Abstract

Radiation forces exerted upon a dielectric, circular-shaped cylinder of infinite length illuminated by a non-paraxial cylindrical Gaussian beam are considered. Vectorial projections of the radiation pressure force on a dielectric, arbitrary- and circular-shaped cylinder are expressed analytically. In particular, the radiation force is expressed through coefficients of the decomposition of the non-paraxial Gaussian beam into the cylindrical functions. Using numerical examples, a possibility to optically trap a circular-shaped cylinder in a non-paraxial cylindrical Gaussian beam is demonstrated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Gouesbet, B. Maheu, and G. Grehan. “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am A 5, 1427–1443 (1988).
    [Crossref]
  2. G. Gouesbet and J.A. Lock. “A rigorous justification of the localized approximation to the beam-shape coefficients in the generalized Lorenz-Mie theory II. Off-axis beams,” J. Opt. Soc. Am A 2, 2516–2525 (1994).
    [Crossref]
  3. F. Ren, G. Grehan, and G. Gouesbet. “Radiation pressure forces exerted on a particle located arbitrarily in a Gaussian beam by using the generalized Lorenz-Mie theory and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
    [Crossref]
  4. G. Martinet-Lagarde, B. Pouligny, M.A. Angelova, G. Grehan, and G. Gouesbet. “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams, II-GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
    [Crossref]
  5. K.F. Ren, G. Grehan, and G. Gouesbet. “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35, 2702–2710 (1996).
    [Crossref] [PubMed]
  6. H. Polaert, G. Grehan, and G. Gouesbet. “Improved standard beams with applications to reverse radiation pressure,” Appl. Opt. 37, 2435–2440 (1998).
    [Crossref]
  7. H. Polaert, G. Grehan, and G. Gouesbet. “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun 155, 169–179 (1998).
    [Crossref]
  8. G. Gouesbet. “Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres,” J. Opt. Soc. Am A 16, 1641–1650 (1999).
    [Crossref]
  9. J. Barton, D. Alexander, and S. Schaub. “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
    [Crossref]
  10. R. Gussgard, T. Lindmo, and I. Brevik. “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am B 9, 1922–1930 (1992).
    [Crossref]
  11. A. Rohrbach and E.H.K. Stelzer. “Optical trapping of a dielectric particle in arbitrary fields,” J. Opt. Soc. Am A 18, 839–853 (2001).
    [Crossref]
  12. A. Rohrbach and E.H.K. Stelzer. “Trapping forces, force constant, and potential depths for dielectric spheres in the presence of spherical aberration,” Appl. Opt. 41, 2494–2507 (2002).
    [Crossref] [PubMed]
  13. J.A. Lock. “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration,” Appl. Opt. 43, 2532–2544 (2004).
    [Crossref] [PubMed]
  14. J.A. Lock. “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force,” Appl. Opt. 43, 2545–2554 (2004).
    [Crossref] [PubMed]
  15. D. Ganic, X. Gan, and M. Gu. “Exact radiation trapping force calculation based on vectorial diffraction theory,” Opt. Express 12, 2670–2675 (2004).
    [Crossref] [PubMed]
  16. T.A. Nieminen, N.R. Heckenberg, and H. Rubinstein-Dunlop. “Computational modeling of optical tweezers,” Proceedings of SPIE,  5514, 514–523 (2004).
    [Crossref]
  17. A. Mazolli, P.A. Maia Neto, and H.M. Nussenzveig. “Theory of trapping forces in optical tweezers,” Proc. R. Soc. Lond.,  459, 3021–3041 (2003).
    [Crossref]
  18. Y.K. Nahmias and D.J. Oddl. “Analysis of radiation forces in laser trapping and laser-guided direct writing application,” IEEE J. daunt. Electr.,  38–2, 1–10 (2002).
  19. R. Pobre and C. Saloma. “Radiation forces on nonlinear microsphere by a tightly focused Gaussian beam,” Appl. Opt.,  41-36, 7694–7701 (2002).
    [Crossref]
  20. P.L. Marston and J.H. Crichton. “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A.,  30-5, 2508–2516 (1984).
    [Crossref]
  21. E. Zimmerman, R. Dandliner, and N. Souli. “Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach,” J. Opt. Soc. Am. A,  12, 398–403 (1995).
    [Crossref]
  22. Z. Wu and L. Guo. “Electromagnetic scattering from a multilayered cylinder arbitrarily located in a Gaussian beam, a new recursive algorithm,” Progress in electromagnetics research, PIER,  18, 317–333, (1998).
    [Crossref]
  23. L. Mees, K.F. Ren, G. Grehan, and G. Gouesbet. “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt.,  38, 1867–1876 (1999).
    [Crossref]
  24. L. D. Landau and E. M. Lifshitz, “Brief course in theoretical physics. Mechanics. Electrodynamics,” Moscow, Nauka Publishers, Book 1, (1969).

