Abstract

The performance of reflective grating plays a key role in quantum well infrared focal plane arrays due to the selection rules of inter-subband transition. In this paper, the reflective properties of metal grating have been studied by the finite-difference time-domain methods. Not only are the optimal grating parameters found to be different from the suggested values, but also a new choice for grating design has been found due to the exciting of surface wave. In addition, cavity modes can be formed when the dielectric thickness is finite. The grating performance is also greatly affected by the cavity modes. The presented results may have some significance for experimental design.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors Physics and Applications (Springer, 2007).
  2. J. S. Smith, L. C. Chiu, S. Margalit, A. Yariv, and A. Y. Cho, “A new infrared detector using electron emission from multiple quantum wells,” J. Vac. Sci. Technol. B 1, 376–378 (1983).
    [CrossRef]
  3. N. Li, H.-l. Zhen, W.-p. Wang, J. Wang, X.-s. Chen, Z. Li, W.-x. Wang, H. Chen, F.-q. Liu, and L. Wei, “Quantum structure optimization for infrared detection,” Proc. SPIE 7383, 738306 (2009).
    [CrossRef]
  4. J. Y. Andersson and G. Landgren, “Intersubband transitions in single AlGaAs/GaAs quantum wells studied by Fourier transform infrared spectroscopy,” J. Appl. Phys. 64, 4123–4126 (1988).
    [CrossRef]
  5. Y. C. Wang and S. S. Li, “A planar two-dimensional circular aperture metal grating coupler for quantum well infrared photodetectors,” J. Appl. Phys. 75, 8168–8174 (1994).
    [CrossRef]
  6. C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, “Corrugated quantum well infrared photodetectors for normal incident light coupling,” Appl. Phys. Lett. 68, 1446–1448 (1996).
    [CrossRef]
  7. G. Hasnain, B. F. Levine, C. G. Bethea, R. A. Logan, J. Walker, and R. J. Malik, “GaAs/AlGaAs multiquantum well infrared detector arrays using etched gratings,” Appl. Phys. Lett. 54, 2515–2527 (1989).
    [CrossRef]
  8. C. P. Lee, K. H. Chang, and K. L. Tsai, “Quantum well infrared photodetectors with bi-periodic grating couplers,” Appl. Phys. Lett. 61, 2437–2439 (1992).
    [CrossRef]
  9. G. Sarusi, B. F. Levine, S. J. Pearton, K. M. S. Bandara, and R. E. Leibenguth, “Improved performance of quantum well infrared photodetectors using random scattering optical coupling,” Appl. Phys. Lett. 64, 960–962 (1994).
    [CrossRef]
  10. K. K. Choi, The Physics of Quantum Well Infrared Photodetectors (World Scientific, 1997).
    [CrossRef]
  11. D. Lepage and J. J. Dubowskia, “Surface plasmon assisted photoluminescence in GaAsCAlGaAs quantum well microstructures,” Appl. Phys. Lett. 91, 163106 (2007).
    [CrossRef]
  12. K.-C. Shen, C.-Y. Chen, C.-F. Huang, J.-Y. Wang, Y.-C. Lu, Y.-W. Kiang, C. C. Yang, and Y.-J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92, 013108 (2008).
    [CrossRef]
  13. J. B. Khurgin and G. Sun, “Enhancement of light absorption in a quantum well by surface plasmon polariton,” Appl. Phys. Lett. 94, 191106 (2009).
    [CrossRef]
  14. J. Wang, X. Chen, and W. Lu, “High-efficiency surface plasmon polariton source,” J. Opt. Soc. Am. B 26, B139–B142 (2009).
    [CrossRef]
  15. A. R. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 38, 1865–1874 (1988).
    [CrossRef]
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  17. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 44, 2332–2337 (2005).
    [CrossRef]
  18. H. Schneider, C. Schönbein, M. Walther, P. Koidl, and G. Weimann, “Influence of optical interference on quantum well infrared photodetectors in a 45 waveguide geometry,” Appl. Phys. Lett. 74, 16–18 (1999).
    [CrossRef]
  19. H. FujiwaraJ. Koh, P. I. Rovira, and R. W. Collins, “Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films,” Phys. Rev. B 61, 10832–10844 (2000).
    [CrossRef]
  20. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [CrossRef] [PubMed]

2009 (3)

N. Li, H.-l. Zhen, W.-p. Wang, J. Wang, X.-s. Chen, Z. Li, W.-x. Wang, H. Chen, F.-q. Liu, and L. Wei, “Quantum structure optimization for infrared detection,” Proc. SPIE 7383, 738306 (2009).
[CrossRef]

J. B. Khurgin and G. Sun, “Enhancement of light absorption in a quantum well by surface plasmon polariton,” Appl. Phys. Lett. 94, 191106 (2009).
[CrossRef]

J. Wang, X. Chen, and W. Lu, “High-efficiency surface plasmon polariton source,” J. Opt. Soc. Am. B 26, B139–B142 (2009).
[CrossRef]

2008 (1)

K.-C. Shen, C.-Y. Chen, C.-F. Huang, J.-Y. Wang, Y.-C. Lu, Y.-W. Kiang, C. C. Yang, and Y.-J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

