Abstract

Results are presented for the first imaging system that combines the high power of terahertz quantum cascade lasers with three-dimensional image reconstruction based on filtered back-projection. Images of various phantoms have been successfully reconstructed revealing both their external and internal structures.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Hu and M. C. Nuss, “Imaging with THz waves,” Opt. Lett. 20, 1716–1718 (1995).
    [Crossref] [PubMed]
  2. C. Baker, W. R. Tribe, B. E. Cole, and M. C. Kemp, “Developments in people screening using THz technology,” Proc. SPIE Int. Soc. Opt. Eng. 5616, 61–68 (2004).
  3. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using THz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, Art. No. 241116 (2005).
    [Crossref]
  4. S. Wang, B. Ferguson, D. Abbot, and X.-C. Zhang, “T-ray imaging and tomography,“ J. Biol. Phys. 29, 247–256 (2003).
    [Crossref]
  5. D.M. Mittleman, Sensing with THz Radiation (Springer, Berlin, 2003).
  6. V. P. Wallace, R. M. Woodward, A. J. Fitzgerald, E. Pickwell, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151, 424–432 (2004).
    [Crossref] [PubMed]
  7. E. Pickwell, B. E. Cole, A. J. Fitzgerald, and V. P. Wallace, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84, 2190–2192 (2004).
    [Crossref]
  8. A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thicknesses using THz pulsed imaging,” J. Pharm. Sci. 94, 177–183 (2005).
    [Crossref] [PubMed]
  9. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
    [Crossref] [PubMed]
  10. S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade laser operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85, 1674–1676 (2004).
    [Crossref]
  11. L. Ajili, G. Scalari, J. Faist, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “High power quantum cascade lasers operating at λ=87 and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
    [Crossref]
  12. B. S. Williams, S. Kumar, and Q. Hu, “Operation of THz quantum cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005), http://www.opticsexpress.org/abstract.cfm?id=83724.
    [Crossref] [PubMed]
  13. C. Worrall, J. Alton, M. Houghton, S. Barbieri, C. Sirtori, H. E. Beere, and D. A. Ritchie, “Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz,” Opt. Express 14, 171–181 (2006), http://www.opticsexpress.org/abstract.cfm?id=86896.
    [Crossref] [PubMed]
  14. A. B. Ruffin, J. Van Rudd, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, and T. B. Norris, “Time reversal terahertz imaging,” IEEE J. Quantum Electron. 38, 1110–1119 (2002).
    [Crossref]
  15. T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28, 2058–2060 (2003).
    [Crossref] [PubMed]
  16. X.-C. Zhang, “Three-dimensional terahertz wave imaging,” Philos. Trans. R. Soc. Lond. Ser. A 362, 283–299 (2004).
    [Crossref]
  17. G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography (Academic Press, New York, 1980).
  18. S. Wang and X.-C. Zhang, “Pulsed terahertz tomography,” J. Phys. D: Appl. Phy. 37, R1–R36 (2004).
    [Crossref]
  19. J. Pearce, H. Choi, D. M. Mittleman, J. White, and D. Zimdars, “Terahertz wide aperture reflection tomography,” Opt. Lett. 30, 1653–1655 (2005).
    [Crossref] [PubMed]
  20. T. D. Dorney, W. W. Symes, R. G. Baraniuk, and D. M. Mittleman, “Terahertz multistatic reflection imaging,” J. Opt. Soc. Am. A 19, 1432–1442 (2002).
    [Crossref]
  21. J. Darmo, V. Tamosiunas, G. Fasching, J. Kroll, and K. Unterrainer, “Imaging with a terahertz quantum cascade laser,” Opt. Express 12, 1879–1884 (2004), http://www.opticsexpress.org/abstract.cfm?id=79769.
    [Crossref] [PubMed]
  22. D. R. Chamberlin, P. R. Robrish, W. R. Trutna, G. Scalari, M. Giovannini, L. Ajili, and J. Faist, “Imaging at 3.4 THz with a quantum-cascade laser,” App. Opt. 44, 121–125 (2005).
  23. S. Barbieri, J. Alton, C. Baker, T. Lo, H. E. Beere, and D. A. Ritchie, “Imaging with THz quantum cascade lasers using a Schottky diode mixer,” Opt. Express 13, 6497–6503 (2005), http://www.opticsexpress.org/abstract.cfm?id=85317.
    [Crossref] [PubMed]
  24. F. Natterer, The Mathematics of Computerized Tomography (B.G. Teubner, Stuttgart, and John Wiley & Sons, Chichester and New York, 1986).
  25. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1987).
  26. A. W. M. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30, 2563–2565 (2005).
    [Crossref] [PubMed]

