Abstract

We propose a practical optical probe configuration capable of two-dimensional subdiffraction imaging beyond the conventionally used near-field range. The probe consists of a planar array of plasmonic monopoles radiating with different amplitudes and phases, such that the near-field interaction of the array elements produces a subdiffraction spot size 40% smaller than the diffraction limit at a quarter-wavelength away from the probe. Although designed to operate in the visible, this topology is scalable to other spectra as well. Our proposed configuration could alleviate the “working distance” issue between the object and imaging apparatus since it enables superresolution focusing at relatively long distances while being compatible with existing near-field imaging setups, such as scanning near-field optical microscopes.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004).
    [CrossRef]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [CrossRef]
  3. A. K. Iyer and G. V. Eleftheriades, “Mechanisms of subdiffraction free-space imaging using a transmission-line metamaterial superlens: an experimental verification,” Appl. Phys. Lett. 92, 131105 (2008).
    [CrossRef]
  4. E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
    [CrossRef]
  5. R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317, 927–929 (2007).
    [CrossRef]
  6. A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320, 511–513 (2008).
    [CrossRef]
  7. L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “A spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101, 113901 (2008).
    [CrossRef]
  8. Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17, 12351–12361 (2009).
    [CrossRef]
  9. R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102, 207402 (2009).
    [CrossRef]
  10. T. H. Taminiau, F. B. Segerink, and N. F. van Hulst, “A monopole antenna at optical frequencies: single-molecule near-field measurements,” IEEE Trans. Antennas Propag. 55, 3010–3017 (2007).
    [CrossRef]
  11. L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field end-fire antenna-array probe,” IEEE Antennas Wirel. Propag. Lett. 8, 1025–1028 (2009).
    [CrossRef]
  12. L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field probe at a λ/4 working distance,” J. Appl. Phys. 107, 093102 (2010).
    [CrossRef]
  13. T. H Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, “Near-field driving of a optical monopole antenna,” J. Opt. Pure Appl. Opt. 9S315–S321 (2007).
    [CrossRef]
  14. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef]
  15. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
    [CrossRef]
  16. C. A. Balanis, Antenna Theory: Analysis and Design, 2nd ed. (Wiley, 2004).
  17. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
    [CrossRef]
  18. R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9, 2832–2837 (2009).
    [CrossRef]
  19. A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11, 1201–1207 (2011).
    [CrossRef]

2011 (1)

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11, 1201–1207 (2011).
[CrossRef]

2010 (1)

L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field probe at a λ/4 working distance,” J. Appl. Phys. 107, 093102 (2010).
[CrossRef]

2009 (4)

L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field end-fire antenna-array probe,” IEEE Antennas Wirel. Propag. Lett. 8, 1025–1028 (2009).
[CrossRef]

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17, 12351–12361 (2009).
[CrossRef]

R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102, 207402 (2009).
[CrossRef]

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9, 2832–2837 (2009).
[CrossRef]

2008 (4)

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320, 511–513 (2008).
[CrossRef]

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “A spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101, 113901 (2008).
[CrossRef]

A. K. Iyer and G. V. Eleftheriades, “Mechanisms of subdiffraction free-space imaging using a transmission-line metamaterial superlens: an experimental verification,” Appl. Phys. Lett. 92, 131105 (2008).
[CrossRef]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[CrossRef]

2007 (4)

R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317, 927–929 (2007).
[CrossRef]

T. H Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, “Near-field driving of a optical monopole antenna,” J. Opt. Pure Appl. Opt. 9S315–S321 (2007).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef]

T. H. Taminiau, F. B. Segerink, and N. F. van Hulst, “A monopole antenna at optical frequencies: single-molecule near-field measurements,” IEEE Trans. Antennas Propag. 55, 3010–3017 (2007).
[CrossRef]

2006 (1)

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

2004 (1)

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004).
[CrossRef]

1992 (1)

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef]

Aizpurua, J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[CrossRef]

Ashby, P.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11, 1201–1207 (2011).
[CrossRef]

Atwater, H. A.

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9, 2832–2837 (2009).
[CrossRef]

Baida, F. I.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design, 2nd ed. (Wiley, 2004).

Belkhir, A.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Betzig, E.

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef]

Bokor, J.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11, 1201–1207 (2011).
[CrossRef]

Bryant, G. W.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[CrossRef]

Burgos, S. P.

