Abstract

We demonstrated the fabrication of a phase shaper for generating a ‘doughnut mode’ laser beam using a thin, circular polymer film on a substrate. The fabrication method is based on a combination of spin-coating and drop-casting. The alignment procedure to get ideal ‘doughnut modes’ is described. The intensity distribution at the focus is analyzed with single molecule spectroscopy.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Klar, E. Engel, and S. W. Hell, "Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes," Phys. Rev. E 64, 066613 (2001).
  2. D. W. Zhang and X.-C. Yuan, "Optical doughnut for optical tweezers," Opt. Lett. 28, 740-742 (2003).
    [CrossRef] [PubMed]
  3. P. J. Rodrigo, V. R. Daria and J. Glückstad, "Real-time interactive optical micromanipulation of a mixture of high- and low-index particles," Opt. Express 12, 1417-1425 (2004).
    [CrossRef] [PubMed]
  4. A. Mair, A. Vaziri, G. Weihs and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature 412, 313-316 (2001).
    [CrossRef] [PubMed]
  5. M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," PNAS 102, 17565-17569 (2005).
    [CrossRef] [PubMed]
  6. G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of Vector Beams with Axially-Symmetric Polarization," Rev. Laser Eng. 32, 259-264 (2004).
    [CrossRef]
  7. Y. Miyamoto, M. Masuda, A. Wada, and M. Takeda, "Electron-beam lithography fabrication of phase holograms to generate Laguerre-Gaussian beams," in Optical Engineering for Sensing and Nanotechnology (ICOSN '99), I. Yamaguchi ed, Proc. SPIE 3740, 232-235 (1999).
    [CrossRef]
  8. T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, "Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator," Opt. Eng. 43, 1136-1143 (2004).
    [CrossRef]
  9. M. Born and E. Wolf, Principal of Optics, (Pergamon Press, Oxford, 1980) Chap. 7, Chap. 8, and Chap. 9.
  10. O. Karthaus, L. Grasjo, N. Maruyama, and M. Shimomura, "Formation of ordered mesoscopic polymer arrays by dewetting," Chaos 9, 308-314 (1999).
    [CrossRef]
  11. J. Enderlein, "Theoretical study of detection of a dipole emitter through an objective with high numerical aperture," Opt. Lett. 25, 634-636 (2000).
    [CrossRef]

2005

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," PNAS 102, 17565-17569 (2005).
[CrossRef] [PubMed]

2004

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of Vector Beams with Axially-Symmetric Polarization," Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, "Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator," Opt. Eng. 43, 1136-1143 (2004).
[CrossRef]

P. J. Rodrigo, V. R. Daria and J. Glückstad, "Real-time interactive optical micromanipulation of a mixture of high- and low-index particles," Opt. Express 12, 1417-1425 (2004).
[CrossRef] [PubMed]

2003

2001

T. A. Klar, E. Engel, and S. W. Hell, "Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes," Phys. Rev. E 64, 066613 (2001).

A. Mair, A. Vaziri, G. Weihs and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature 412, 313-316 (2001).
[CrossRef] [PubMed]

2000

1999

O. Karthaus, L. Grasjo, N. Maruyama, and M. Shimomura, "Formation of ordered mesoscopic polymer arrays by dewetting," Chaos 9, 308-314 (1999).
[CrossRef]

Y. Miyamoto, M. Masuda, A. Wada, and M. Takeda, "Electron-beam lithography fabrication of phase holograms to generate Laguerre-Gaussian beams," in Optical Engineering for Sensing and Nanotechnology (ICOSN '99), I. Yamaguchi ed, Proc. SPIE 3740, 232-235 (1999).
[CrossRef]

Daria, V. R.

Eggeling, C.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," PNAS 102, 17565-17569 (2005).
[CrossRef] [PubMed]

Enderlein, J.

Engel, E.

T. A. Klar, E. Engel, and S. W. Hell, "Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes," Phys. Rev. E 64, 066613 (2001).

