Abstract

We show in this paper that the contrast of the interface between resonant and nonresonant media imaged in Coherent anti-Stokes Raman scattering (CARS) microscopy strongly depends on the pump and Stokes fields spectral detuning. More specifically, when this detuning drives the vibrational resonance with the maximum phase difference, a spatial dip appears at the interface in the CARS image. This effect is studied both theoretically and experimentally and is an evidence of the coherent and resonant nature of the CARS contrast mechanism.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
    [Crossref]
  2. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman scattering microscope,” Opt. Lett. 7, 350–352 (1982).
    [Crossref] [PubMed]
  3. A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
    [Crossref]
  4. J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of Anti-Stokes Raman Scattering Microscopy,” J. Opt. Soc. Am. A 19, 1363–1375 (2002).
    [Crossref]
  5. E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes-Raman scattering (CARS) microscopy,” J. Raman Spect. 34, 642–650 (2003).
    [Crossref]
  6. D. Oron, N. Dudovich, and Y. Silberberg, “Single-Pulse Phase-Contrast Nonlinear Raman Spectroscopy,” Phys. Rev. Lett. 89, 273001 (2002).
    [Crossref]
  7. M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, “High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. B 81, 875–879 (2005).
    [Crossref]
  8. H. Kano and H. Hamaguchi, “Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. B 80, 243–246 (2005).
    [Crossref]
  9. J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology,” Biophys. J. 83, 502–509 (2002).
    [Crossref] [PubMed]
  10. H. Kano and H. Hamaguchi, “Vibrationally resonant imaging of a single living cell by supercontinuum-based mutiplex coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 13, 1322–1327 (2005), http://oe.osa.org/abstract.cfm?id=82684.
    [Crossref] [PubMed]
  11. H. Kano and H. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express 14, 2798–2804(2006), http://oe.osa.org/abstract.cfm?id=88999.
    [Crossref] [PubMed]
  12. N. Djaker, D. Gachet, N. Sandeau, P.-F. Lenne, and H. Rigneault, “Refractive effects in Coherent Anti-Stokes Raman Scattering (CARS) Microscopy,” Appl. Opt. 45, 7005–7011 (2006).
    [Crossref] [PubMed]
  13. S. A. J. Druet, B. Attal, T. K. Gustafson, and J. P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18, 1529–1557 (1978).
    [Crossref]
  14. Y. R. Shen, The Principles of Nonlinear Optics (Wiley Interscience, 1984).
  15. M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. A 10, 4447–4463 (1974).
  16. H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14, 1748–1755 (1976).
    [Crossref]
  17. J. W. Fleming and C. S. Johnson, “A practical analysis for coherent anti-stokes Raman scattering (CARS) spectra,” J. Raman Spect. 8, 284–290 (1979).
    [Crossref]
  18. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambride University Press, 1990)
  19. Spectral Database for Organic Compounds SDBS, http://www.aist.go.jp/RIODB/SDBS.
  20. D. Gachet, N. Sandeau, and H. Rigneault, Far-field radiation pattern in Coherent Anti-stokes Raman Scattering (CARS) microscopyin Biomedical Vibrational Spectroscopy III: Advances in Research and IndustryA. Mahadevan-Jansen and W. H. Petrich, eds., Proc. SPIE 6093, 609309 (2006).
  21. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanetic system,” Roy. Soc. of London Proc. Series A 253, 358–379 (1959).
    [Crossref]
  22. D. Gachet, N. Sandeau, and H. Rigneault, “Influence of the Raman depolarisation ratio on far-field radiation patterns in coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Eur. Opt. Soc. - Rapid Publications 1, 06013 (2006), https://www.jeos.org/index.php/jeos rp/article/view/06013.
    [Crossref]
  23. E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27, 1168–1170 (2002).
    [Crossref]
  24. P. D. Maker and R. W. Terhune, “Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength,” Phys. Rev. 137, 801–818 (1965).
    [Crossref]
  25. G.W. H. Wurpel, J.M. Schins, and M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27, 1093–1095 (2002).
    [Crossref]
  26. J.-X. Cheng, A. Volkmer, L.D. Book, and X.S. Xie, “Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
    [Crossref]
  27. E.M. Vartiainen, H.A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14, 3622–3630 (2006).
    [Crossref] [PubMed]

