Abstract

We report on two-photon autofluorescence and second harmonic spectral imaging of live mouse tissues. The use of a high sensitivity detector and ultraviolet optics allowed us to record razor-sharp deep-tissue spectral images of weak autofluorescence and short-wavelength second harmonic generation by mouse skin. Real-color image representation combined with depth-resolved spectral analysis enabled us to identify tissue structures. The results show that linking nonlinear deep-tissue imaging microscopy with autofluorescence spectroscopy has the potential to provide important information for the diagnosis of skin tissues.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures

Peter T. C. So, Hyun Kim, and Irene E. Kochevar
Opt. Express 3(9) 339-350 (1998)

Confocal microscopy and multi-photon excitation microscopy of human skin in vivo

Barry R. Masters and Peter T. C. So
Opt. Express 8(1) 2-10 (2001)

Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode

Shuangmu Zhuo, Jianxin Chen, Tianshu Luo, Dingsong Zou, and Jingjun Zhao
Opt. Express 14(17) 7810-7820 (2006)

References

  • View by:
  • |
  • |
  • |

  1. A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. 99, 11014–11019 (2002).
    [Crossref] [PubMed]
  2. B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation microscopy of in vivo human skin,” Ann. N. Y. Acad. Sci. 838, 58–67 (1998).
    [Crossref] [PubMed]
  3. W. R. Zipfel, R. M. Williams, R. Christie, A. Yu Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
    [Crossref] [PubMed]
  4. E. Brown, T. Mc Kee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
    [Crossref] [PubMed]
  5. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
    [Crossref]
  6. Y. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, “Subsurface tumor progression investigated by noninvasive optical second harmonic tomography,” Proc. Natl. Acad. Sci. 96, 10854–10856 (1999).
    [Crossref] [PubMed]
  7. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg Med 12, 63–78 (1992).
    [Crossref] [PubMed]
  8. A. Mahadevan, M. F. Mitchell, E. Silva, S. Thomsen, and R. R. Richards-Kortum, “Study of the fluorescence properties of normal and neoplastic human cervical tissue,” Lasers Surg Med 13, 647–655 (1993).
    [Crossref] [PubMed]
  9. H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In-Vivo fluorescence Spectroscopy and imaging of human skin tumors,” Laser Med Sci 9, 191–201 (1994).
    [Crossref]
  10. J. Sun, T. Shilagard, B. Bell, M. Motamedi, and G. Vargas, “In vivo multimodal nonlinear optical imaging of mucosal tissue,” Opt Express 12, 2478–2486 (2004).
    [Crossref] [PubMed]
  11. M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res 65, 1180–1186 (2005).
    [Crossref] [PubMed]
  12. D. C. de Veld, M. Skurichina, M. J. Witjes, R. P. Duin, H. J. Sterenborg, and J. L. Roodenburg, “Autofluorescence and diffuse reflectance spectroscopy for oral oncology,” Lasers Surg Med 36, 356–364 (2005).
    [Crossref] [PubMed]
  13. B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72, 2405–2412 (1997).
    [Crossref] [PubMed]
  14. Y. C. Wu, P. Xi, J. N. Y. Qu, T. H. Cheung, and M. Y. Yu, “Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue,” Opt Express 13, 382–388 (2005).
    [Crossref] [PubMed]
  15. Y. C. Wu and J. N. Y. Qu, “Two-photon autofluorescence spectroscopy and second-harmonic generation of epithelial tissue,” Opt. Lett. 30, 3045–3047 (2005).
    [Crossref] [PubMed]
  16. V. Ulrich, P. Fischer, I. Riemann, and K. Konigt, “Compact multiphoton/single photon laser scanning microscope for spectral imaging and fluorescence lifetime imaging,” Scanning 26, 217–225 (2004).
    [Crossref] [PubMed]
  17. T. Haraguchi, T. Shimi, T. Koujin, N. Hashiguchi, and Y. Hiraoka, “Spectral imaging fluorescence microscopy,” Genes Cells 7, 881–887 (2002).
    [Crossref] [PubMed]
  18. R. C. Ecker, R. de Martin, G. E. Steiner, and J. A. Schmid, “Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis,” Cytometry A 59, 172–181 (2004).
    [Crossref] [PubMed]
  19. E. Kahn, A. Vejux, D. Dumas, T. Montange, F. Frouin, V. Robert, J. M. Riedinger, J. F. Stoltz, P. Gambert, A. Todd-Pokropek, and G. Lizard, “FRET multiphoton spectral imaging microscopy of 7-ketocholesterol and Nile Red in U937 monocytic cells loaded with 7-ketocholesterol,” Anal Quant Cytol Histol 26, 304–313 (2004).
  20. T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear unmixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS Lett 531, 245–249 (2002).
    [Crossref] [PubMed]
  21. D. Chorvat, J. Kirchnerova, M. Cagalinec, J. Smolka, A. Mateasik, and A. Chorvatova, “Spectral unmixing of flavin autofluorescence components in cardiac myocytes,” Biophys. J. 105.073866 (2005).
  22. L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt.10, (2005).
    [Crossref] [PubMed]
  23. J. V. Rocheleau, W. S. Head, and D. W. Piston, “Quantitative NAD (P)H/Flavoprotein autofluorescence imaging reveals metabolic mechanisms of Pancreatic Islet Pyruvate Response,” J. Biol. Chem. 279, 31780–31787 (2004).
    [Crossref] [PubMed]
  24. G. Weagle, P. E. Paterson, J. Kennedy, and R. Pottier, “The nature of the chromophore responsible for naturally occurring fluorescence in mouse skin,” J Photochem Photobiol B 2, 313–320 (1988).
    [Crossref] [PubMed]
  25. D. Bruton, “Color Science,” http://members.cox.net/astro7/color.html, Accessed September, 2005.
  26. B. Banerjee, B. Miedema, and H. R. Chandrasekhar, “Emission spectra of colonic tissue and endogenous fluorophores,” Am. J. Med. Sci. 316, 220–226 (1998).
    [Crossref] [PubMed]
  27. D. W. Piston, B. R. Masters, and W. W. Webb, “Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy,” J. Microsc. 178 (Pt 1), 20–27 (1995).
    [Crossref]
  28. N. RamanujamR. A. Meyers, “Fluorescence spectroscopy in vivo,” in Encyclopedia of Analytical Chemistry, ed. (J. Wiley & Sons, Chichester, 2000), pp. 20–56.
  29. A. M. Pena, M. Strupler, T. Boulesteix, and M. C. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,” Opt Express 13, 6268–6274 (2005).
    [Crossref] [PubMed]
  30. K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed Opt. 7, 148–156 (2002).
    [Crossref] [PubMed]
  31. E. H. Epstein and N. H. Munderloh, “Human skin collagen. Presence of type I and type III at all levels of the dermis,” J Biol Chem 253, 1336–1337 (1978).
    [PubMed]