2006 (1)

2005 (7)

2004 (8)

J. Darmo, V. Tamosiunas, G. Fasching, J. Kroll, and K. Unterrainer, “Imaging with a terahertz quantum cascade laser,” Opt. Express 12, 1879–1884 (2004), http://www.opticsexpress.org/abstract.cfm?id=79769.
[Crossref] [PubMed]

V. P. Wallace, R. M. Woodward, A. J. Fitzgerald, E. Pickwell, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151, 424–432 (2004).
[Crossref] [PubMed]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, and V. P. Wallace, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84, 2190–2192 (2004).
[Crossref]

C. Baker, W. R. Tribe, B. E. Cole, and M. C. Kemp, “Developments in people screening using THz technology,” Proc. SPIE Int. Soc. Opt. Eng. 5616, 61–68 (2004).

X.-C. Zhang, “Three-dimensional terahertz wave imaging,” Philos. Trans. R. Soc. Lond. Ser. A 362, 283–299 (2004).
[Crossref]

S. Wang and X.-C. Zhang, “Pulsed terahertz tomography,” J. Phys. D: Appl. Phy. 37, R1–R36 (2004).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade laser operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85, 1674–1676 (2004).
[Crossref]

L. Ajili, G. Scalari, J. Faist, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “High power quantum cascade lasers operating at λ=87 and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[Crossref]

2003 (2)

2002 (3)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

A. B. Ruffin, J. Van Rudd, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, and T. B. Norris, “Time reversal terahertz imaging,” IEEE J. Quantum Electron. 38, 1110–1119 (2002).
[Crossref]

T. D. Dorney, W. W. Symes, R. G. Baraniuk, and D. M. Mittleman, “Terahertz multistatic reflection imaging,” J. Opt. Soc. Am. A 19, 1432–1442 (2002).
[Crossref]

1995 (1)

Abbot, D.

S. Wang, B. Ferguson, D. Abbot, and X.-C. Zhang, “T-ray imaging and tomography,“ J. Biol. Phys. 29, 247–256 (2003).
[Crossref]

Ajili, L.

D. R. Chamberlin, P. R. Robrish, W. R. Trutna, G. Scalari, M. Giovannini, L. Ajili, and J. Faist, “Imaging at 3.4 THz with a quantum-cascade laser,” App. Opt. 44, 121–125 (2005).

L. Ajili, G. Scalari, J. Faist, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “High power quantum cascade lasers operating at λ=87 and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[Crossref]

Alton, J.

Arnone, D. D.

V. P. Wallace, R. M. Woodward, A. J. Fitzgerald, E. Pickwell, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151, 424–432 (2004).
[Crossref] [PubMed]

Baker, C.

Baraniuk, R. G.

Barbieri, S.

Beere, H. E.

C. Worrall, J. Alton, M. Houghton, S. Barbieri, C. Sirtori, H. E. Beere, and D. A. Ritchie, “Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz,” Opt. Express 14, 171–181 (2006), http://www.opticsexpress.org/abstract.cfm?id=86896.
[Crossref] [PubMed]

S. Barbieri, J. Alton, C. Baker, T. Lo, H. E. Beere, and D. A. Ritchie, “Imaging with THz quantum cascade lasers using a Schottky diode mixer,” Opt. Express 13, 6497–6503 (2005), http://www.opticsexpress.org/abstract.cfm?id=85317.
[Crossref] [PubMed]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade laser operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85, 1674–1676 (2004).
[Crossref]

L. Ajili, G. Scalari, J. Faist, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “High power quantum cascade lasers operating at λ=87 and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Chamberlin, D. R.

D. R. Chamberlin, P. R. Robrish, W. R. Trutna, G. Scalari, M. Giovannini, L. Ajili, and J. Faist, “Imaging at 3.4 THz with a quantum-cascade laser,” App. Opt. 44, 121–125 (2005).

Choi, H.

Cole, B. E.

A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thicknesses using THz pulsed imaging,” J. Pharm. Sci. 94, 177–183 (2005).
[Crossref] [PubMed]

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using THz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, Art. No. 241116 (2005).
[Crossref]

C. Baker, W. R. Tribe, B. E. Cole, and M. C. Kemp, “Developments in people screening using THz technology,” Proc. SPIE Int. Soc. Opt. Eng. 5616, 61–68 (2004).