2006 (5)

D. Gachet, N. Sandeau, and H. Rigneault, Far-field radiation pattern in Coherent Anti-stokes Raman Scattering (CARS) microscopyin Biomedical Vibrational Spectroscopy III: Advances in Research and IndustryA. Mahadevan-Jansen and W. H. Petrich, eds., Proc. SPIE 6093, 609309 (2006).

D. Gachet, N. Sandeau, and H. Rigneault, “Influence of the Raman depolarisation ratio on far-field radiation patterns in coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Eur. Opt. Soc. - Rapid Publications 1, 06013 (2006), https://www.jeos.org/index.php/jeos rp/article/view/06013.
[Crossref]

H. Kano and H. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express 14, 2798–2804(2006), http://oe.osa.org/abstract.cfm?id=88999.
[Crossref] [PubMed]

E.M. Vartiainen, H.A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14, 3622–3630 (2006).
[Crossref] [PubMed]

N. Djaker, D. Gachet, N. Sandeau, P.-F. Lenne, and H. Rigneault, “Refractive effects in Coherent Anti-Stokes Raman Scattering (CARS) Microscopy,” Appl. Opt. 45, 7005–7011 (2006).
[Crossref] [PubMed]

2005 (3)

H. Kano and H. Hamaguchi, “Vibrationally resonant imaging of a single living cell by supercontinuum-based mutiplex coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 13, 1322–1327 (2005), http://oe.osa.org/abstract.cfm?id=82684.
[Crossref] [PubMed]

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, “High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. B 81, 875–879 (2005).
[Crossref]

H. Kano and H. Hamaguchi, “Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. B 80, 243–246 (2005).
[Crossref]

2003 (1)

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes-Raman scattering (CARS) microscopy,” J. Raman Spect. 34, 642–650 (2003).
[Crossref]

2002 (6)

D. Oron, N. Dudovich, and Y. Silberberg, “Single-Pulse Phase-Contrast Nonlinear Raman Spectroscopy,” Phys. Rev. Lett. 89, 273001 (2002).
[Crossref]

J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of Anti-Stokes Raman Scattering Microscopy,” J. Opt. Soc. Am. A 19, 1363–1375 (2002).
[Crossref]

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology,” Biophys. J. 83, 502–509 (2002).
[Crossref] [PubMed]

J.-X. Cheng, A. Volkmer, L.D. Book, and X.S. Xie, “Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[Crossref]

G.W. H. Wurpel, J.M. Schins, and M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27, 1093–1095 (2002).
[Crossref]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27, 1168–1170 (2002).
[Crossref]

2001 (1)

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[Crossref]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

1982 (1)

1979 (1)

J. W. Fleming and C. S. Johnson, “A practical analysis for coherent anti-stokes Raman scattering (CARS) spectra,” J. Raman Spect. 8, 284–290 (1979).
[Crossref]

1978 (1)

S. A. J. Druet, B. Attal, T. K. Gustafson, and J. P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18, 1529–1557 (1978).
[Crossref]

1976 (1)

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14, 1748–1755 (1976).
[Crossref]

1974 (1)

M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. A 10, 4447–4463 (1974).

1965 (1)

P. D. Maker and R. W. Terhune, “Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength,” Phys. Rev. 137, 801–818 (1965).
[Crossref]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanetic system,” Roy. Soc. of London Proc. Series A 253, 358–379 (1959).
[Crossref]

Attal, B.