Fujii, M.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, "Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator," Opt. Eng. 43, 1136-1143 (2004).
[CrossRef]

Fukuchi, N.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, "Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator," Opt. Eng. 43, 1136-1143 (2004).
[CrossRef]

Glückstad, J.

Grasjo, L.

O. Karthaus, L. Grasjo, N. Maruyama, and M. Shimomura, "Formation of ordered mesoscopic polymer arrays by dewetting," Chaos 9, 308-314 (1999).
[CrossRef]

Hell, S. W.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," PNAS 102, 17565-17569 (2005).
[CrossRef] [PubMed]

T. A. Klar, E. Engel, and S. W. Hell, "Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes," Phys. Rev. E 64, 066613 (2001).

Hofmann, M.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," PNAS 102, 17565-17569 (2005).
[CrossRef] [PubMed]

Igasaki, Y.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, "Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator," Opt. Eng. 43, 1136-1143 (2004).
[CrossRef]

Iketaki, Y.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, "Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator," Opt. Eng. 43, 1136-1143 (2004).
[CrossRef]

Ishiuchi, S.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, "Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator," Opt. Eng. 43, 1136-1143 (2004).
[CrossRef]

Jakobs, S.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," PNAS 102, 17565-17569 (2005).
[CrossRef] [PubMed]

Karthaus, O.

O. Karthaus, L. Grasjo, N. Maruyama, and M. Shimomura, "Formation of ordered mesoscopic polymer arrays by dewetting," Chaos 9, 308-314 (1999).
[CrossRef]

Klar, T. A.

T. A. Klar, E. Engel, and S. W. Hell, "Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes," Phys. Rev. E 64, 066613 (2001).

Mair, A.

A. Mair, A. Vaziri, G. Weihs and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature 412, 313-316 (2001).
[CrossRef] [PubMed]

Maruyama, N.

O. Karthaus, L. Grasjo, N. Maruyama, and M. Shimomura, "Formation of ordered mesoscopic polymer arrays by dewetting," Chaos 9, 308-314 (1999).
[CrossRef]

Masuda, M.

Y. Miyamoto, M. Masuda, A. Wada, and M. Takeda, "Electron-beam lithography fabrication of phase holograms to generate Laguerre-Gaussian beams," in Optical Engineering for Sensing and Nanotechnology (ICOSN '99), I. Yamaguchi ed, Proc. SPIE 3740, 232-235 (1999).
[CrossRef]

Miyaji, G.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of Vector Beams with Axially-Symmetric Polarization," Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

Miyamoto, Y.

Y. Miyamoto, M. Masuda, A. Wada, and M. Takeda, "Electron-beam lithography fabrication of phase holograms to generate Laguerre-Gaussian beams," in Optical Engineering for Sensing and Nanotechnology (ICOSN '99), I. Yamaguchi ed, Proc. SPIE 3740, 232-235 (1999).
[CrossRef]

Miyanaga, N.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of Vector Beams with Axially-Symmetric Polarization," Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

Ohbayashi, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of Vector Beams with Axially-Symmetric Polarization," Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

Omatsu, T.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, "Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator," Opt. Eng. 43, 1136-1143 (2004).
[CrossRef]

Rodrigo, P. J.

Sakai, M.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, "Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator," Opt. Eng. 43, 1136-1143 (2004).
[CrossRef]

Shimomura, M.

O. Karthaus, L. Grasjo, N. Maruyama, and M. Shimomura, "Formation of ordered mesoscopic polymer arrays by dewetting," Chaos 9, 308-314 (1999).
[CrossRef]

Sueda, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of Vector Beams with Axially-Symmetric Polarization," Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

Takeda, M.

Y. Miyamoto, M. Masuda, A. Wada, and M. Takeda, "Electron-beam lithography fabrication of phase holograms to generate Laguerre-Gaussian beams," in Optical Engineering for Sensing and Nanotechnology (ICOSN '99), I. Yamaguchi ed, Proc. SPIE 3740, 232-235 (1999).
[CrossRef]

Tsubakimoto, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of Vector Beams with Axially-Symmetric Polarization," Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature 412, 313-316 (2001).
[CrossRef] [PubMed]

Wada, A.

