Abstract

We present the optical characterization of single light emitting glass microspheres by means of an experimental setup that combines μ-transmission and μ-photoluminescence measurements without the need of optical fibers for excitation or detection purposes. We demonstrate that the results provided by both techniques are consistent among them and can provide complementary information regarding the active material properties (material losses and cross sections) and the passive resonator ones (radiative quality factors, group refractive indices, sphere radius, and pump power threshold for mode spectral shifting). This work addresses Nd3+ doped borate glass microspheres, but the reported studies could be realized in other rare-earth-doped glass microspheres as well.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef]
  2. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996).
  3. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
    [CrossRef]
  4. A. N. Oraevsky, “Whispering gallery waves,” Quantum Electron. 32, 377–400 (2002).
    [CrossRef]
  5. Biophotonics/Optical Interconnects and VLSI Photonics/WBM Microcavities, 2004 Digest of the LEOS Summer Topical Meeting (IEEE, Piscataway, NJ, 2004).
  6. F. Vollmer, D. Braun, and A. Libchaber, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
    [CrossRef]
  7. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
    [CrossRef]
  8. J. L. Nadeau, V. S. Ilchenko, D. Kossokovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
    [CrossRef]
  9. A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).
    [CrossRef]
  10. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
    [CrossRef]
  11. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [CrossRef]
  12. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
    [CrossRef]
  13. G. R. Elliott, D. W. Hewak, G. S. Murugan, and J. S. Wilkinson, “Chalcogenide glass microspheres; their production, characterization and potential,” Opt. Express 15, 17542–17553 (2007).
    [CrossRef]
  14. L. L. Martin, P. Haro-Gonzalez, I. R. Martin, D. Navarro-Urrios, D. Alonso, C. Perez-Rodriguez, D. Jaque, and N. E. Capuj, “Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope,” Opt. Lett. 36, 615–617 (2011).
    [CrossRef]
  15. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  16. A. Serpenguzel, S. Arnold, G. Griffel, and J. A. Lock, “Enhanced coupling to microsphere resonances with optical fibers,” J. Opt. Soc. Am. B 14, 790–795 (1997).
    [CrossRef]
  17. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
    [CrossRef]
  18. http://www.philiplaven.com/mieplot.htm .
  19. L. A. Riseberg, “Laser-induced fluorescence-line-narrowing spectroscopy of glass: Nd,” Phys. Rev. A 7671–678 (1973).
    [CrossRef]
  20. R. Reisfeld and C. K. Jorgensen, Lasers and Excited States of Rare Earths (Springer-Verlag, 1977).
  21. B. K. Sevast’yanov, “Excited-state absorption spectroscopy of crystals doped with Cr3+, Ti3+, and Nd3+ ions. Review,” Crystallogr. Rep. 48, 989–1011 (2003).
    [CrossRef]
  22. F. Ramiro-Manzano, R. Fenollosa, E. Xifré-Pérez, M. Garín, and F. Meseguer, “Porous silicon microcavities based photonic barcodes,” Adv. Mater. 23, 3022–3025 (2011).
    [CrossRef]

2011 (2)

2007 (1)

2006 (2)

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[CrossRef]

2004 (2)

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[CrossRef]

2003 (3)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[CrossRef]

B. K. Sevast’yanov, “Excited-state absorption spectroscopy of crystals doped with Cr3+, Ti3+, and Nd3+ ions. Review,” Crystallogr. Rep. 48, 989–1011 (2003).
[CrossRef]

2002 (3)

J. L. Nadeau, V. S. Ilchenko, D. Kossokovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[CrossRef]

A. N. Oraevsky, “Whispering gallery waves,” Quantum Electron. 32, 377–400 (2002).
[CrossRef]

F. Vollmer, D. Braun, and A. Libchaber, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

1997 (1)

1981 (1)

1973 (1)

L. A. Riseberg, “Laser-induced fluorescence-line-narrowing spectroscopy of glass: Nd,” Phys. Rev. A 7671–678 (1973).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

Absil, P. P.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Alonso, D.

Arnold, S.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[CrossRef]

A. Serpenguzel, S. Arnold, G. Griffel, and J. A. Lock, “Enhanced coupling to microsphere resonances with optical fibers,” J. Opt. Soc. Am. B 14, 790–795 (1997).
[CrossRef]

Ashkin, A.

Bearman, G. H.

J. L. Nadeau, V. S. Ilchenko, D. Kossokovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Braun, D.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[CrossRef]

F. Vollmer, D. Braun, and A. Libchaber, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Campillo, A. J.

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996).

Capuj, N. E.

Carmon, T.

Chang, R. K.

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996).

Chu, S. T.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Dziedzic, J. M.

Elliott, G. R.

Fenollosa, R.

F. Ramiro-Manzano, R. Fenollosa, E. Xifré-Pérez, M. Garín, and F. Meseguer, “Porous silicon microcavities based photonic barcodes,” Adv. Mater. 23, 3022–3025 (2011).
[CrossRef]

Garín, M.

F. Ramiro-Manzano, R. Fenollosa, E. Xifré-Pérez, M. Garín, and F. Meseguer, “Porous silicon microcavities based photonic barcodes,” Adv. Mater. 23, 3022–3025 (2011).
[CrossRef]

Gill, D.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Griffel, G.

Haro-Gonzalez, P.

Hewak, D. W.

Hryniewicz, J. V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[CrossRef]

J. L. Nadeau, V. S. Ilchenko, D. Kossokovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[CrossRef]

Jaque, D.

Johnson, F. G.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Jorgensen, C. K.

R. Reisfeld and C. K. Jorgensen, Lasers and Excited States of Rare Earths (Springer-Verlag, 1977).

King, O.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Kossokovski, D.