2005 (6)

Y. C. Wu, P. Xi, J. N. Y. Qu, T. H. Cheung, and M. Y. Yu, “Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue,” Opt Express 13, 382–388 (2005).
[Crossref] [PubMed]

Y. C. Wu and J. N. Y. Qu, “Two-photon autofluorescence spectroscopy and second-harmonic generation of epithelial tissue,” Opt. Lett. 30, 3045–3047 (2005).
[Crossref] [PubMed]

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res 65, 1180–1186 (2005).
[Crossref] [PubMed]

D. C. de Veld, M. Skurichina, M. J. Witjes, R. P. Duin, H. J. Sterenborg, and J. L. Roodenburg, “Autofluorescence and diffuse reflectance spectroscopy for oral oncology,” Lasers Surg Med 36, 356–364 (2005).
[Crossref] [PubMed]

D. Chorvat, J. Kirchnerova, M. Cagalinec, J. Smolka, A. Mateasik, and A. Chorvatova, “Spectral unmixing of flavin autofluorescence components in cardiac myocytes,” Biophys. J. 105.073866 (2005).

A. M. Pena, M. Strupler, T. Boulesteix, and M. C. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,” Opt Express 13, 6268–6274 (2005).
[Crossref] [PubMed]

2004 (5)

J. Sun, T. Shilagard, B. Bell, M. Motamedi, and G. Vargas, “In vivo multimodal nonlinear optical imaging of mucosal tissue,” Opt Express 12, 2478–2486 (2004).
[Crossref] [PubMed]

J. V. Rocheleau, W. S. Head, and D. W. Piston, “Quantitative NAD (P)H/Flavoprotein autofluorescence imaging reveals metabolic mechanisms of Pancreatic Islet Pyruvate Response,” J. Biol. Chem. 279, 31780–31787 (2004).
[Crossref] [PubMed]

R. C. Ecker, R. de Martin, G. E. Steiner, and J. A. Schmid, “Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis,” Cytometry A 59, 172–181 (2004).
[Crossref] [PubMed]

E. Kahn, A. Vejux, D. Dumas, T. Montange, F. Frouin, V. Robert, J. M. Riedinger, J. F. Stoltz, P. Gambert, A. Todd-Pokropek, and G. Lizard, “FRET multiphoton spectral imaging microscopy of 7-ketocholesterol and Nile Red in U937 monocytic cells loaded with 7-ketocholesterol,” Anal Quant Cytol Histol 26, 304–313 (2004).

V. Ulrich, P. Fischer, I. Riemann, and K. Konigt, “Compact multiphoton/single photon laser scanning microscope for spectral imaging and fluorescence lifetime imaging,” Scanning 26, 217–225 (2004).
[Crossref] [PubMed]

2003 (2)

W. R. Zipfel, R. M. Williams, R. Christie, A. Yu Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
[Crossref] [PubMed]

E. Brown, T. Mc Kee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

2002 (5)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
[Crossref]

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. 99, 11014–11019 (2002).
[Crossref] [PubMed]

T. Haraguchi, T. Shimi, T. Koujin, N. Hashiguchi, and Y. Hiraoka, “Spectral imaging fluorescence microscopy,” Genes Cells 7, 881–887 (2002).
[Crossref] [PubMed]

T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear unmixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS Lett 531, 245–249 (2002).
[Crossref] [PubMed]

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed Opt. 7, 148–156 (2002).
[Crossref] [PubMed]

1999 (1)

Y. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, “Subsurface tumor progression investigated by noninvasive optical second harmonic tomography,” Proc. Natl. Acad. Sci. 96, 10854–10856 (1999).
[Crossref] [PubMed]

1998 (2)

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation microscopy of in vivo human skin,” Ann. N. Y. Acad. Sci. 838, 58–67 (1998).
[Crossref] [PubMed]

B. Banerjee, B. Miedema, and H. R. Chandrasekhar, “Emission spectra of colonic tissue and endogenous fluorophores,” Am. J. Med. Sci. 316, 220–226 (1998).
[Crossref] [PubMed]

1997 (1)

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72, 2405–2412 (1997).
[Crossref] [PubMed]

1995 (1)

D. W. Piston, B. R. Masters, and W. W. Webb, “Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy,” J. Microsc. 178 (Pt 1), 20–27 (1995).
[Crossref]

1994 (1)

H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In-Vivo fluorescence Spectroscopy and imaging of human skin tumors,” Laser Med Sci 9, 191–201 (1994).
[Crossref]

1993 (1)

A. Mahadevan, M. F. Mitchell, E. Silva, S. Thomsen, and R. R. Richards-Kortum, “Study of the fluorescence properties of normal and neoplastic human cervical tissue,” Lasers Surg Med 13, 647–655 (1993).
[Crossref] [PubMed]

1992 (1)

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg Med 12, 63–78 (1992).
[Crossref] [PubMed]

1988 (1)

G. Weagle, P. E. Paterson, J. Kennedy, and R. Pottier, “The nature of the chromophore responsible for naturally occurring fluorescence in mouse skin,” J Photochem Photobiol B 2, 313–320 (1988).
[Crossref] [PubMed]

1978 (1)

E. H. Epstein and N. H. Munderloh, “Human skin collagen. Presence of type I and type III at all levels of the dermis,” J Biol Chem 253, 1336–1337 (1978).
[PubMed]

Alfano, R. R.