E. Pickwell, B. E. Cole, A. J. Fitzgerald, and V. P. Wallace, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84, 2190–2192 (2004).
[Crossref]

Darmo, J.

Davies, A. G.

L. Ajili, G. Scalari, J. Faist, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “High power quantum cascade lasers operating at λ=87 and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Decker, J.

A. B. Ruffin, J. Van Rudd, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, and T. B. Norris, “Time reversal terahertz imaging,” IEEE J. Quantum Electron. 38, 1110–1119 (2002).
[Crossref]

Dorney, T. D.

Faist, J.

D. R. Chamberlin, P. R. Robrish, W. R. Trutna, G. Scalari, M. Giovannini, L. Ajili, and J. Faist, “Imaging at 3.4 THz with a quantum-cascade laser,” App. Opt. 44, 121–125 (2005).

L. Ajili, G. Scalari, J. Faist, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “High power quantum cascade lasers operating at λ=87 and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[Crossref]

Fasching, G.

Ferguson, B.

S. Wang, B. Ferguson, D. Abbot, and X.-C. Zhang, “T-ray imaging and tomography,“ J. Biol. Phys. 29, 247–256 (2003).
[Crossref]

Fitzgerald, A. J.

A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thicknesses using THz pulsed imaging,” J. Pharm. Sci. 94, 177–183 (2005).
[Crossref] [PubMed]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, and V. P. Wallace, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84, 2190–2192 (2004).
[Crossref]

V. P. Wallace, R. M. Woodward, A. J. Fitzgerald, E. Pickwell, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151, 424–432 (2004).
[Crossref] [PubMed]

Fowler, J.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade laser operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85, 1674–1676 (2004).
[Crossref]

Giovannini, M.

D. R. Chamberlin, P. R. Robrish, W. R. Trutna, G. Scalari, M. Giovannini, L. Ajili, and J. Faist, “Imaging at 3.4 THz with a quantum-cascade laser,” App. Opt. 44, 121–125 (2005).

Herman, G. T.

G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography (Academic Press, New York, 1980).

Houghton, M.

Hu, B. B.

Hu, Q.

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1987).

Kawase, K.

Kemp, M. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using THz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, Art. No. 241116 (2005).
[Crossref]

C. Baker, W. R. Tribe, B. E. Cole, and M. C. Kemp, “Developments in people screening using THz technology,” Proc. SPIE Int. Soc. Opt. Eng. 5616, 61–68 (2004).

Kiwa, T.

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Kroll, J.

Kumar, S.

Le Hors, L.

A. B. Ruffin, J. Van Rudd, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, and T. B. Norris, “Time reversal terahertz imaging,” IEEE J. Quantum Electron. 38, 1110–1119 (2002).
[Crossref]

Lee, A. W. M.

Linfield, E. H.

L. Ajili, G. Scalari, J. Faist, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “High power quantum cascade lasers operating at λ=87 and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade laser operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85, 1674–1676 (2004).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Lo, T.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using THz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, Art. No. 241116 (2005).
[Crossref]

S. Barbieri, J. Alton, C. Baker, T. Lo, H. E. Beere, and D. A. Ritchie, “Imaging with THz quantum cascade lasers using a Schottky diode mixer,” Opt. Express 13, 6497–6503 (2005), http://www.opticsexpress.org/abstract.cfm?id=85317.
[Crossref] [PubMed]

Mittleman, D. M.

Mittleman, D.M.

D.M. Mittleman, Sensing with THz Radiation (Springer, Berlin, 2003).

Natterer, F.

F. Natterer, The Mathematics of Computerized Tomography (B.G. Teubner, Stuttgart, and John Wiley & Sons, Chichester and New York, 1986).

Norris, T. B.

A. B. Ruffin, J. Van Rudd, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, and T. B. Norris, “Time reversal terahertz imaging,” IEEE J. Quantum Electron. 38, 1110–1119 (2002).
[Crossref]

Nuss, M. C.

Pearce, J.

Pickwell, E.

V. P. Wallace, R. M. Woodward, A. J. Fitzgerald, E. Pickwell, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151, 424–432 (2004).
[Crossref] [PubMed]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, and V. P. Wallace, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84, 2190–2192 (2004).
[Crossref]

Pye, R. J.

V. P. Wallace, R. M. Woodward, A. J. Fitzgerald, E. Pickwell, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151, 424–432 (2004).
[Crossref] [PubMed]

Ritchie, D. A.