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9, 2832–2837 (2009).
[CrossRef]

Cabrini, S.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11, 1201–1207 (2011).
[CrossRef]

Cornaglia, M.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11, 1201–1207 (2011).
[CrossRef]

de Abajo, F. J. García

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[CrossRef]

de Waele, R.

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9, 2832–2837 (2009).
[CrossRef]

Eleftheriades, G. V.

L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field probe at a λ/4 working distance,” J. Appl. Phys. 107, 093102 (2010).
[CrossRef]

L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field end-fire antenna-array probe,” IEEE Antennas Wirel. Propag. Lett. 8, 1025–1028 (2009).
[CrossRef]

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17, 12351–12361 (2009).
[CrossRef]

A. K. Iyer and G. V. Eleftheriades, “Mechanisms of subdiffraction free-space imaging using a transmission-line metamaterial superlens: an experimental verification,” Appl. Phys. Lett. 92, 131105 (2008).
[CrossRef]

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “A spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101, 113901 (2008).
[CrossRef]

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Gordon, R.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11, 1201–1207 (2011).
[CrossRef]

R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102, 207402 (2009).
[CrossRef]

Grbic, A.

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320, 511–513 (2008).
[CrossRef]

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004).
[CrossRef]

Helmy, A. S.

Ismach, A.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11, 1201–1207 (2011).
[CrossRef]

Iyer, A. K.

A. K. Iyer and G. V. Eleftheriades, “Mechanisms of subdiffraction free-space imaging using a transmission-line metamaterial superlens: an experimental verification,” Appl. Phys. Lett. 92, 131105 (2008).
[CrossRef]

Jiang, L.

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320, 511–513 (2008).
[CrossRef]

Kuipers, L.

T. H Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, “Near-field driving of a optical monopole antenna,” J. Opt. Pure Appl. Opt. 9S315–S321 (2007).
[CrossRef]

Lamrous, O.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Markley, L.

L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field probe at a λ/4 working distance,” J. Appl. Phys. 107, 093102 (2010).
[CrossRef]

L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field end-fire antenna-array probe,” IEEE Antennas Wirel. Propag. Lett. 8, 1025–1028 (2009).
[CrossRef]

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17, 12351–12361 (2009).
[CrossRef]

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “A spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101, 113901 (2008).
[CrossRef]

Merlin, R.

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320, 511–513 (2008).
[CrossRef]

R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317, 927–929 (2007).
[CrossRef]

Moerland, R. J.

T. H Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, “Near-field driving of a optical monopole antenna,” J. Opt. Pure Appl. Opt. 9S315–S321 (2007).
[CrossRef]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef]

Ogletree, D. F.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11, 1201–1207 (2011).
[CrossRef]

Pang, Y.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11, 1201–1207 (2011).
[CrossRef]

Polman, A.

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9, 2832–2837 (2009).
[CrossRef]

Salmeron, M. B.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11, 1201–1207 (2011).
[CrossRef]

Schuck, P. J.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11, 1201–1207 (2011).
[CrossRef]

Schwartzberg, A.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11, 1201–1207 (2011).
[CrossRef]

Segerink, F. B.

T. H Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, “Near-field driving of a optical monopole antenna,” J. Opt. Pure Appl. Opt. 9S315–S321 (2007).
[CrossRef]

T. H. Taminiau, F. B. Segerink, and N. F. van Hulst, “A monopole antenna at optical frequencies: single-molecule near-field measurements,” IEEE Trans. Antennas Propag. 55, 3010–3017 (2007).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Taminiau, T. H

T. H Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, “Near-field driving of a optical monopole antenna,” J. Opt. Pure Appl. Opt. 9S315–S321 (2007).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, F. B. Segerink, and N. F. van Hulst, “A monopole antenna at optical frequencies: single-molecule near-field measurements,” IEEE Trans. Antennas Propag. 55, 3010–3017 (2007).
[CrossRef]

Trautman, J. K.

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef]

Urban, J. J.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11, 1201–1207 (2011).
[CrossRef]

van Hulst, N. F.

T. H Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, “Near-field driving of a optical monopole antenna,” J. Opt. Pure Appl. Opt. 9S315–S321 (2007).
[CrossRef]

T. H. Taminiau, F. B. Segerink, and N. F. van Hulst, “A monopole antenna at optical frequencies: single-molecule near-field measurements,” IEEE Trans. Antennas Propag. 55, 3010–3017 (2007).
[CrossRef]

Van Labeke, D.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Wang, Y.

