Abstract

Speckle noise significantly limits the information content provided by coherent optical imaging methods such as optical coherence tomography and its recent derivative, optical frequency-domain imaging (OFDI). In this paper, we demonstrate a novel OFDI system that simultaneously acquires hundreds of angularly resolved images, which can be compounded to reduce speckle noise. The system comprises an InGaAs line-scan camera and an interferometer, configured so that the elements of the detector array simultaneously capture light spanning a backscattering angular range of 32 degrees. On successive read-outs of the array, the wavelength of the laser source was stepped through a range of 130 nm centered at 1295 nm to concurrently generate 400 angle-resolved OFDI images. A theory of angle-resolved OFDI and the design equations of the system are presented. Incoherent averaging of the angle-resolved data is shown to yield substantial speckle reduction (as high as an 8 dB SNR improvement) in images of a tissue phantom and esophageal tissue ex vivo.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
    [Crossref] [PubMed]
  2. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523–10538 (2005).
    [Crossref] [PubMed]
  3. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
    [Crossref]
  4. K. M. Yung, S. L. Lee, and J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999).
    [Crossref]
  5. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569 (2003).
    [Crossref] [PubMed]
  6. D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Opt. Lett. 29, 2878–2880 (2004).
    [Crossref]
  7. D. L. Marks, T. S. Ralston, and S. A. Boppart, “Speckle reduction by I-divergence regularization in optical coherence tomography,” J. Opt. Soc. Am. A 22, 2366–2371 (2005).
    [Crossref]
  8. J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42, 1427–1439 (1997).
    [Crossref] [PubMed]
  9. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25, 545–547 (2000).
    [Crossref]
  10. N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8, 260–263 (2003).
    [Crossref] [PubMed]
  11. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
    [Crossref]
  12. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
    [Crossref] [PubMed]
  13. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [Crossref] [PubMed]
  14. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005).
    [Crossref] [PubMed]

2005 (4)

2004 (1)

2003 (5)

2000 (1)

1999 (2)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref]

K. M. Yung, S. L. Lee, and J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999).
[Crossref]

1997 (1)

J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42, 1427–1439 (1997).
[Crossref] [PubMed]

Adler, D. C.

Bashkansky, M.

Boppart, S. A.

Boudoux, C.

Bouma, B.

Bouma, B. E.

Cable, A. E.

Choma, M. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
[Crossref]

de Boer, J.

de Boer, J. F.

Fercher, A. F.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569 (2003).
[Crossref] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref] [PubMed]

Fujimoto, J. G.

Gotzinger, E.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569 (2003).
[Crossref] [PubMed]

Hitzenberger, C. K.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569 (2003).
[Crossref] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref] [PubMed]

Hsu, K.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
[Crossref]

Huber, R.

Iftimia, N.

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
[Crossref] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8, 260–263 (2003).
[Crossref] [PubMed]

Izatt, J. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
[Crossref]

Jiang, J. Y.

Ko, T. H.

Lee, S. L.

K. M. Yung, S. L. Lee, and J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999).
[Crossref]

Leitgeb, R.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569 (2003).
[Crossref] [PubMed]

Leitgeb, R. A.

Marks, D. L.

Pircher, M.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569 (2003).
[Crossref] [PubMed]

Ralston, T. S.

Reintjes, J.

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref]

K. M. Yung, S. L. Lee, and J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999).
[Crossref]

J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42, 1427–1439 (1997).
[Crossref] [PubMed]

Tearney, G.

Tearney, G. J.

Vakoc, B.

Wojtkowski, M.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref]

Yun, S.

Yun, S. H.

Yung, K. M.

K. M. Yung, S. L. Lee, and J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999).
[Crossref]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref]

J. Biomed. Opt. (5)

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
[Crossref]

K. M. Yung, S. L. Lee, and J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999).
[Crossref]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569 (2003).
[Crossref] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8, 260–263 (2003).
[Crossref] [PubMed]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (4)

Opt. Lett. (3)

Phys. Med. Biol. (1)

J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42, 1427–1439 (1997).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Angle-resolved OFDI system. C: collimator; L1, L2, L3: cylindrical lenses; L4: aspheric doublet lens; PC: polarization controller; BS: beam splitter: P: polarizer; M1: stationary mirror; M2: galvanometer mirror. The gray-dashed region is oriented perpendicular to the plane of the interferometer.

Fig. 2.
Fig. 2.

Frequency-swept source. SOA: semiconductor optical amplifier; Circ: circulator: PC: polarization controller; C: collimator; L1, L2: aspheric doublet lenses; DG: diffraction grating; M: galvanometer mirror; Isol: isolator.

Fig. 3.
Fig. 3.

Images of a two-layer tissue phantom obtained from 1 angular sample (180° backreflection) (a) and from compounding 400 angular samples (b). The arrow points to the boundary between the two layers. Top layer µs=12 cm-1; bottom layer µs=24 cm-1. The scale bar corresponds to 500 µm in depth; the transverse extension of the images is 4 mm.

Fig. 4.
Fig. 4.

Angular distribution obtained from one resolution element within the tissue phantom (a) with corresponding normalized cross-correlation function (b).

Fig. 5.
Fig. 5.

SNR as a function of the number of angular averages, NA , for signals acquired from a depth of 500 µm within the tissue phantom.

Fig. 6.
Fig. 6.

Images of porcine esophageal tissue obtained from a conventional OFDI system (a) and from the angle-resolved OFDI system by compounding 1 (b), 4 (c), 16 (d), 64 (e), and 256 (e) angular samples. The scale bar corresponds to 500 µm in depth; the transverse extension of the images is 6 mm. The arrow points to the top surface of the coverslip overlying the tissue.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

SNR = I σ I .
θ i = 2 i M 2 M sin 1 ( NA ) ,
S ˜ i ( v ) = 2 G η τ h v P ( v ) γ r , i γ s , i 0 R ( z ) cos ( 4 π v z c + ϕ ( z ) ) d z ,
i = η τ N s γ s , i P 0 h v 0 ,
C i = ( I j I ) ( I j + i I ) j σ I 2 ,

Metrics