Y. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, “Subsurface tumor progression investigated by noninvasive optical second harmonic tomography,” Proc. Natl. Acad. Sci. 96, 10854–10856 (1999).
[Crossref] [PubMed]

Banerjee, B.

B. Banerjee, B. Miedema, and H. R. Chandrasekhar, “Emission spectra of colonic tissue and endogenous fluorophores,” Am. J. Med. Sci. 316, 220–226 (1998).
[Crossref] [PubMed]

Bell, B.

J. Sun, T. Shilagard, B. Bell, M. Motamedi, and G. Vargas, “In vivo multimodal nonlinear optical imaging of mucosal tissue,” Opt Express 12, 2478–2486 (2004).
[Crossref] [PubMed]

Boucher, Y.

E. Brown, T. Mc Kee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

Boulesteix, T.

A. M. Pena, M. Strupler, T. Boulesteix, and M. C. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,” Opt Express 13, 6268–6274 (2005).
[Crossref] [PubMed]

Brown, E.

E. Brown, T. Mc Kee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

Bruton, D.

D. Bruton, “Color Science,” http://members.cox.net/astro7/color.html, Accessed September, 2005.

Cagalinec, M.

D. Chorvat, J. Kirchnerova, M. Cagalinec, J. Smolka, A. Mateasik, and A. Chorvatova, “Spectral unmixing of flavin autofluorescence components in cardiac myocytes,” Biophys. J. 105.073866 (2005).

Campagnola, P. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
[Crossref]

Chandrasekhar, H. R.

B. Banerjee, B. Miedema, and H. R. Chandrasekhar, “Emission spectra of colonic tissue and endogenous fluorophores,” Am. J. Med. Sci. 316, 220–226 (1998).
[Crossref] [PubMed]

Cheung, T. H.

Y. C. Wu, P. Xi, J. N. Y. Qu, T. H. Cheung, and M. Y. Yu, “Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue,” Opt Express 13, 382–388 (2005).
[Crossref] [PubMed]

Chorvat, D.

D. Chorvat, J. Kirchnerova, M. Cagalinec, J. Smolka, A. Mateasik, and A. Chorvatova, “Spectral unmixing of flavin autofluorescence components in cardiac myocytes,” Biophys. J. 105.073866 (2005).

Chorvatova, A.

D. Chorvat, J. Kirchnerova, M. Cagalinec, J. Smolka, A. Mateasik, and A. Chorvatova, “Spectral unmixing of flavin autofluorescence components in cardiac myocytes,” Biophys. J. 105.073866 (2005).

Christie, R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Yu Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
[Crossref] [PubMed]

Compton, C. C.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg Med 12, 63–78 (1992).
[Crossref] [PubMed]

de Martin, R.

R. C. Ecker, R. de Martin, G. E. Steiner, and J. A. Schmid, “Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis,” Cytometry A 59, 172–181 (2004).
[Crossref] [PubMed]

de Veld, D. C.

D. C. de Veld, M. Skurichina, M. J. Witjes, R. P. Duin, H. J. Sterenborg, and J. L. Roodenburg, “Autofluorescence and diffuse reflectance spectroscopy for oral oncology,” Lasers Surg Med 36, 356–364 (2005).
[Crossref] [PubMed]

Deutsch, T. F.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg Med 12, 63–78 (1992).
[Crossref] [PubMed]

di Tomaso, E.

E. Brown, T. Mc Kee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

Duin, R. P.

D. C. de Veld, M. Skurichina, M. J. Witjes, R. P. Duin, H. J. Sterenborg, and J. L. Roodenburg, “Autofluorescence and diffuse reflectance spectroscopy for oral oncology,” Lasers Surg Med 36, 356–364 (2005).
[Crossref] [PubMed]

Dumas, D.

E. Kahn, A. Vejux, D. Dumas, T. Montange, F. Frouin, V. Robert, J. M. Riedinger, J. F. Stoltz, P. Gambert, A. Todd-Pokropek, and G. Lizard, “FRET multiphoton spectral imaging microscopy of 7-ketocholesterol and Nile Red in U937 monocytic cells loaded with 7-ketocholesterol,” Anal Quant Cytol Histol 26, 304–313 (2004).

Duvic, M.

H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In-Vivo fluorescence Spectroscopy and imaging of human skin tumors,” Laser Med Sci 9, 191–201 (1994).
[Crossref]

Ecker, R. C.

R. C. Ecker, R. de Martin, G. E. Steiner, and J. A. Schmid, “Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis,” Cytometry A 59, 172–181 (2004).
[Crossref] [PubMed]

Eickhoff, J. C.

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res 65, 1180–1186 (2005).
[Crossref] [PubMed]

Eliceiri, K. W.

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res 65, 1180–1186 (2005).
[Crossref] [PubMed]

Epstein, E. H.

E. H. Epstein and N. H. Munderloh, “Human skin collagen. Presence of type I and type III at all levels of the dermis,” J Biol Chem 253, 1336–1337 (1978).
[PubMed]

Fischer, P.

V. Ulrich, P. Fischer, I. Riemann, and K. Konigt, “Compact multiphoton/single photon laser scanning microscope for spectral imaging and fluorescence lifetime imaging,” Scanning 26, 217–225 (2004).
[Crossref] [PubMed]

Flotte, T. J.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg Med 12, 63–78 (1992).
[Crossref] [PubMed]

Frisoli, J. K.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg Med 12, 63–78 (1992).
[Crossref] [PubMed]

Frouin, F.

E. Kahn, A. Vejux, D. Dumas, T. Montange, F. Frouin, V. Robert, J. M. Riedinger, J. F. Stoltz, P. Gambert, A. Todd-Pokropek, and G. Lizard, “FRET multiphoton spectral imaging microscopy of 7-ketocholesterol and Nile Red in U937 monocytic cells loaded with 7-ketocholesterol,” Anal Quant Cytol Histol 26, 304–313 (2004).