2004 (4)

2003 (1)

A. Mazolli, P.A. Maia Neto, and H.M. Nussenzveig. “Theory of trapping forces in optical tweezers,” Proc. R. Soc. Lond.,  459, 3021–3041 (2003).
[Crossref]

2002 (3)

Y.K. Nahmias and D.J. Oddl. “Analysis of radiation forces in laser trapping and laser-guided direct writing application,” IEEE J. daunt. Electr.,  38–2, 1–10 (2002).

R. Pobre and C. Saloma. “Radiation forces on nonlinear microsphere by a tightly focused Gaussian beam,” Appl. Opt.,  41-36, 7694–7701 (2002).
[Crossref]

A. Rohrbach and E.H.K. Stelzer. “Trapping forces, force constant, and potential depths for dielectric spheres in the presence of spherical aberration,” Appl. Opt. 41, 2494–2507 (2002).
[Crossref] [PubMed]

2001 (1)

A. Rohrbach and E.H.K. Stelzer. “Optical trapping of a dielectric particle in arbitrary fields,” J. Opt. Soc. Am A 18, 839–853 (2001).
[Crossref]

1999 (2)

L. Mees, K.F. Ren, G. Grehan, and G. Gouesbet. “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt.,  38, 1867–1876 (1999).
[Crossref]

G. Gouesbet. “Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres,” J. Opt. Soc. Am A 16, 1641–1650 (1999).
[Crossref]

1998 (3)

H. Polaert, G. Grehan, and G. Gouesbet. “Improved standard beams with applications to reverse radiation pressure,” Appl. Opt. 37, 2435–2440 (1998).
[Crossref]

H. Polaert, G. Grehan, and G. Gouesbet. “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun 155, 169–179 (1998).
[Crossref]

Z. Wu and L. Guo. “Electromagnetic scattering from a multilayered cylinder arbitrarily located in a Gaussian beam, a new recursive algorithm,” Progress in electromagnetics research, PIER,  18, 317–333, (1998).
[Crossref]

1996 (1)

1995 (2)

E. Zimmerman, R. Dandliner, and N. Souli. “Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach,” J. Opt. Soc. Am. A,  12, 398–403 (1995).
[Crossref]

G. Martinet-Lagarde, B. Pouligny, M.A. Angelova, G. Grehan, and G. Gouesbet. “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams, II-GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[Crossref]

1994 (2)

G. Gouesbet and J.A. Lock. “A rigorous justification of the localized approximation to the beam-shape coefficients in the generalized Lorenz-Mie theory II. Off-axis beams,” J. Opt. Soc. Am A 2, 2516–2525 (1994).
[Crossref]

F. Ren, G. Grehan, and G. Gouesbet. “Radiation pressure forces exerted on a particle located arbitrarily in a Gaussian beam by using the generalized Lorenz-Mie theory and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[Crossref]

1992 (1)

R. Gussgard, T. Lindmo, and I. Brevik. “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am B 9, 1922–1930 (1992).
[Crossref]

1989 (1)

J. Barton, D. Alexander, and S. Schaub. “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[Crossref]

1988 (1)

G. Gouesbet, B. Maheu, and G. Grehan. “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am A 5, 1427–1443 (1988).
[Crossref]

1984 (1)

P.L. Marston and J.H. Crichton. “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A.,  30-5, 2508–2516 (1984).
[Crossref]

Alexander, D.

J. Barton, D. Alexander, and S. Schaub. “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[Crossref]

Angelova, M.A.

G. Martinet-Lagarde, B. Pouligny, M.A. Angelova, G. Grehan, and G. Gouesbet. “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams, II-GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[Crossref]

Barton, J.

J. Barton, D. Alexander, and S. Schaub. “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[Crossref]

Brevik, I.

R. Gussgard, T. Lindmo, and I. Brevik. “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am B 9, 1922–1930 (1992).
[Crossref]

Crichton, J.H.

P.L. Marston and J.H. Crichton. “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A.,  30-5, 2508–2516 (1984).
[Crossref]

Dandliner, R.

Gan, X.

Ganic, D.

Gouesbet, G.