C. Worrall, J. Alton, M. Houghton, S. Barbieri, C. Sirtori, H. E. Beere, and D. A. Ritchie, “Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz,” Opt. Express 14, 171–181 (2006), http://www.opticsexpress.org/abstract.cfm?id=86896.
[Crossref] [PubMed]

S. Barbieri, J. Alton, C. Baker, T. Lo, H. E. Beere, and D. A. Ritchie, “Imaging with THz quantum cascade lasers using a Schottky diode mixer,” Opt. Express 13, 6497–6503 (2005), http://www.opticsexpress.org/abstract.cfm?id=85317.
[Crossref] [PubMed]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade laser operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85, 1674–1676 (2004).
[Crossref]

L. Ajili, G. Scalari, J. Faist, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “High power quantum cascade lasers operating at λ=87 and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Robrish, P. R.

D. R. Chamberlin, P. R. Robrish, W. R. Trutna, G. Scalari, M. Giovannini, L. Ajili, and J. Faist, “Imaging at 3.4 THz with a quantum-cascade laser,” App. Opt. 44, 121–125 (2005).

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Ruffin, A. B.

A. B. Ruffin, J. Van Rudd, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, and T. B. Norris, “Time reversal terahertz imaging,” IEEE J. Quantum Electron. 38, 1110–1119 (2002).
[Crossref]

Sanchez-Palencia, L.

A. B. Ruffin, J. Van Rudd, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, and T. B. Norris, “Time reversal terahertz imaging,” IEEE J. Quantum Electron. 38, 1110–1119 (2002).
[Crossref]

Scalari, G.

D. R. Chamberlin, P. R. Robrish, W. R. Trutna, G. Scalari, M. Giovannini, L. Ajili, and J. Faist, “Imaging at 3.4 THz with a quantum-cascade laser,” App. Opt. 44, 121–125 (2005).

L. Ajili, G. Scalari, J. Faist, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “High power quantum cascade lasers operating at λ=87 and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[Crossref]

Shen, Y. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using THz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, Art. No. 241116 (2005).
[Crossref]

Sirtori, C.

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1987).

Symes, W. W.

Taday, P. F.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using THz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, Art. No. 241116 (2005).
[Crossref]

A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thicknesses using THz pulsed imaging,” J. Pharm. Sci. 94, 177–183 (2005).
[Crossref] [PubMed]

Tamosiunas, V.

Tonouchi, M.

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Tribe, W. R.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using THz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, Art. No. 241116 (2005).
[Crossref]

C. Baker, W. R. Tribe, B. E. Cole, and M. C. Kemp, “Developments in people screening using THz technology,” Proc. SPIE Int. Soc. Opt. Eng. 5616, 61–68 (2004).

Trutna, W. R.

D. R. Chamberlin, P. R. Robrish, W. R. Trutna, G. Scalari, M. Giovannini, L. Ajili, and J. Faist, “Imaging at 3.4 THz with a quantum-cascade laser,” App. Opt. 44, 121–125 (2005).

Unterrainer, K.

Van Rudd, J.

A. B. Ruffin, J. Van Rudd, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, and T. B. Norris, “Time reversal terahertz imaging,” IEEE J. Quantum Electron. 38, 1110–1119 (2002).
[Crossref]

Wallace, V. P.

V. P. Wallace, R. M. Woodward, A. J. Fitzgerald, E. Pickwell, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151, 424–432 (2004).
[Crossref] [PubMed]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, and V. P. Wallace, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84, 2190–2192 (2004).
[Crossref]

Wang, S.

S. Wang and X.-C. Zhang, “Pulsed terahertz tomography,” J. Phys. D: Appl. Phy. 37, R1–R36 (2004).
[Crossref]

S. Wang, B. Ferguson, D. Abbot, and X.-C. Zhang, “T-ray imaging and tomography,“ J. Biol. Phys. 29, 247–256 (2003).
[Crossref]

Whitaker, J. F.

A. B. Ruffin, J. Van Rudd, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, and T. B. Norris, “Time reversal terahertz imaging,” IEEE J. Quantum Electron. 38, 1110–1119 (2002).
[Crossref]

White, J.

Williams, B. S.

Woodward, R. M.

V. P. Wallace, R. M. Woodward, A. J. Fitzgerald, E. Pickwell, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151, 424–432 (2004).
[Crossref] [PubMed]

Worrall, C.

Yamashita, M.

Zhang, X.-C.

