interpolation. The unit of scale is mm.

Fig. 3.
Fig. 3.

(3.98 MB) Movie of tracking results (13.71 MB version).

Tables (1)

Tables Icon

Table 1. Comparison of quaternion and ICP tracking results

Metrics