Galvan, J.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed Opt. 7, 148–156 (2002).
[Crossref] [PubMed]

Gambert, P.

E. Kahn, A. Vejux, D. Dumas, T. Montange, F. Frouin, V. Robert, J. M. Riedinger, J. F. Stoltz, P. Gambert, A. Todd-Pokropek, and G. Lizard, “FRET multiphoton spectral imaging microscopy of 7-ketocholesterol and Nile Red in U937 monocytic cells loaded with 7-ketocholesterol,” Anal Quant Cytol Histol 26, 304–313 (2004).

Gendron-Fitzpatrick, A.

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res 65, 1180–1186 (2005).
[Crossref] [PubMed]

Georget, V.

T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear unmixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS Lett 531, 245–249 (2002).
[Crossref] [PubMed]

Girod, A.

T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear unmixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS Lett 531, 245–249 (2002).
[Crossref] [PubMed]

Gratton, E.

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation microscopy of in vivo human skin,” Ann. N. Y. Acad. Sci. 838, 58–67 (1998).
[Crossref] [PubMed]

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72, 2405–2412 (1997).
[Crossref] [PubMed]

Guo, Y.

Y. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, “Subsurface tumor progression investigated by noninvasive optical second harmonic tomography,” Proc. Natl. Acad. Sci. 96, 10854–10856 (1999).
[Crossref] [PubMed]

Hancewicz, T. M.

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt.10, (2005).
[Crossref] [PubMed]

Haraguchi, T.

T. Haraguchi, T. Shimi, T. Koujin, N. Hashiguchi, and Y. Hiraoka, “Spectral imaging fluorescence microscopy,” Genes Cells 7, 881–887 (2002).
[Crossref] [PubMed]

Hashiguchi, N.

T. Haraguchi, T. Shimi, T. Koujin, N. Hashiguchi, and Y. Hiraoka, “Spectral imaging fluorescence microscopy,” Genes Cells 7, 881–887 (2002).
[Crossref] [PubMed]

Head, W. S.

J. V. Rocheleau, W. S. Head, and D. W. Piston, “Quantitative NAD (P)H/Flavoprotein autofluorescence imaging reveals metabolic mechanisms of Pancreatic Islet Pyruvate Response,” J. Biol. Chem. 279, 31780–31787 (2004).
[Crossref] [PubMed]

Hiraoka, Y.

T. Haraguchi, T. Shimi, T. Koujin, N. Hashiguchi, and Y. Hiraoka, “Spectral imaging fluorescence microscopy,” Genes Cells 7, 881–887 (2002).
[Crossref] [PubMed]

Ho, P. P.

Y. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, “Subsurface tumor progression investigated by noninvasive optical second harmonic tomography,” Proc. Natl. Acad. Sci. 96, 10854–10856 (1999).
[Crossref] [PubMed]

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
[Crossref]

Hyman, B. T.

W. R. Zipfel, R. M. Williams, R. Christie, A. Yu Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
[Crossref] [PubMed]

Jacques, S. L.

H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In-Vivo fluorescence Spectroscopy and imaging of human skin tumors,” Laser Med Sci 9, 191–201 (1994).
[Crossref]

Jain, R. K.

E. Brown, T. Mc Kee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

Kahn, E.

E. Kahn, A. Vejux, D. Dumas, T. Montange, F. Frouin, V. Robert, J. M. Riedinger, J. F. Stoltz, P. Gambert, A. Todd-Pokropek, and G. Lizard, “FRET multiphoton spectral imaging microscopy of 7-ketocholesterol and Nile Red in U937 monocytic cells loaded with 7-ketocholesterol,” Anal Quant Cytol Histol 26, 304–313 (2004).

Kaplan, P. D.

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt.10, (2005).
[Crossref] [PubMed]

Kennedy, J.

G. Weagle, P. E. Paterson, J. Kennedy, and R. Pottier, “The nature of the chromophore responsible for naturally occurring fluorescence in mouse skin,” J Photochem Photobiol B 2, 313–320 (1988).
[Crossref] [PubMed]

Kirchnerova, J.

D. Chorvat, J. Kirchnerova, M. Cagalinec, J. Smolka, A. Mateasik, and A. Chorvatova, “Spectral unmixing of flavin autofluorescence components in cardiac myocytes,” Biophys. J. 105.073866 (2005).

Konigt, K.

V. Ulrich, P. Fischer, I. Riemann, and K. Konigt, “Compact multiphoton/single photon laser scanning microscope for spectral imaging and fluorescence lifetime imaging,” Scanning 26, 217–225 (2004).
[Crossref] [PubMed]

Koujin, T.

T. Haraguchi, T. Shimi, T. Koujin, N. Hashiguchi, and Y. Hiraoka, “Spectral imaging fluorescence microscopy,” Genes Cells 7, 881–887 (2002).
[Crossref] [PubMed]

Lacy, A.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed Opt. 7, 148–156 (2002).
[Crossref] [PubMed]

Laiho, L. H.

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt.10, (2005).
[Crossref] [PubMed]

Liu, F.

Y. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, “Subsurface tumor progression investigated by noninvasive optical second harmonic tomography,” Proc. Natl. Acad. Sci. 96, 10854–10856 (1999).
[Crossref] [PubMed]

Lizard, G.

E. Kahn, A. Vejux, D. Dumas, T. Montange, F. Frouin, V. Robert, J. M. Riedinger, J. F. Stoltz, P. Gambert, A. Todd-Pokropek, and G. Lizard, “FRET multiphoton spectral imaging microscopy of 7-ketocholesterol and Nile Red in U937 monocytic cells loaded with 7-ketocholesterol,” Anal Quant Cytol Histol 26, 304–313 (2004).

Lotan, R.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed Opt. 7, 148–156 (2002).
[Crossref] [PubMed]

Mahadevan, A.

A. Mahadevan, M. F. Mitchell, E. Silva, S. Thomsen, and R. R. Richards-Kortum, “Study of the fluorescence properties of normal and neoplastic human cervical tissue,” Lasers Surg Med 13, 647–655 (1993).
[Crossref] [PubMed]

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
[Crossref]

Masters, B. R.