S. A. J. Druet, B. Attal, T. K. Gustafson, and J. P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18, 1529–1557 (1978).
[Crossref]

Baum, P.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, “High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. B 81, 875–879 (2005).
[Crossref]

Bloembergen, N.

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14, 1748–1755 (1976).
[Crossref]

M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. A 10, 4447–4463 (1974).

Bodermann, B.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, “High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. B 81, 875–879 (2005).
[Crossref]

Bonn, M.

Book, L.D.

J.-X. Cheng, A. Volkmer, L.D. Book, and X.S. Xie, “Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[Crossref]

Butcher, P. N.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambride University Press, 1990)

Cheng, J.-X.

J.-X. Cheng, A. Volkmer, L.D. Book, and X.S. Xie, “Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[Crossref]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27, 1168–1170 (2002).
[Crossref]

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology,” Biophys. J. 83, 502–509 (2002).
[Crossref] [PubMed]

J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of Anti-Stokes Raman Scattering Microscopy,” J. Opt. Soc. Am. A 19, 1363–1375 (2002).
[Crossref]

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[Crossref]

Cotter, D.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambride University Press, 1990)

Djaker, N.

Druet, S. A. J.

S. A. J. Druet, B. Attal, T. K. Gustafson, and J. P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18, 1529–1557 (1978).
[Crossref]

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, “Single-Pulse Phase-Contrast Nonlinear Raman Spectroscopy,” Phys. Rev. Lett. 89, 273001 (2002).
[Crossref]

Duncan, M. D.

Fleming, J. W.

J. W. Fleming and C. S. Johnson, “A practical analysis for coherent anti-stokes Raman scattering (CARS) spectra,” J. Raman Spect. 8, 284–290 (1979).
[Crossref]

Gachet, D.

D. Gachet, N. Sandeau, and H. Rigneault, Far-field radiation pattern in Coherent Anti-stokes Raman Scattering (CARS) microscopyin Biomedical Vibrational Spectroscopy III: Advances in Research and IndustryA. Mahadevan-Jansen and W. H. Petrich, eds., Proc. SPIE 6093, 609309 (2006).

D. Gachet, N. Sandeau, and H. Rigneault, “Influence of the Raman depolarisation ratio on far-field radiation patterns in coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Eur. Opt. Soc. - Rapid Publications 1, 06013 (2006), https://www.jeos.org/index.php/jeos rp/article/view/06013.
[Crossref]

N. Djaker, D. Gachet, N. Sandeau, P.-F. Lenne, and H. Rigneault, “Refractive effects in Coherent Anti-Stokes Raman Scattering (CARS) Microscopy,” Appl. Opt. 45, 7005–7011 (2006).
[Crossref] [PubMed]

Greve, M.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, “High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. B 81, 875–879 (2005).
[Crossref]

Gustafson, T. K.

S. A. J. Druet, B. Attal, T. K. Gustafson, and J. P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18, 1529–1557 (1978).
[Crossref]

Hamaguchi, H.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Jia, Y. K.

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology,” Biophys. J. 83, 502–509 (2002).
[Crossref] [PubMed]

Johnson, C. S.

J. W. Fleming and C. S. Johnson, “A practical analysis for coherent anti-stokes Raman scattering (CARS) spectra,” J. Raman Spect. 8, 284–290 (1979).
[Crossref]

Jones, D. J.

Kano, H.

Lenne, P.-F.

Levenson, M. D.

M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. A 10, 4447–4463 (1974).

Lotem, H.

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14, 1748–1755 (1976).
[Crossref]

Lynch, R. T.

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14, 1748–1755 (1976).
[Crossref]

Maker, P. D.

P. D. Maker and R. W. Terhune, “Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength,” Phys. Rev. 137, 801–818 (1965).
[Crossref]

Manuccia, T. J.

Müller, M.

Oron, D.