L. Mees, K.F. Ren, G. Grehan, and G. Gouesbet. “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt.,  38, 1867–1876 (1999).
[Crossref]

G. Gouesbet. “Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres,” J. Opt. Soc. Am A 16, 1641–1650 (1999).
[Crossref]

H. Polaert, G. Grehan, and G. Gouesbet. “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun 155, 169–179 (1998).
[Crossref]

H. Polaert, G. Grehan, and G. Gouesbet. “Improved standard beams with applications to reverse radiation pressure,” Appl. Opt. 37, 2435–2440 (1998).
[Crossref]

K.F. Ren, G. Grehan, and G. Gouesbet. “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35, 2702–2710 (1996).
[Crossref] [PubMed]

G. Martinet-Lagarde, B. Pouligny, M.A. Angelova, G. Grehan, and G. Gouesbet. “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams, II-GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[Crossref]

G. Gouesbet and J.A. Lock. “A rigorous justification of the localized approximation to the beam-shape coefficients in the generalized Lorenz-Mie theory II. Off-axis beams,” J. Opt. Soc. Am A 2, 2516–2525 (1994).
[Crossref]

F. Ren, G. Grehan, and G. Gouesbet. “Radiation pressure forces exerted on a particle located arbitrarily in a Gaussian beam by using the generalized Lorenz-Mie theory and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[Crossref]

G. Gouesbet, B. Maheu, and G. Grehan. “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am A 5, 1427–1443 (1988).
[Crossref]

Grehan, G.

L. Mees, K.F. Ren, G. Grehan, and G. Gouesbet. “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt.,  38, 1867–1876 (1999).
[Crossref]

H. Polaert, G. Grehan, and G. Gouesbet. “Improved standard beams with applications to reverse radiation pressure,” Appl. Opt. 37, 2435–2440 (1998).
[Crossref]

H. Polaert, G. Grehan, and G. Gouesbet. “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun 155, 169–179 (1998).
[Crossref]

K.F. Ren, G. Grehan, and G. Gouesbet. “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35, 2702–2710 (1996).
[Crossref] [PubMed]

G. Martinet-Lagarde, B. Pouligny, M.A. Angelova, G. Grehan, and G. Gouesbet. “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams, II-GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[Crossref]

F. Ren, G. Grehan, and G. Gouesbet. “Radiation pressure forces exerted on a particle located arbitrarily in a Gaussian beam by using the generalized Lorenz-Mie theory and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[Crossref]

G. Gouesbet, B. Maheu, and G. Grehan. “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am A 5, 1427–1443 (1988).
[Crossref]

Gu, M.

Guo, L.

Z. Wu and L. Guo. “Electromagnetic scattering from a multilayered cylinder arbitrarily located in a Gaussian beam, a new recursive algorithm,” Progress in electromagnetics research, PIER,  18, 317–333, (1998).
[Crossref]

Gussgard, R.

R. Gussgard, T. Lindmo, and I. Brevik. “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am B 9, 1922–1930 (1992).
[Crossref]

Heckenberg, N.R.

T.A. Nieminen, N.R. Heckenberg, and H. Rubinstein-Dunlop. “Computational modeling of optical tweezers,” Proceedings of SPIE,  5514, 514–523 (2004).
[Crossref]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, “Brief course in theoretical physics. Mechanics. Electrodynamics,” Moscow, Nauka Publishers, Book 1, (1969).

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, “Brief course in theoretical physics. Mechanics. Electrodynamics,” Moscow, Nauka Publishers, Book 1, (1969).

Lindmo, T.

R. Gussgard, T. Lindmo, and I. Brevik. “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am B 9, 1922–1930 (1992).
[Crossref]

Lock, J.A.

Maheu, B.

G. Gouesbet, B. Maheu, and G. Grehan. “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am A 5, 1427–1443 (1988).
[Crossref]

Maia Neto, P.A.

A. Mazolli, P.A. Maia Neto, and H.M. Nussenzveig. “Theory of trapping forces in optical tweezers,” Proc. R. Soc. Lond.,  459, 3021–3041 (2003).
[Crossref]

Marston, P.L.

P.L. Marston and J.H. Crichton. “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A.,  30-5, 2508–2516 (1984).
[Crossref]

Martinet-Lagarde, G.

G. Martinet-Lagarde, B. Pouligny, M.A. Angelova, G. Grehan, and G. Gouesbet. “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams, II-GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[Crossref]

Mazolli, A.