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation microscopy of in vivo human skin,” Ann. N. Y. Acad. Sci. 838, 58–67 (1998).
[Crossref] [PubMed]

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72, 2405–2412 (1997).
[Crossref] [PubMed]

D. W. Piston, B. R. Masters, and W. W. Webb, “Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy,” J. Microsc. 178 (Pt 1), 20–27 (1995).
[Crossref]

Mateasik, A.

D. Chorvat, J. Kirchnerova, M. Cagalinec, J. Smolka, A. Mateasik, and A. Chorvatova, “Spectral unmixing of flavin autofluorescence components in cardiac myocytes,” Biophys. J. 105.073866 (2005).

Mc Kee, T.

E. Brown, T. Mc Kee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

Miedema, B.

B. Banerjee, B. Miedema, and H. R. Chandrasekhar, “Emission spectra of colonic tissue and endogenous fluorophores,” Am. J. Med. Sci. 316, 220–226 (1998).
[Crossref] [PubMed]

Millard, A. C.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
[Crossref]

Mitchell, M. F.

A. Mahadevan, M. F. Mitchell, E. Silva, S. Thomsen, and R. R. Richards-Kortum, “Study of the fluorescence properties of normal and neoplastic human cervical tissue,” Lasers Surg Med 13, 647–655 (1993).
[Crossref] [PubMed]

Mohler, W. A.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
[Crossref]

Montange, T.

E. Kahn, A. Vejux, D. Dumas, T. Montange, F. Frouin, V. Robert, J. M. Riedinger, J. F. Stoltz, P. Gambert, A. Todd-Pokropek, and G. Lizard, “FRET multiphoton spectral imaging microscopy of 7-ketocholesterol and Nile Red in U937 monocytic cells loaded with 7-ketocholesterol,” Anal Quant Cytol Histol 26, 304–313 (2004).

Motamedi, M.

J. Sun, T. Shilagard, B. Bell, M. Motamedi, and G. Vargas, “In vivo multimodal nonlinear optical imaging of mucosal tissue,” Opt Express 12, 2478–2486 (2004).
[Crossref] [PubMed]

H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In-Vivo fluorescence Spectroscopy and imaging of human skin tumors,” Laser Med Sci 9, 191–201 (1994).
[Crossref]

Munderloh, N. H.

E. H. Epstein and N. H. Munderloh, “Human skin collagen. Presence of type I and type III at all levels of the dermis,” J Biol Chem 253, 1336–1337 (1978).
[PubMed]

Myakov, A.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed Opt. 7, 148–156 (2002).
[Crossref] [PubMed]

Nishioka, N. S.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg Med 12, 63–78 (1992).
[Crossref] [PubMed]

Paterson, P. E.

G. Weagle, P. E. Paterson, J. Kennedy, and R. Pottier, “The nature of the chromophore responsible for naturally occurring fluorescence in mouse skin,” J Photochem Photobiol B 2, 313–320 (1988).
[Crossref] [PubMed]

Pelet, S.

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt.10, (2005).
[Crossref] [PubMed]

Pena, A. M.

A. M. Pena, M. Strupler, T. Boulesteix, and M. C. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,” Opt Express 13, 6268–6274 (2005).
[Crossref] [PubMed]

Pepperkok, R.

T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear unmixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS Lett 531, 245–249 (2002).
[Crossref] [PubMed]

Piston, D. W.

J. V. Rocheleau, W. S. Head, and D. W. Piston, “Quantitative NAD (P)H/Flavoprotein autofluorescence imaging reveals metabolic mechanisms of Pancreatic Islet Pyruvate Response,” J. Biol. Chem. 279, 31780–31787 (2004).
[Crossref] [PubMed]

D. W. Piston, B. R. Masters, and W. W. Webb, “Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy,” J. Microsc. 178 (Pt 1), 20–27 (1995).
[Crossref]

Pluen, A.

E. Brown, T. Mc Kee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

Pottier, R.

G. Weagle, P. E. Paterson, J. Kennedy, and R. Pottier, “The nature of the chromophore responsible for naturally occurring fluorescence in mouse skin,” J Photochem Photobiol B 2, 313–320 (1988).
[Crossref] [PubMed]

Qu, J. N. Y.

Y. C. Wu, P. Xi, J. N. Y. Qu, T. H. Cheung, and M. Y. Yu, “Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue,” Opt Express 13, 382–388 (2005).
[Crossref] [PubMed]

Y. C. Wu and J. N. Y. Qu, “Two-photon autofluorescence spectroscopy and second-harmonic generation of epithelial tissue,” Opt. Lett. 30, 3045–3047 (2005).
[Crossref] [PubMed]

Ramanujam, N.

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res 65, 1180–1186 (2005).
[Crossref] [PubMed]

N. RamanujamR. A. Meyers, “Fluorescence spectroscopy in vivo,” in Encyclopedia of Analytical Chemistry, ed. (J. Wiley & Sons, Chichester, 2000), pp. 20–56.

Richards-Kortum, R.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed Opt. 7, 148–156 (2002).
[Crossref] [PubMed]

Richards-Kortum, R. R.

A. Mahadevan, M. F. Mitchell, E. Silva, S. Thomsen, and R. R. Richards-Kortum, “Study of the fluorescence properties of normal and neoplastic human cervical tissue,” Lasers Surg Med 13, 647–655 (1993).
[Crossref] [PubMed]

Richter, J. M.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg Med 12, 63–78 (1992).
[Crossref] [PubMed]

Riedinger, J. M.

E. Kahn, A. Vejux, D. Dumas, T. Montange, F. Frouin, V. Robert, J. M. Riedinger, J. F. Stoltz, P. Gambert, A. Todd-Pokropek, and G. Lizard, “FRET multiphoton spectral imaging microscopy of 7-ketocholesterol and Nile Red in U937 monocytic cells loaded with 7-ketocholesterol,” Anal Quant Cytol Histol 26, 304–313 (2004).

Riemann, I.