D. Oron, N. Dudovich, and Y. Silberberg, “Single-Pulse Phase-Contrast Nonlinear Raman Spectroscopy,” Phys. Rev. Lett. 89, 273001 (2002).
[Crossref]

Potma, E. O.

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes-Raman scattering (CARS) microscopy,” J. Raman Spect. 34, 642–650 (2003).
[Crossref]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27, 1168–1170 (2002).
[Crossref]

Reintjes, J.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanetic system,” Roy. Soc. of London Proc. Series A 253, 358–379 (1959).
[Crossref]

Riedle, E.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, “High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. B 81, 875–879 (2005).
[Crossref]

Rigneault, H.

D. Gachet, N. Sandeau, and H. Rigneault, “Influence of the Raman depolarisation ratio on far-field radiation patterns in coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Eur. Opt. Soc. - Rapid Publications 1, 06013 (2006), https://www.jeos.org/index.php/jeos rp/article/view/06013.
[Crossref]

N. Djaker, D. Gachet, N. Sandeau, P.-F. Lenne, and H. Rigneault, “Refractive effects in Coherent Anti-Stokes Raman Scattering (CARS) Microscopy,” Appl. Opt. 45, 7005–7011 (2006).
[Crossref] [PubMed]

D. Gachet, N. Sandeau, and H. Rigneault, Far-field radiation pattern in Coherent Anti-stokes Raman Scattering (CARS) microscopyin Biomedical Vibrational Spectroscopy III: Advances in Research and IndustryA. Mahadevan-Jansen and W. H. Petrich, eds., Proc. SPIE 6093, 609309 (2006).

Rinia, H.A.

Sandeau, N.

D. Gachet, N. Sandeau, and H. Rigneault, Far-field radiation pattern in Coherent Anti-stokes Raman Scattering (CARS) microscopyin Biomedical Vibrational Spectroscopy III: Advances in Research and IndustryA. Mahadevan-Jansen and W. H. Petrich, eds., Proc. SPIE 6093, 609309 (2006).

D. Gachet, N. Sandeau, and H. Rigneault, “Influence of the Raman depolarisation ratio on far-field radiation patterns in coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Eur. Opt. Soc. - Rapid Publications 1, 06013 (2006), https://www.jeos.org/index.php/jeos rp/article/view/06013.
[Crossref]

N. Djaker, D. Gachet, N. Sandeau, P.-F. Lenne, and H. Rigneault, “Refractive effects in Coherent Anti-Stokes Raman Scattering (CARS) Microscopy,” Appl. Opt. 45, 7005–7011 (2006).
[Crossref] [PubMed]

Schins, J.M.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley Interscience, 1984).

Silberberg, Y.

D. Oron, N. Dudovich, and Y. Silberberg, “Single-Pulse Phase-Contrast Nonlinear Raman Spectroscopy,” Phys. Rev. Lett. 89, 273001 (2002).
[Crossref]

Taran, J. P.

S. A. J. Druet, B. Attal, T. K. Gustafson, and J. P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18, 1529–1557 (1978).
[Crossref]

Telle, H. R.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, “High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. B 81, 875–879 (2005).
[Crossref]

Terhune, R. W.

P. D. Maker and R. W. Terhune, “Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength,” Phys. Rev. 137, 801–818 (1965).
[Crossref]

Vartiainen, E.M.

Volkmer, A.

J.-X. Cheng, A. Volkmer, L.D. Book, and X.S. Xie, “Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[Crossref]

J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of Anti-Stokes Raman Scattering Microscopy,” J. Opt. Soc. Am. A 19, 1363–1375 (2002).
[Crossref]

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[Crossref]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanetic system,” Roy. Soc. of London Proc. Series A 253, 358–379 (1959).
[Crossref]

Wurpel, G.W. H.

Xie, X. S.