A. Mazolli, P.A. Maia Neto, and H.M. Nussenzveig. “Theory of trapping forces in optical tweezers,” Proc. R. Soc. Lond.,  459, 3021–3041 (2003).
[Crossref]

Mees, L.

Nahmias, Y.K.

Y.K. Nahmias and D.J. Oddl. “Analysis of radiation forces in laser trapping and laser-guided direct writing application,” IEEE J. daunt. Electr.,  38–2, 1–10 (2002).

Nieminen, T.A.

T.A. Nieminen, N.R. Heckenberg, and H. Rubinstein-Dunlop. “Computational modeling of optical tweezers,” Proceedings of SPIE,  5514, 514–523 (2004).
[Crossref]

Nussenzveig, H.M.

A. Mazolli, P.A. Maia Neto, and H.M. Nussenzveig. “Theory of trapping forces in optical tweezers,” Proc. R. Soc. Lond.,  459, 3021–3041 (2003).
[Crossref]

Oddl, D.J.

Y.K. Nahmias and D.J. Oddl. “Analysis of radiation forces in laser trapping and laser-guided direct writing application,” IEEE J. daunt. Electr.,  38–2, 1–10 (2002).

Pobre, R.

R. Pobre and C. Saloma. “Radiation forces on nonlinear microsphere by a tightly focused Gaussian beam,” Appl. Opt.,  41-36, 7694–7701 (2002).
[Crossref]

Polaert, H.

H. Polaert, G. Grehan, and G. Gouesbet. “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun 155, 169–179 (1998).
[Crossref]

H. Polaert, G. Grehan, and G. Gouesbet. “Improved standard beams with applications to reverse radiation pressure,” Appl. Opt. 37, 2435–2440 (1998).
[Crossref]

Pouligny, B.

G. Martinet-Lagarde, B. Pouligny, M.A. Angelova, G. Grehan, and G. Gouesbet. “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams, II-GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[Crossref]

Ren, F.

F. Ren, G. Grehan, and G. Gouesbet. “Radiation pressure forces exerted on a particle located arbitrarily in a Gaussian beam by using the generalized Lorenz-Mie theory and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[Crossref]

Ren, K.F.

Rohrbach, A.

Rubinstein-Dunlop, H.

T.A. Nieminen, N.R. Heckenberg, and H. Rubinstein-Dunlop. “Computational modeling of optical tweezers,” Proceedings of SPIE,  5514, 514–523 (2004).
[Crossref]

Saloma, C.

R. Pobre and C. Saloma. “Radiation forces on nonlinear microsphere by a tightly focused Gaussian beam,” Appl. Opt.,  41-36, 7694–7701 (2002).
[Crossref]

Schaub, S.

J. Barton, D. Alexander, and S. Schaub. “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[Crossref]

Souli, N.

Stelzer, E.H.K.

Wu, Z.

Z. Wu and L. Guo. “Electromagnetic scattering from a multilayered cylinder arbitrarily located in a Gaussian beam, a new recursive algorithm,” Progress in electromagnetics research, PIER,  18, 317–333, (1998).
[Crossref]

Zimmerman, E.

Appl. Opt. (7)

IEEE J. daunt. Electr. (1)

Y.K. Nahmias and D.J. Oddl. “Analysis of radiation forces in laser trapping and laser-guided direct writing application,” IEEE J. daunt. Electr.,  38–2, 1–10 (2002).

J. Appl. Phys. (1)

J. Barton, D. Alexander, and S. Schaub. “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[Crossref]

J. Opt. Soc. Am A (4)

G. Gouesbet, B. Maheu, and G. Grehan. “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am A 5, 1427–1443 (1988).
[Crossref]

G. Gouesbet and J.A. Lock. “A rigorous justification of the localized approximation to the beam-shape coefficients in the generalized Lorenz-Mie theory II. Off-axis beams,” J. Opt. Soc. Am A 2, 2516–2525 (1994).
[Crossref]

G. Gouesbet. “Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres,” J. Opt. Soc. Am A 16, 1641–1650 (1999).
[Crossref]

A. Rohrbach and E.H.K. Stelzer. “Optical trapping of a dielectric particle in arbitrary fields,” J. Opt. Soc. Am A 18, 839–853 (2001).
[Crossref]

J. Opt. Soc. Am B (1)

R. Gussgard, T. Lindmo, and I. Brevik. “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am B 9, 1922–1930 (1992).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun (1)

H. Polaert, G. Grehan, and G. Gouesbet. “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun 155, 169–179 (1998).
[Crossref]

Opt. Commun. (1)