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17, 12351–12361 (2009).
[CrossRef]

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “A spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101, 113901 (2008).
[CrossRef]

Weber-Bargioni, A.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11, 1201–1207 (2011).
[CrossRef]

Wong, A. M. H.

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17, 12351–12361 (2009).
[CrossRef]

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “A spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101, 113901 (2008).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

A. K. Iyer and G. V. Eleftheriades, “Mechanisms of subdiffraction free-space imaging using a transmission-line metamaterial superlens: an experimental verification,” Appl. Phys. Lett. 92, 131105 (2008).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett. (1)

L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field end-fire antenna-array probe,” IEEE Antennas Wirel. Propag. Lett. 8, 1025–1028 (2009).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

T. H. Taminiau, F. B. Segerink, and N. F. van Hulst, “A monopole antenna at optical frequencies: single-molecule near-field measurements,” IEEE Trans. Antennas Propag. 55, 3010–3017 (2007).
[CrossRef]

J. Appl. Phys. (1)

L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field probe at a λ/4 working distance,” J. Appl. Phys. 107, 093102 (2010).
[CrossRef]

J. Opt. Pure Appl. Opt. (1)

T. H Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, “Near-field driving of a optical monopole antenna,” J. Opt. Pure Appl. Opt. 9S315–S321 (2007).
[CrossRef]

Nano Lett. (3)

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[CrossRef]

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9, 2832–2837 (2009).
[CrossRef]

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11, 1201–1207 (2011).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Phys. Rev. Lett. (4)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef]

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004).
[CrossRef]

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “A spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101, 113901 (2008).
[CrossRef]

R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102, 207402 (2009).
[CrossRef]

Science (4)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef]

R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317, 927–929 (2007).
[CrossRef]

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320, 511–513 (2008).
[CrossRef]

Other (1)

C. A. Balanis, Antenna Theory: Analysis and Design, 2nd ed. (Wiley, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Proposed topology of a 2D near-field monopole array at the end facet of a SNOM aperture probe. The design is intended to operate at 514 nm, and the monopoles are made of aluminum with ϵr=31.3j8. The antenna array consists of one central and four satellite elements, with a center-to-satellite interelement spacing of 100 nm (about 0.193λ). The left illuminating aperture has a diameter of 100 nm and the right ones are 70 nm. The lengths of the left, central, and right monopoles are 80, 75, and 85 nm, respectively, and the radii are 20 nm. (a) Optical probe configuration, (b) the rotationally symmetric arrangement of the antenna array at the end facet (transverse plane), and (c) the respective locations of the source and image planes along the longitudinal direction.

Fig. 2.
Fig. 2.

End-fire radiation of the monopole antenna when the aperture is illuminated with a plane wave polarized in the x direction. The monopole antenna is placed along the aperture edge at various angles with respect to the direction of illumination. The electric field is obtained at 1 nm below the apex of the antenna.

Fig. 3.
Fig. 3.

|Ez| at the image plane (z=0.25λ) for the single monopole configuration. The monopole antenna is excited with a probe aperture of 100 nm in diameter, and the incident electric field is polarized along the x direction. (a) |Ez| in the transverse plane and (b) |Ez| in the transverse plane along the x and y axes. In this case, the beam width along the x axis is blurred by the noise introduced by the probe aperture, while the one along the y axis represents the diffraction limit.

Fig. 4.
Fig. 4.

Field distribution (Ez) at the source plane (z=0). (a) The planar distribution shows that the central and the satellite monopoles are radiating with opposite phases. (b) Comparison of the magnitude and the phase among the left, central, and right elements along the dashed line in (a). The normalized weights and the relative phases are (0.3, 1, 0.5) and (179°, 0°, 165°), respectively.

Fig. 5.
Fig. 5.

Contour diagram of the FWHM of |Ez| at the image plane (z=0.25λ). A comparison is made between the beam width of the single monopole (blue/light) and the monopole array (black/dark).

Fig. 6.
Fig. 6.

Comparison of the normalized field intensity (|Ez|2) of the single monopole and the monopole array at various imaging distances.

Fig. 7.
Fig. 7.

Magnitude of electric field in the near field of the single aperture, single monopole, and monopole array. (|Eexcitation|=0dB for all three cases). (a) E-field magnitude versus the working distance. In the case of the single aperture probe, the working distance is measured from the center of the aperture. For the single monopole and the monopole array excited by aperture(s), the working distance is measured from the apex of the (central) monopole. (b) Magnitude (in decibels) of the E-field distribution in the xz plane.

Metrics