V. Ulrich, P. Fischer, I. Riemann, and K. Konigt, “Compact multiphoton/single photon laser scanning microscope for spectral imaging and fluorescence lifetime imaging,” Scanning 26, 217–225 (2004).
[Crossref] [PubMed]

Rietdorf, J.

T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear unmixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS Lett 531, 245–249 (2002).
[Crossref] [PubMed]

Robert, V.

E. Kahn, A. Vejux, D. Dumas, T. Montange, F. Frouin, V. Robert, J. M. Riedinger, J. F. Stoltz, P. Gambert, A. Todd-Pokropek, and G. Lizard, “FRET multiphoton spectral imaging microscopy of 7-ketocholesterol and Nile Red in U937 monocytic cells loaded with 7-ketocholesterol,” Anal Quant Cytol Histol 26, 304–313 (2004).

Rocheleau, J. V.

J. V. Rocheleau, W. S. Head, and D. W. Piston, “Quantitative NAD (P)H/Flavoprotein autofluorescence imaging reveals metabolic mechanisms of Pancreatic Islet Pyruvate Response,” J. Biol. Chem. 279, 31780–31787 (2004).
[Crossref] [PubMed]

Roodenburg, J. L.

D. C. de Veld, M. Skurichina, M. J. Witjes, R. P. Duin, H. J. Sterenborg, and J. L. Roodenburg, “Autofluorescence and diffuse reflectance spectroscopy for oral oncology,” Lasers Surg Med 36, 356–364 (2005).
[Crossref] [PubMed]

Savage, H. E.

Y. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, “Subsurface tumor progression investigated by noninvasive optical second harmonic tomography,” Proc. Natl. Acad. Sci. 96, 10854–10856 (1999).
[Crossref] [PubMed]

Schanne-Klein, M. C.

A. M. Pena, M. Strupler, T. Boulesteix, and M. C. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,” Opt Express 13, 6268–6274 (2005).
[Crossref] [PubMed]

Schantz, S. P.

Y. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, “Subsurface tumor progression investigated by noninvasive optical second harmonic tomography,” Proc. Natl. Acad. Sci. 96, 10854–10856 (1999).
[Crossref] [PubMed]

Schmid, J. A.

R. C. Ecker, R. de Martin, G. E. Steiner, and J. A. Schmid, “Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis,” Cytometry A 59, 172–181 (2004).
[Crossref] [PubMed]

Schomacker, K. T.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg Med 12, 63–78 (1992).
[Crossref] [PubMed]

Seed, B.

E. Brown, T. Mc Kee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

Shilagard, T.

J. Sun, T. Shilagard, B. Bell, M. Motamedi, and G. Vargas, “In vivo multimodal nonlinear optical imaging of mucosal tissue,” Opt Express 12, 2478–2486 (2004).
[Crossref] [PubMed]

Shimi, T.

T. Haraguchi, T. Shimi, T. Koujin, N. Hashiguchi, and Y. Hiraoka, “Spectral imaging fluorescence microscopy,” Genes Cells 7, 881–887 (2002).
[Crossref] [PubMed]

Silva, E.

A. Mahadevan, M. F. Mitchell, E. Silva, S. Thomsen, and R. R. Richards-Kortum, “Study of the fluorescence properties of normal and neoplastic human cervical tissue,” Lasers Surg Med 13, 647–655 (1993).
[Crossref] [PubMed]

Skala, M. C.

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res 65, 1180–1186 (2005).
[Crossref] [PubMed]

Skurichina, M.

D. C. de Veld, M. Skurichina, M. J. Witjes, R. P. Duin, H. J. Sterenborg, and J. L. Roodenburg, “Autofluorescence and diffuse reflectance spectroscopy for oral oncology,” Lasers Surg Med 36, 356–364 (2005).
[Crossref] [PubMed]

Smolka, J.

D. Chorvat, J. Kirchnerova, M. Cagalinec, J. Smolka, A. Mateasik, and A. Chorvatova, “Spectral unmixing of flavin autofluorescence components in cardiac myocytes,” Biophys. J. 105.073866 (2005).

So, P. T. C.

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation microscopy of in vivo human skin,” Ann. N. Y. Acad. Sci. 838, 58–67 (1998).
[Crossref] [PubMed]

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72, 2405–2412 (1997).
[Crossref] [PubMed]

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt.10, (2005).
[Crossref] [PubMed]

Sokolov, K.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed Opt. 7, 148–156 (2002).
[Crossref] [PubMed]

Squirrell, J. M.

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res 65, 1180–1186 (2005).
[Crossref] [PubMed]

Steiner, G. E.

R. C. Ecker, R. de Martin, G. E. Steiner, and J. A. Schmid, “Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis,” Cytometry A 59, 172–181 (2004).
[Crossref] [PubMed]

Sterenborg, H. J.

D. C. de Veld, M. Skurichina, M. J. Witjes, R. P. Duin, H. J. Sterenborg, and J. L. Roodenburg, “Autofluorescence and diffuse reflectance spectroscopy for oral oncology,” Lasers Surg Med 36, 356–364 (2005).
[Crossref] [PubMed]

Sterenborg, H. J. C. M.

H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In-Vivo fluorescence Spectroscopy and imaging of human skin tumors,” Laser Med Sci 9, 191–201 (1994).
[Crossref]

Stoltz, J. F.

E. Kahn, A. Vejux, D. Dumas, T. Montange, F. Frouin, V. Robert, J. M. Riedinger, J. F. Stoltz, P. Gambert, A. Todd-Pokropek, and G. Lizard, “FRET multiphoton spectral imaging microscopy of 7-ketocholesterol and Nile Red in U937 monocytic cells loaded with 7-ketocholesterol,” Anal Quant Cytol Histol 26, 304–313 (2004).

Strupler, M.

A. M. Pena, M. Strupler, T. Boulesteix, and M. C. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,” Opt Express 13, 6268–6274 (2005).
[Crossref] [PubMed]

Sun, J.

