Abstract

We have devised and experimentally validated, on tissue-simulating phantoms and in vivo, a time-resolved spectral fitting analysis for direct assessment of chromophore concentrations and scattering parameters. Experimental data have been acquired with a time-resolved broadband system based on supercontinuum light generated in a photonic crystal fiber and a 32 channel Time Correlated Single Photon Counting system. The novel method is more robust than conventional techniques, especially at low signal-to-noise ratio.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Licha, and R. Cubeddu Eds., "Photon Migration and Diffuse-Light Imaging II," Proc. SPIE 5859 (2005).
  2. S. Prahl, Oregon Medical Laser Center website http://www.omlc.ogi.edu/spectra
  3. J. R. Mourant, T. Fuselier, J. Boyer, I. J. Bigio, "Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms," Appl. Opt. 36, 949-957 (1997).
    [CrossRef] [PubMed]
  4. A. M. Nilsson, K. C. Sturesson, D. L. Liu, S. Addersson-Engels, "Changes in spectral shape of tissue optical properties in conjuction with laser-induced thermotheraphy," Appl. Opt. 37,1256-1267 (1998).
    [CrossRef]
  5. X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, "Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo," J. Biomed. Opt. 10, 051704 (2005).
    [CrossRef] [PubMed]
  6. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
    [CrossRef] [PubMed]
  7. L. Ang, Q. Zhang, J. P. Culver, E. L. Miller, D. A. Boas, "Reconstructing chromoshere concentration images directly by continuous-wave diffuse optical tomography," Opt. Lett. 29,256-258 (2004).
    [CrossRef]
  8. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, K. D. Paulsen, "Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction," Appl. Opt. 44, 1858-1869 (2005).
    [CrossRef] [PubMed]
  9. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. Arridge, A. G. Yodh, "Uniqueness and wavelength optimisation in continuous-wave multispectral diffuse optical tomography," Opt. Lett. 28, 2339-2341 (2003).
    [CrossRef] [PubMed]
  10. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, E. M. C. Hillman, S. Arridge, A. G. Yodh, "Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005).
    [CrossRef] [PubMed]
  11. T. Durduran, "Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods," Ph.D. Dissertation (University of Pennsylvania, 2004). http://www.lrsm.upenn.edu/pmi/theses/dissertation_Turgut.pdf
  12. M. S. Patterson, B. Chance, B. C. Wilson, "Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. 28,2331-2336 (1989).
    [CrossRef] [PubMed]
  13. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, "Numerical recipes in C: The art of scientific computing," (Cambridge University Press, New York, 2002).
  14. A. Bassi, J. D’. Swartling, C. Andrea, A. Pifferi, A. Torricelli, R. Cubeddu, "Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber," Opt. Lett. 29, 2405-2407 (2004).
    [CrossRef] [PubMed]
  15. G. Zaccanti, S. Del Bianco, F. Martelli, "Measurements of optical properties of high-density media," Appl. Opt. 42, 4023-4030 (2003).
    [CrossRef] [PubMed]
  16. P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions," Phys. Med. Biol. 50, 2469-2488 (2005).
    [CrossRef] [PubMed]

2005 (4)

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, "Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo," J. Biomed. Opt. 10, 051704 (2005).
[CrossRef] [PubMed]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions," Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, K. D. Paulsen, "Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction," Appl. Opt. 44, 1858-1869 (2005).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, E. M. C. Hillman, S. Arridge, A. G. Yodh, "Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (2)

1999 (1)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

1989 (1)

Aalders, M. C.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Addersson-Engels, S.

Ang, L.

Arpaia, F.

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions," Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef] [PubMed]

Arridge, S.

Bassi, A.

Bigio, I. J.

Boas, D. A.

Boyer, J.

Chance, B.

Choe, R.

Corlu, A.

Cross, F. W.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Cubeddu, R.

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions," Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef] [PubMed]

Culver, J. P.

Danesini, G.

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions," Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef] [PubMed]

Dehghani, H.

Del Bianco, S.

Doornbos, R. M. P.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Durduran, T.

Fuselier, T.

Hillman, E. M. C.

Jiang, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, K. D. Paulsen, "Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction," Appl. Opt. 44, 1858-1869 (2005).
[CrossRef] [PubMed]

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, "Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo," J. Biomed. Opt. 10, 051704 (2005).
[CrossRef] [PubMed]

Kogel, C.

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, "Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo," J. Biomed. Opt. 10, 051704 (2005).
[CrossRef] [PubMed]

Lang, R.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Lee, K.