F. Ren, G. Grehan, and G. Gouesbet. “Radiation pressure forces exerted on a particle located arbitrarily in a Gaussian beam by using the generalized Lorenz-Mie theory and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[Crossref]

Opt. Express (1)

Phys. Rev. A. (1)

P.L. Marston and J.H. Crichton. “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A.,  30-5, 2508–2516 (1984).
[Crossref]

PIER (1)

Z. Wu and L. Guo. “Electromagnetic scattering from a multilayered cylinder arbitrarily located in a Gaussian beam, a new recursive algorithm,” Progress in electromagnetics research, PIER,  18, 317–333, (1998).
[Crossref]

Proc. R. Soc. Lond. (1)

A. Mazolli, P.A. Maia Neto, and H.M. Nussenzveig. “Theory of trapping forces in optical tweezers,” Proc. R. Soc. Lond.,  459, 3021–3041 (2003).
[Crossref]

Proceedings of SPIE (1)

T.A. Nieminen, N.R. Heckenberg, and H. Rubinstein-Dunlop. “Computational modeling of optical tweezers,” Proceedings of SPIE,  5514, 514–523 (2004).
[Crossref]

Pure Appl. Opt. (1)

G. Martinet-Lagarde, B. Pouligny, M.A. Angelova, G. Grehan, and G. Gouesbet. “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams, II-GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[Crossref]

Other (1)

L. D. Landau and E. M. Lifshitz, “Brief course in theoretical physics. Mechanics. Electrodynamics,” Moscow, Nauka Publishers, Book 1, (1969).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

The Gaussian beam with focus at (- Z 0,Y 0) falls on a circular cylinder with its center at (0;0).

Fig. 2.
Fig. 2.

The Z-axis (a) and Y-axis (b) projections of the pressure force on a circular cylinder ε=1.2 by the Gaussian beam (medium permittivity is ε 1=1).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

t V 1 P i d V + t P 0 i = S 1 σ i k n k d S ,
σ i k = ε 0 ε 1 E 2 + μ μ 0 H 2 2 δ i k ε 0 ε 1 E i E k μ μ 0 H i H k ;
F y = 1 2 S 1 { 1 2 [ μ μ 0 H y 2 ε 0 ε 1 E x 2 μ μ 0 H z 2 ] d z + μ μ 0 Re ( H y H z * ) d y } ,
F z = 1 2 S 1 { 1 2 [ μ μ 0 H z 2 ε 0 ε 1 E x 2 μ μ 0 H y 2 ] d y + μ μ 0 Re ( H z H y * ) d y } ,
E x i ( ρ , φ ) = E 0 ω 0 π λ exp [ k 2 ω 0 2 q 2 4 + i k ( Z 0 p Y 0 q ) + i k r cos ( φ γ ) ] d q ,
E x ( ρ , φ ) = E 0 n = i n C n J n ( k r ) e in φ ,
C n = ω 0 π λ exp [ k 2 ω 0 2 q 2 4 + i k 1 q 2 Z 0 i k q Y 0 in arcsin q ] d q ,
H φ i ( r , φ ) = i H 0 n = i n C n J n ( k r ) e in φ , J n ( k r ) = d d ( k r ) J n ( k r ) ,
H r i ( r , φ ) = H 0 n = i n n C n J n ( k r ) k r e i n φ , H 0 = ε 1 ε 0 μ 0 E 0 .
E x S = E 0 n = i n C n S H n ( 1 ) ( k r ) e i n φ , H φ S = i H 0 n = i n C n S H n ( 1 ) ( k r ) e i n φ ,
H r S = H 0 n = n i n C n S H n ( 1 ) ( k r ) k r e i n φ ,
a n = k 1 J n ( k 1 R ) J n ( k R ) k J n ( k 1 R ) J n ( k R ) k 1 J n ( k 1 R ) H n ( 1 ) ( k R ) k J n ( k 1 R ) H n ( 1 ) ( k R ) ,
F y = i ε 0 ε 1 E 0 2 k n = C n ( C n + 1 * a n + 1 * + C n + 1 * a n +
+ 2 C n + 1 * a n a n + 1 * C n 1 * a n 1 * C n 1 * a n 2 C n 1 * a n a n 1 * ) ,
F z = ε 0 ε 1 E 0 2 k n = C n ( C n + 1 * a n + 1 * + C n + 1 * a n +
+ 2 C n + 1 * a n a n + 1 * + C n 1 * a n 1 * + C n 1 * a n + 2 C n 1 * a n a n 1 * ) .

Metrics