J. L. Nadeau, V. S. Ilchenko, D. Kossokovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[CrossRef]

Libchaber, A.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[CrossRef]

F. Vollmer, D. Braun, and A. Libchaber, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Little, B. E.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Lock, J. A.

Maleki, L.

J. L. Nadeau, V. S. Ilchenko, D. Kossokovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[CrossRef]

Martin, I. R.

Martin, L. L.

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[CrossRef]

Meseguer, F.

F. Ramiro-Manzano, R. Fenollosa, E. Xifré-Pérez, M. Garín, and F. Meseguer, “Porous silicon microcavities based photonic barcodes,” Adv. Mater. 23, 3022–3025 (2011).
[CrossRef]

Murugan, G. S.

Nadeau, J. L.

J. L. Nadeau, V. S. Ilchenko, D. Kossokovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[CrossRef]

Navarro-Urrios, D.

Oraevsky, A. N.

A. N. Oraevsky, “Whispering gallery waves,” Quantum Electron. 32, 377–400 (2002).
[CrossRef]

Perez-Rodriguez, C.

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

Ramiro-Manzano, F.

F. Ramiro-Manzano, R. Fenollosa, E. Xifré-Pérez, M. Garín, and F. Meseguer, “Porous silicon microcavities based photonic barcodes,” Adv. Mater. 23, 3022–3025 (2011).
[CrossRef]

Reisfeld, R.

R. Reisfeld and C. K. Jorgensen, Lasers and Excited States of Rare Earths (Springer-Verlag, 1977).

Riseberg, L. A.

L. A. Riseberg, “Laser-induced fluorescence-line-narrowing spectroscopy of glass: Nd,” Phys. Rev. A 7671–678 (1973).
[CrossRef]

Seiferth, F.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Serpenguzel, A.

Sevast’yanov, B. K.

B. K. Sevast’yanov, “Excited-state absorption spectroscopy of crystals doped with Cr3+, Ti3+, and Nd3+ ions. Review,” Crystallogr. Rep. 48, 989–1011 (2003).
[CrossRef]

Teraoka, I.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[CrossRef]

Trakalo, M.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Vahala, K. J.

Van, V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Vollmer, F.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[CrossRef]

F. Vollmer, D. Braun, and A. Libchaber, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Wilkinson, J. S.

Xifré-Pérez, E.

F. Ramiro-Manzano, R. Fenollosa, E. Xifré-Pérez, M. Garín, and F. Meseguer, “Porous silicon microcavities based photonic barcodes,” Adv. Mater. 23, 3022–3025 (2011).
[CrossRef]

Yang, L.

Adv. Mater. (1)

F. Ramiro-Manzano, R. Fenollosa, E. Xifré-Pérez, M. Garín, and F. Meseguer, “Porous silicon microcavities based photonic barcodes,” Adv. Mater. 23, 3022–3025 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Vollmer, D. Braun, and A. Libchaber, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Biophys. J. (1)

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[CrossRef]

Crystallogr. Rep. (1)

B. K. Sevast’yanov, “Excited-state absorption spectroscopy of crystals doped with Cr3+, Ti3+, and Nd3+ ions. Review,” Crystallogr. Rep. 48, 989–1011 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

Phys. Rev. A (1)

L. A. Riseberg, “Laser-induced fluorescence-line-narrowing spectroscopy of glass: Nd,” Phys. Rev. A 7671–678 (1973).
[CrossRef]

Proc. SPIE (1)

J. L. Nadeau, V. S. Ilchenko, D. Kossokovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[CrossRef]

Quantum Electron. (1)

A. N. Oraevsky, “Whispering gallery waves,” Quantum Electron. 32, 377–400 (2002).
[CrossRef]

Other (5)

Biophotonics/Optical Interconnects and VLSI Photonics/WBM Microcavities, 2004 Digest of the LEOS Summer Topical Meeting (IEEE, Piscataway, NJ, 2004).

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

R. Reisfeld and C. K. Jorgensen, Lasers and Excited States of Rare Earths (Springer-Verlag, 1977).

http://www.philiplaven.com/mieplot.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scheme of the combined μ-transmission and μ-PL setup. Top right: image of a microsphere taken with the CCD when the monochromator is in the zero order and the slit of the monochromator widely opened. Top left: energy level structure of Nd3+ ion.

Fig. 2.
Fig. 2.

Panels (a), (b): absolute transmitted intensity when collecting light of a region around a microsphere lateral edge (gray) and of a region far away from a microsphere (black). Panels (c), (d): ratio of the curves represented on the bottom panels. Panels (b), (d) show a zoomed spectral region corresponding to the dashed red rectangle.

Fig. 3.
Fig. 3.

Bottom panel: μ-transmission spectra corresponding to microspheres of increasing radii. Top panel: FSR of the oscillating signal as a function of the radius of the microsphere together with a fit using a 1/R dependence. Inset: Schematics of the p=5 optical trajectory within a microsphere. The diffracted beam (below the sphere) and a possible scenario for the coupling region for excitation of the p=5 mode (dashed-dotted) and observation region (dotted) are also shown.

Fig. 4.
Fig. 4.

Bottom panel: μ-PL spectrum of a microspheres of R=13μm. Top panel: quality factors (squares) and extracted optical losses (circles).

Fig. 5.
Fig. 5.

Quality factor spectrum for two different trajectories of the same sphere. A calculated curve using the material losses of the first trajectory and the radiative losses of the second is also shown.

Fig. 6.
Fig. 6.

μ-PL (gray) and μ-transmission (black) measurements for TM (bottom panel) and TR (top panel) polarizations for a microspheres of R=9.5μm.

Metrics