Liu, D. L.

Martelli, F.

Miller, E. L.

Mourant, J. R.

Nilsson, A. M.

Patterson, M. S.

Paulsen, K. D.

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, "Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo," J. Biomed. Opt. 10, 051704 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, K. D. Paulsen, "Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction," Appl. Opt. 44, 1858-1869 (2005).
[CrossRef] [PubMed]

Pifferi, A.

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions," Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef] [PubMed]

Pogue, B. W.

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, "Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo," J. Biomed. Opt. 10, 051704 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, K. D. Paulsen, "Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction," Appl. Opt. 44, 1858-1869 (2005).
[CrossRef] [PubMed]

Poplack, S. P.

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, "Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo," J. Biomed. Opt. 10, 051704 (2005).
[CrossRef] [PubMed]

Schweiger, M.

Song, X.

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, "Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo," J. Biomed. Opt. 10, 051704 (2005).
[CrossRef] [PubMed]

Spinelli, L.

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions," Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef] [PubMed]

Srinivasan, S.

Sterenborg, H. J. C. M.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Sturesson, K. C.

Taroni, P.

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions," Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef] [PubMed]

Torricelli, A.

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions," Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef] [PubMed]

Wang, X.

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, "Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo," J. Biomed. Opt. 10, 051704 (2005).
[CrossRef] [PubMed]

Wells, W. A.

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, "Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo," J. Biomed. Opt. 10, 051704 (2005).
[CrossRef] [PubMed]

Wilson, B. C.

Yodh, A. G.

Zaccanti, G.

Zhang, Q.

Appl. Opt. (6)

J. Biomed. Opt. (1)

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, "Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo," J. Biomed. Opt. 10, 051704 (2005).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Med. Biol. (2)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions," Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef] [PubMed]

Other (4)

K. Licha, and R. Cubeddu Eds., "Photon Migration and Diffuse-Light Imaging II," Proc. SPIE 5859 (2005).

S. Prahl, Oregon Medical Laser Center website http://www.omlc.ogi.edu/spectra

T. Durduran, "Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods," Ph.D. Dissertation (University of Pennsylvania, 2004). http://www.lrsm.upenn.edu/pmi/theses/dissertation_Turgut.pdf

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, "Numerical recipes in C: The art of scientific computing," (Cambridge University Press, New York, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental set-up: beam splitter (BS), faraday isolator (FI), half waveplate (λ/2), aspheric lens (AL), photonic crystal fiber (PCF), fiber connector (FC), fused splitter 95/5 (FS), variable neutral density filter (VF), photodiode (PD), Time Correlated Single Photon Counting (TCSPC) board, spectrometer (USB2000).

Fig. 2.
Fig. 2.

Absorption spectra of pure inks (green, blue and black) and water measured with TRS-PCF (markers) and spectrophotometer (lines).

Fig. 3.
Fig. 3.

Inks and water volume calculated concentrations vs. total counts. In both cases the values are obtained with TR spectral fitting (full marker) and two-step method (empty marker).

Fig. 4.
Fig. 4.

Coefficient of variation (CV) of the concentrations vs. total counts. In both cases the values are obtained with TR spectral fitting (full marker) and two-step method (empty marker).

Fig. 5.
Fig. 5.

In vivo absorption (left) and scattering (right) spectra. In both cases the values have been obtained with TR spectral fitting (solid line) and standard method (marker).

Tables (3)

Tables Icon

Table 1. Relative concentrations of inks for all the samples.

Tables Icon

Table 2. Relative concentrations of inks and water for ten different samples. The first row refers to the nominal concentration of inks (respectively green/blue/black). a and b are the scattering parameters.

Tables Icon

Table 3. CV of inks concentrations, water volume concentrations and scattering parameters calculated over five repetition measurements for all the samples.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T ( t ; μ a , μ s ) = 0.5 ( 4 π v 3 μ s ) 3 2 t 5 2 exp ( μ a vt ) ×
× n = + [ z n + exp ( 3 μ s ( z n + ) 2 4 vt ) z n exp ( 3 μ s ( z n ) 2 4 vt ) ] ,
μ a ( λ ) = i c i ε i ( λ )
μ s ( λ ) = a ( λ λ 0 ) b
T ( t ; μ a , μ s ) = S ( t , μ s ) exp ( μ a vt )
T ( t , λ ; a , b , c i ) = S ( t , a ( λ λ 0 ) b ) exp ( vt i c i ε i ( λ ) )

Metrics