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes-Raman scattering (CARS) microscopy,” J. Raman Spect. 34, 642–650 (2003).
[Crossref]

J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of Anti-Stokes Raman Scattering Microscopy,” J. Opt. Soc. Am. A 19, 1363–1375 (2002).
[Crossref]

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology,” Biophys. J. 83, 502–509 (2002).
[Crossref] [PubMed]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27, 1168–1170 (2002).
[Crossref]

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Xie, X.S.

J.-X. Cheng, A. Volkmer, L.D. Book, and X.S. Xie, “Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[Crossref]

Ye, J.

Zheng, G.

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology,” Biophys. J. 83, 502–509 (2002).
[Crossref] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, “High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. B 81, 875–879 (2005).
[Crossref]

H. Kano and H. Hamaguchi, “Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. B 80, 243–246 (2005).
[Crossref]

Biophys. J. (1)

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology,” Biophys. J. 83, 502–509 (2002).
[Crossref] [PubMed]

in Biomedical Vibrational Spectroscopy III: Advances in Research and Industry (1)

D. Gachet, N. Sandeau, and H. Rigneault, Far-field radiation pattern in Coherent Anti-stokes Raman Scattering (CARS) microscopyin Biomedical Vibrational Spectroscopy III: Advances in Research and IndustryA. Mahadevan-Jansen and W. H. Petrich, eds., Proc. SPIE 6093, 609309 (2006).

J. Eur. Opt. Soc. - Rapid Publications (1)

D. Gachet, N. Sandeau, and H. Rigneault, “Influence of the Raman depolarisation ratio on far-field radiation patterns in coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Eur. Opt. Soc. - Rapid Publications 1, 06013 (2006), https://www.jeos.org/index.php/jeos rp/article/view/06013.
[Crossref]

J. Opt. Soc. Am. A (1)

J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of Anti-Stokes Raman Scattering Microscopy,” J. Opt. Soc. Am. A 19, 1363–1375 (2002).
[Crossref]

J. Phys. Chem. B (1)

J.-X. Cheng, A. Volkmer, L.D. Book, and X.S. Xie, “Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[Crossref]

J. Raman Spect. (2)

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes-Raman scattering (CARS) microscopy,” J. Raman Spect. 34, 642–650 (2003).
[Crossref]

J. W. Fleming and C. S. Johnson, “A practical analysis for coherent anti-stokes Raman scattering (CARS) spectra,” J. Raman Spect. 8, 284–290 (1979).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. (1)

P. D. Maker and R. W. Terhune, “Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength,” Phys. Rev. 137, 801–818 (1965).
[Crossref]

Phys. Rev. A (3)

S. A. J. Druet, B. Attal, T. K. Gustafson, and J. P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18, 1529–1557 (1978).
[Crossref]

M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. A 10, 4447–4463 (1974).

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14, 1748–1755 (1976).
[Crossref]

Phys. Rev. Lett. (3)

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[Crossref]

D. Oron, N. Dudovich, and Y. Silberberg, “Single-Pulse Phase-Contrast Nonlinear Raman Spectroscopy,” Phys. Rev. Lett. 89, 273001 (2002).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Roy. Soc. of London Proc. Series A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanetic system,” Roy. Soc. of London Proc. Series A 253, 358–379 (1959).
[Crossref]

Other (3)

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambride University Press, 1990)

Spectral Database for Organic Compounds SDBS, http://www.aist.go.jp/RIODB/SDBS.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley Interscience, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Theoretical CARS spectra of an isolated Raman line (a), representation of the χ (3) O tensor phase as a function of the normalized Raman resonance detuning (b) and representation of χ (3) O in the complex plane (c), for different values of the η parameter. OR 1: Off- Raman resonance; P: Peak CARS resonance; RP: Raman Peak resonance; PM: phase maximum; D: CARS spectral dip; OR 2: Off-Raman resonance.

Fig. 2.
Fig. 2.