J. Sun, T. Shilagard, B. Bell, M. Motamedi, and G. Vargas, “In vivo multimodal nonlinear optical imaging of mucosal tissue,” Opt Express 12, 2478–2486 (2004).
[Crossref] [PubMed]

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
[Crossref]

Thomsen, S.

H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In-Vivo fluorescence Spectroscopy and imaging of human skin tumors,” Laser Med Sci 9, 191–201 (1994).
[Crossref]

A. Mahadevan, M. F. Mitchell, E. Silva, S. Thomsen, and R. R. Richards-Kortum, “Study of the fluorescence properties of normal and neoplastic human cervical tissue,” Lasers Surg Med 13, 647–655 (1993).
[Crossref] [PubMed]

Todd-Pokropek, A.

E. Kahn, A. Vejux, D. Dumas, T. Montange, F. Frouin, V. Robert, J. M. Riedinger, J. F. Stoltz, P. Gambert, A. Todd-Pokropek, and G. Lizard, “FRET multiphoton spectral imaging microscopy of 7-ketocholesterol and Nile Red in U937 monocytic cells loaded with 7-ketocholesterol,” Anal Quant Cytol Histol 26, 304–313 (2004).

Tromberg, B. J.

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. 99, 11014–11019 (2002).
[Crossref] [PubMed]

Ulrich, V.

V. Ulrich, P. Fischer, I. Riemann, and K. Konigt, “Compact multiphoton/single photon laser scanning microscope for spectral imaging and fluorescence lifetime imaging,” Scanning 26, 217–225 (2004).
[Crossref] [PubMed]

Vargas, G.

J. Sun, T. Shilagard, B. Bell, M. Motamedi, and G. Vargas, “In vivo multimodal nonlinear optical imaging of mucosal tissue,” Opt Express 12, 2478–2486 (2004).
[Crossref] [PubMed]

Vejux, A.

E. Kahn, A. Vejux, D. Dumas, T. Montange, F. Frouin, V. Robert, J. M. Riedinger, J. F. Stoltz, P. Gambert, A. Todd-Pokropek, and G. Lizard, “FRET multiphoton spectral imaging microscopy of 7-ketocholesterol and Nile Red in U937 monocytic cells loaded with 7-ketocholesterol,” Anal Quant Cytol Histol 26, 304–313 (2004).

Vrotsos, K. M.

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res 65, 1180–1186 (2005).
[Crossref] [PubMed]

Wagner, R. F.

H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In-Vivo fluorescence Spectroscopy and imaging of human skin tumors,” Laser Med Sci 9, 191–201 (1994).
[Crossref]

Weagle, G.

G. Weagle, P. E. Paterson, J. Kennedy, and R. Pottier, “The nature of the chromophore responsible for naturally occurring fluorescence in mouse skin,” J Photochem Photobiol B 2, 313–320 (1988).
[Crossref] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, R. Christie, A. Yu Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
[Crossref] [PubMed]

D. W. Piston, B. R. Masters, and W. W. Webb, “Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy,” J. Microsc. 178 (Pt 1), 20–27 (1995).
[Crossref]

Williams, R. M.

W. R. Zipfel, R. M. Williams, R. Christie, A. Yu Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
[Crossref] [PubMed]

Witjes, M. J.

D. C. de Veld, M. Skurichina, M. J. Witjes, R. P. Duin, H. J. Sterenborg, and J. L. Roodenburg, “Autofluorescence and diffuse reflectance spectroscopy for oral oncology,” Lasers Surg Med 36, 356–364 (2005).
[Crossref] [PubMed]

Wu, Y. C.

Y. C. Wu, P. Xi, J. N. Y. Qu, T. H. Cheung, and M. Y. Yu, “Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue,” Opt Express 13, 382–388 (2005).
[Crossref] [PubMed]

Y. C. Wu and J. N. Y. Qu, “Two-photon autofluorescence spectroscopy and second-harmonic generation of epithelial tissue,” Opt. Lett. 30, 3045–3047 (2005).
[Crossref] [PubMed]

Xi, P.

Y. C. Wu, P. Xi, J. N. Y. Qu, T. H. Cheung, and M. Y. Yu, “Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue,” Opt Express 13, 382–388 (2005).
[Crossref] [PubMed]

Yeh, A.

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. 99, 11014–11019 (2002).
[Crossref] [PubMed]

Yu, M. Y.

Y. C. Wu, P. Xi, J. N. Y. Qu, T. H. Cheung, and M. Y. Yu, “Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue,” Opt Express 13, 382–388 (2005).
[Crossref] [PubMed]

Yu Nikitin, A.

W. R. Zipfel, R. M. Williams, R. Christie, A. Yu Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
[Crossref] [PubMed]

Zimmermann, T.

T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear unmixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS Lett 531, 245–249 (2002).
[Crossref] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Yu Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
[Crossref] [PubMed]

Zoumi, A.

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. 99, 11014–11019 (2002).
[Crossref] [PubMed]

Am. J. Med. Sci. (1)

B. Banerjee, B. Miedema, and H. R. Chandrasekhar, “Emission spectra of colonic tissue and endogenous fluorophores,” Am. J. Med. Sci. 316, 220–226 (1998).
[Crossref] [PubMed]

Anal Quant Cytol Histol (1)

E. Kahn, A. Vejux, D. Dumas, T. Montange, F. Frouin, V. Robert, J. M. Riedinger, J. F. Stoltz, P. Gambert, A. Todd-Pokropek, and G. Lizard, “FRET multiphoton spectral imaging microscopy of 7-ketocholesterol and Nile Red in U937 monocytic cells loaded with 7-ketocholesterol,” Anal Quant Cytol Histol 26, 304–313 (2004).

Ann. N. Y. Acad. Sci. (1)

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation microscopy of in vivo human skin,” Ann. N. Y. Acad. Sci. 838, 58–67 (1998).
[Crossref] [PubMed]

Biophys. J. (3)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
[Crossref]

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72, 2405–2412 (1997).
[Crossref] [PubMed]

D. Chorvat, J. Kirchnerova, M. Cagalinec, J. Smolka, A. Mateasik, and A. Chorvatova, “Spectral unmixing of flavin autofluorescence components in cardiac myocytes,” Biophys. J. 105.073866 (2005).