Y. Miyamoto, M. Masuda, A. Wada, and M. Takeda, "Electron-beam lithography fabrication of phase holograms to generate Laguerre-Gaussian beams," in Optical Engineering for Sensing and Nanotechnology (ICOSN '99), I. Yamaguchi ed, Proc. SPIE 3740, 232-235 (1999).
[CrossRef]

Watanabe, T.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, "Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator," Opt. Eng. 43, 1136-1143 (2004).
[CrossRef]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature 412, 313-316 (2001).
[CrossRef] [PubMed]

Yamamoto, K.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, "Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator," Opt. Eng. 43, 1136-1143 (2004).
[CrossRef]

Yuan, X.-C.

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature 412, 313-316 (2001).
[CrossRef] [PubMed]

Zhang, D. W.

Chaos

O. Karthaus, L. Grasjo, N. Maruyama, and M. Shimomura, "Formation of ordered mesoscopic polymer arrays by dewetting," Chaos 9, 308-314 (1999).
[CrossRef]

Nature

A. Mair, A. Vaziri, G. Weihs and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature 412, 313-316 (2001).
[CrossRef] [PubMed]

Opt. Eng.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, "Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator," Opt. Eng. 43, 1136-1143 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

T. A. Klar, E. Engel, and S. W. Hell, "Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes," Phys. Rev. E 64, 066613 (2001).

PNAS

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," PNAS 102, 17565-17569 (2005).
[CrossRef] [PubMed]

Proc. SPIE

Y. Miyamoto, M. Masuda, A. Wada, and M. Takeda, "Electron-beam lithography fabrication of phase holograms to generate Laguerre-Gaussian beams," in Optical Engineering for Sensing and Nanotechnology (ICOSN '99), I. Yamaguchi ed, Proc. SPIE 3740, 232-235 (1999).
[CrossRef]

Rev. Laser Eng.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of Vector Beams with Axially-Symmetric Polarization," Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

Other

M. Born and E. Wolf, Principal of Optics, (Pergamon Press, Oxford, 1980) Chap. 7, Chap. 8, and Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Electric field of the laser beam passing through the phase shaper. (a0: radius of the laser beam, a1: radius of circular thin film).

Fig. 2.
Fig. 2.

Simulated intensity distribution at the focus (a) in x-y plane, (b) in x-z plane (λ=633 nm, f=2.3 mm, a0=3 mm (incident laser beam radius), a1=2.12 mm (phase shifted field)). The intensity value is normalized to that of the non-apodized beam at the focus.

Fig. 3.
Fig. 3.

Scheme of phase shaper fabrication.

Fig. 4.
Fig. 4.

Phase shift as a function of concentration of PMMA solution. The phase shift at the center the circular polymer structure is analyzed from the shift of the fringes. One fringe shift corresponds to 2π phase shift.

Fig. 5.
Fig. 5.

Interferogram of phase shaper recorded at 633nm. The diameter of the polymer film is 2.7mm.

Fig. 6.
Fig. 6.

The Intensity distribution of phase shaped laser beam. (a) Schematic of the diameter of the phase shaper (A) and that of the laser beam (B). The ratio of the diameter of the laser beam and that of the phase shaper (B/A) are (b) 1.30, (c) 1.39, (d) 1.41, (e) 1.48, and (f) 1.56, respectively.

Fig. 7.
Fig. 7.

Fluorescence images of single TDI molecules. (a) without phase shaper, (b) with phase shaper, (c) zoom of one molecule in image b. The scale represents photon counts per 5 ms.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = 2 π d λ 0 ( n polymer n air )
U ( P ) = 2 π i a 2 A λ f 2 e i ( f a ) 2 u 0 1 J 0 ( v ρ ) e 1 2 i u ρ 2 ρ d ρ
u = 2 π λ ( a f ) 2 z , v = 2 π λ ( a f ) r = 2 π λ a f x 2 + y 2

Metrics