Theoretical scans of an interface between an object (Obj.) and its nonresonant surrounding (Sur.) for different Raman detunings: black: peak (P); red: dip (D); blue: phase maximum (PM); green: off-resonance (OR). The object resonance is defined by η=1.49. (a)–(b) 1D model: the interface separates two infinite media. The scan position is normalized with respect to the excitation spatial width λ. (c)–(d) 3D model: the interface separates a 6 µm diameter bead from its surrounding. The CARS intensity is normalized with respect to its value in the surrounding.

Fig. 3.
Fig. 3.

CARS microscopy set-up. F: filter; BS: beam splitter; BC: beam combiner; LE and LF : lenses; C: condenser (NA =0.5).

Fig. 4.
Fig. 4.

Experimental CARS spectra of a 6 µm diameter polystyrene bead (red) and aqueous solution used experimentally (blue). The pump wavelength is fixed to 730.3 nm. The pump and Stokes powers equal 500 µW and 300 µW respectively.

Fig. 5.
Fig. 5.

Two- and one-dimensional scan of a 6.2 µm diameter polystyrene bead embedded in aqueous solution around the 1003 cm-1 polystyrene resonance. The pump and Stokes powers both equal 500 µW. Bead images (a) on-resonance and (b) off-resonance. The one-dimensional scans are performed along the dashed white lines and are all normalized with respect to the aqueous solution CARS intensity. The pump and Stokes beams linear polarizations are indicated by the white arrows. (c) One-dimensional scans performed along the dashed lines for various Raman resonance detuning and (d) for phase maximum (green), around the second peak (red and blue) and off-resonance (black) only. (e) Spectral positions corresponding to the scans depicted on (c) and associated normalized dip amplitude (bright grey: left dip; dark grey: right dip).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

χ ( 3 ) = χ R ( 3 ) + χ NR ( 3 ) .
χ R ( 3 ) = a ( ω p ω s Ω R ) + i Γ .
χ O ( 3 ) = χ O , R ( 3 ) + χ O , N R ( 3 ) .
δ ω = ω p ω s , ζ = ( δ ω Ω R ) Γ , η = 2 Γ χ O , N R ( 3 ) a .
χ O ( 3 ) ( ζ , η ) = χ O , N R ( 3 ) η ( ζ 2 + 1 ) [ η ( ζ 2 + 1 ) 2 ζ + 2 i ]
χ O ( 3 ) ( ζ , η ) = ρ ( ζ , η ) exp [ i ϕ ( ζ , η ) ]
ρ ( ζ , η ) = χ O , N R ( 3 ) [ 1 + 4 1 η ζ η ( ζ 2 + 1 ) ] 1 2 , tan [ ϕ ( ζ , η ) ] = 2 η ( ζ 2 + 1 ) 2 ζ .
C = ( χ O , N R ( 3 ) ; χ O , N R ( 3 ) η ) , r = χ O , N R ( 3 ) η = a 2 Γ .
η = 2 ( R P D ) 1 4 ( R P D ) 1 2 1 .
P ( 3 ) ( r , ω as ) = χ ( 3 ) ( ω as ; ω p , ω p , ω s ) E p ( r , ω p ) : E p ( r , ω p ) : E s * ( r , ω s )
m ( x ) = { ρ O ( ζ , η ) . exp [ i ϕ O ( ζ , η ) ] if x < 0 ρ S if x 0 , g ( x ) = { 1 λ if x < λ 2 0 if x λ 2 .
I CARS ( x ) = { ρ O 2 if x λ 2 [ ρ O 2 + ρ S 2 2 ρ O ρ S · cos ( ϕ O ) ] ( x λ ) 2 + ( ρ O 2 ρ S 2 ) x λ + 1 4 [ ρ O 2 + ρ S 2 + 2 ρ O ρ S · cos ( ϕ O ) ] if x < λ 2 ρ S 2 if x λ 2 .
cos ( ϕ O ) < min ( ρ S ρ O ; ρ O ρ S )

Metrics