S. Wang and X.-C. Zhang, “Pulsed terahertz tomography,” J. Phys. D: Appl. Phy. 37, R1–R36 (2004).
[Crossref]

X.-C. Zhang, “Three-dimensional terahertz wave imaging,” Philos. Trans. R. Soc. Lond. Ser. A 362, 283–299 (2004).
[Crossref]

S. Wang, B. Ferguson, D. Abbot, and X.-C. Zhang, “T-ray imaging and tomography,“ J. Biol. Phys. 29, 247–256 (2003).
[Crossref]

Zimdars, D.

App. Opt. (1)

D. R. Chamberlin, P. R. Robrish, W. R. Trutna, G. Scalari, M. Giovannini, L. Ajili, and J. Faist, “Imaging at 3.4 THz with a quantum-cascade laser,” App. Opt. 44, 121–125 (2005).

Appl. Phys. Lett. (4)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using THz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, Art. No. 241116 (2005).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade laser operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85, 1674–1676 (2004).
[Crossref]

L. Ajili, G. Scalari, J. Faist, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “High power quantum cascade lasers operating at λ=87 and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[Crossref]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, and V. P. Wallace, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84, 2190–2192 (2004).
[Crossref]

Br. J. Dermatol. (1)

V. P. Wallace, R. M. Woodward, A. J. Fitzgerald, E. Pickwell, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151, 424–432 (2004).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

A. B. Ruffin, J. Van Rudd, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, and T. B. Norris, “Time reversal terahertz imaging,” IEEE J. Quantum Electron. 38, 1110–1119 (2002).
[Crossref]

J. Biol. Phys. (1)

S. Wang, B. Ferguson, D. Abbot, and X.-C. Zhang, “T-ray imaging and tomography,“ J. Biol. Phys. 29, 247–256 (2003).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Pharm. Sci. (1)

A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thicknesses using THz pulsed imaging,” J. Pharm. Sci. 94, 177–183 (2005).
[Crossref] [PubMed]

J. Phys. D: Appl. Phy. (1)

S. Wang and X.-C. Zhang, “Pulsed terahertz tomography,” J. Phys. D: Appl. Phy. 37, R1–R36 (2004).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Philos. Trans. R. Soc. Lond. Ser. A (1)

X.-C. Zhang, “Three-dimensional terahertz wave imaging,” Philos. Trans. R. Soc. Lond. Ser. A 362, 283–299 (2004).
[Crossref]

Proc. SPIE Int. Soc. Opt. Eng. (1)

C. Baker, W. R. Tribe, B. E. Cole, and M. C. Kemp, “Developments in people screening using THz technology,” Proc. SPIE Int. Soc. Opt. Eng. 5616, 61–68 (2004).

Other (4)

D.M. Mittleman, Sensing with THz Radiation (Springer, Berlin, 2003).

G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography (Academic Press, New York, 1980).

F. Natterer, The Mathematics of Computerized Tomography (B.G. Teubner, Stuttgart, and John Wiley & Sons, Chichester and New York, 1986).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Data acquisition methodology – A series of parallel beams are passed through the sample in the plane to be imaged and the intensity of the transmitted beams are detected, forming a 1D absorption projection. The sample is then rotated by an angle θ and the process is repeated. This process continues until data have been collected over an angular range of 180°. (b) Experimental apparatus for undertaking imaging with a THz QCL.

Fig. 2.
Fig. 2.

Mapping the beam shape in the a) y direction and b) z direction.

Fig. 3.
Fig. 3.

Photographs (a-c) and reconstructed images (d-f) of an expanded polystyrene phantom with: (a,d) a triangular cross-section and containing a cylindrical hole, (b,e) a square cross-section and containing a hole of elliptical cross-section, (c,f) a circular cross-section and a needle of diameter 0.813 mm inserted into it. The measurement (data integration) time was 20 minutes per image. The color scales in the reconstructed images correspond to values of the absorption coefficient.

Fig. 4.
Fig. 4.

Polystyrene phantom in the shape a clown’s head: (a) front view, (b) side view, (c) top view. A hole with a diameter of 10 mm was introduced into the phantom.

Fig. 5.
Fig. 5.

Visualisation of the reconstructed 3D image – (a) The hole inside the phantom is revealed, (b) the shape of the phantom is reconstructed, (c) the top view shows the nose and cheek features. The data integration time was 15 minutes per image slice.

Fig. 6.
Fig. 6.

Photographs (a,c) and reconstructed images (b,d) of a cylindrical phantom of: (a,b) polystyrene, and (c,d) PTFE. The reconstructed image of the cross-section of the PTFE cylindrical phantom shows the erroneous presence of a hole. This is a result of the relatively high refractive index of PTFE. The acquisition conditions are the same as for the images shown in Fig. 3.

Metrics