Cancer Res (1)

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res 65, 1180–1186 (2005).
[Crossref] [PubMed]

Cytometry A (1)

R. C. Ecker, R. de Martin, G. E. Steiner, and J. A. Schmid, “Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis,” Cytometry A 59, 172–181 (2004).
[Crossref] [PubMed]

FEBS Lett (1)

T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear unmixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS Lett 531, 245–249 (2002).
[Crossref] [PubMed]

Genes Cells (1)

T. Haraguchi, T. Shimi, T. Koujin, N. Hashiguchi, and Y. Hiraoka, “Spectral imaging fluorescence microscopy,” Genes Cells 7, 881–887 (2002).
[Crossref] [PubMed]

J Biol Chem (1)

E. H. Epstein and N. H. Munderloh, “Human skin collagen. Presence of type I and type III at all levels of the dermis,” J Biol Chem 253, 1336–1337 (1978).
[PubMed]

J Photochem Photobiol B (1)

G. Weagle, P. E. Paterson, J. Kennedy, and R. Pottier, “The nature of the chromophore responsible for naturally occurring fluorescence in mouse skin,” J Photochem Photobiol B 2, 313–320 (1988).
[Crossref] [PubMed]

J. Biol. Chem. (1)

J. V. Rocheleau, W. S. Head, and D. W. Piston, “Quantitative NAD (P)H/Flavoprotein autofluorescence imaging reveals metabolic mechanisms of Pancreatic Islet Pyruvate Response,” J. Biol. Chem. 279, 31780–31787 (2004).
[Crossref] [PubMed]

J. Biomed Opt. (1)

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed Opt. 7, 148–156 (2002).
[Crossref] [PubMed]

J. Microsc. (1)

D. W. Piston, B. R. Masters, and W. W. Webb, “Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy,” J. Microsc. 178 (Pt 1), 20–27 (1995).
[Crossref]

Laser Med Sci (1)

H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In-Vivo fluorescence Spectroscopy and imaging of human skin tumors,” Laser Med Sci 9, 191–201 (1994).
[Crossref]

Lasers Surg Med (3)

D. C. de Veld, M. Skurichina, M. J. Witjes, R. P. Duin, H. J. Sterenborg, and J. L. Roodenburg, “Autofluorescence and diffuse reflectance spectroscopy for oral oncology,” Lasers Surg Med 36, 356–364 (2005).
[Crossref] [PubMed]

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg Med 12, 63–78 (1992).
[Crossref] [PubMed]

A. Mahadevan, M. F. Mitchell, E. Silva, S. Thomsen, and R. R. Richards-Kortum, “Study of the fluorescence properties of normal and neoplastic human cervical tissue,” Lasers Surg Med 13, 647–655 (1993).
[Crossref] [PubMed]

Nat. Med. (1)

E. Brown, T. Mc Kee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

Opt Express (3)

J. Sun, T. Shilagard, B. Bell, M. Motamedi, and G. Vargas, “In vivo multimodal nonlinear optical imaging of mucosal tissue,” Opt Express 12, 2478–2486 (2004).
[Crossref] [PubMed]

Y. C. Wu, P. Xi, J. N. Y. Qu, T. H. Cheung, and M. Y. Yu, “Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue,” Opt Express 13, 382–388 (2005).
[Crossref] [PubMed]

A. M. Pena, M. Strupler, T. Boulesteix, and M. C. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,” Opt Express 13, 6268–6274 (2005).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. (3)

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. 99, 11014–11019 (2002).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Yu Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
[Crossref] [PubMed]

Y. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, “Subsurface tumor progression investigated by noninvasive optical second harmonic tomography,” Proc. Natl. Acad. Sci. 96, 10854–10856 (1999).
[Crossref] [PubMed]

Scanning (1)

V. Ulrich, P. Fischer, I. Riemann, and K. Konigt, “Compact multiphoton/single photon laser scanning microscope for spectral imaging and fluorescence lifetime imaging,” Scanning 26, 217–225 (2004).
[Crossref] [PubMed]

Other (3)

N. RamanujamR. A. Meyers, “Fluorescence spectroscopy in vivo,” in Encyclopedia of Analytical Chemistry, ed. (J. Wiley & Sons, Chichester, 2000), pp. 20–56.

D. Bruton, “Color Science,” http://members.cox.net/astro7/color.html, Accessed September, 2005.

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt.10, (2005).
[Crossref] [PubMed]

Supplementary Material (1)

» Media 1: MOV (523 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig.1.
Fig.1.

he experimental setup for autofluorescence spectral imaging of live mouse tissues.

Fig. 2.
Fig. 2.

Real-color spectral images at: (a) 5 µm; (b) 10 µm; (c) 15 µm; (d) 20 µm; (e) 30 µm; and (f) 40 µm below the surface of the live mouse skin. The excitation wavelength is 764 nm and the objective is a 40X/1.30 Oil immersion objective.

Fig. 3.
Fig. 3.

Left: A color map of the skin emission spectra vs measurement depth. The white dotted lines correspond to the plots on the right. Right: Tissue emission spectrum at: (a) 5 µm; (b) 10 µm; (c) 15 µm; and (d) 40 µm. The excitation wavelength used was 764 nm.

Figs. 4.
Figs. 4.

(a), (b) Linear spectral unmixing of the spectra obtained from 5 µm and 15 µm image sections, respectively. (c) Bar graph of the amplitudes of the fitted spectral components as a function of depth from the surface of the skin tissue. (d) (523 kB) Movie of three-dimensional in vivo mouse skin tissue. The movie is a series of spectral images in real color from the stratum spinosum of the epidermis to the dermis at 2 µm intervals. The field of view is 45 µm x 45 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

B ij ( n ) = { k n N m = 26 50 A ij ( m ) , for n = 1 k n N m = 50 + 5 ( n 2 ) 50 + 5 ( n 1 ) A ij ( m ) , for 2 n 11
C ij ( r , g , b ) = m B ij ( m ) T rgb ( m )

Metrics