2007 (2)

D. Lepage and J. J. Dubowskia, “Surface plasmon assisted photoluminescence in GaAsCAlGaAs quantum well microstructures,” Appl. Phys. Lett. 91, 163106 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

2005 (1)

2000 (1)

H. FujiwaraJ. Koh, P. I. Rovira, and R. W. Collins, “Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films,” Phys. Rev. B 61, 10832–10844 (2000).
[CrossRef]

1999 (1)

H. Schneider, C. Schönbein, M. Walther, P. Koidl, and G. Weimann, “Influence of optical interference on quantum well infrared photodetectors in a 45 waveguide geometry,” Appl. Phys. Lett. 74, 16–18 (1999).
[CrossRef]

1996 (1)

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, “Corrugated quantum well infrared photodetectors for normal incident light coupling,” Appl. Phys. Lett. 68, 1446–1448 (1996).
[CrossRef]

1994 (2)

G. Sarusi, B. F. Levine, S. J. Pearton, K. M. S. Bandara, and R. E. Leibenguth, “Improved performance of quantum well infrared photodetectors using random scattering optical coupling,” Appl. Phys. Lett. 64, 960–962 (1994).
[CrossRef]

Y. C. Wang and S. S. Li, “A planar two-dimensional circular aperture metal grating coupler for quantum well infrared photodetectors,” J. Appl. Phys. 75, 8168–8174 (1994).
[CrossRef]

1992 (1)

C. P. Lee, K. H. Chang, and K. L. Tsai, “Quantum well infrared photodetectors with bi-periodic grating couplers,” Appl. Phys. Lett. 61, 2437–2439 (1992).
[CrossRef]

1989 (1)

G. Hasnain, B. F. Levine, C. G. Bethea, R. A. Logan, J. Walker, and R. J. Malik, “GaAs/AlGaAs multiquantum well infrared detector arrays using etched gratings,” Appl. Phys. Lett. 54, 2515–2527 (1989).
[CrossRef]

1988 (2)

J. Y. Andersson and G. Landgren, “Intersubband transitions in single AlGaAs/GaAs quantum wells studied by Fourier transform infrared spectroscopy,” J. Appl. Phys. 64, 4123–4126 (1988).
[CrossRef]

A. R. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 38, 1865–1874 (1988).
[CrossRef]

1983 (1)

J. S. Smith, L. C. Chiu, S. Margalit, A. Yariv, and A. Y. Cho, “A new infrared detector using electron emission from multiple quantum wells,” J. Vac. Sci. Technol. B 1, 376–378 (1983).
[CrossRef]

Andersson, J. Y.

J. Y. Andersson and G. Landgren, “Intersubband transitions in single AlGaAs/GaAs quantum wells studied by Fourier transform infrared spectroscopy,” J. Appl. Phys. 64, 4123–4126 (1988).
[CrossRef]

Bandara, K. M. S.

G. Sarusi, B. F. Levine, S. J. Pearton, K. M. S. Bandara, and R. E. Leibenguth, “Improved performance of quantum well infrared photodetectors using random scattering optical coupling,” Appl. Phys. Lett. 64, 960–962 (1994).
[CrossRef]

Bethea, C. G.

G. Hasnain, B. F. Levine, C. G. Bethea, R. A. Logan, J. Walker, and R. J. Malik, “GaAs/AlGaAs multiquantum well infrared detector arrays using etched gratings,” Appl. Phys. Lett. 54, 2515–2527 (1989).
[CrossRef]

Bloomer, I.

A. R. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 38, 1865–1874 (1988).
[CrossRef]

Chang, K. H.

C. P. Lee, K. H. Chang, and K. L. Tsai, “Quantum well infrared photodetectors with bi-periodic grating couplers,” Appl. Phys. Lett. 61, 2437–2439 (1992).
[CrossRef]

Chen, C. J.

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, “Corrugated quantum well infrared photodetectors for normal incident light coupling,” Appl. Phys. Lett. 68, 1446–1448 (1996).
[CrossRef]

Chen, C. -Y.

K.-C. Shen, C.-Y. Chen, C.-F. Huang, J.-Y. Wang, Y.-C. Lu, Y.-W. Kiang, C. C. Yang, and Y.-J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

Chen, H.

N. Li, H.-l. Zhen, W.-p. Wang, J. Wang, X.-s. Chen, Z. Li, W.-x. Wang, H. Chen, F.-q. Liu, and L. Wei, “Quantum structure optimization for infrared detection,” Proc. SPIE 7383, 738306 (2009).
[CrossRef]

Chen, X.

Chen, X. -s.

N. Li, H.-l. Zhen, W.-p. Wang, J. Wang, X.-s. Chen, Z. Li, W.-x. Wang, H. Chen, F.-q. Liu, and L. Wei, “Quantum structure optimization for infrared detection,” Proc. SPIE 7383, 738306 (2009).
[CrossRef]

Chiu, L. C.

J. S. Smith, L. C. Chiu, S. Margalit, A. Yariv, and A. Y. Cho, “A new infrared detector using electron emission from multiple quantum wells,” J. Vac. Sci. Technol. B 1, 376–378 (1983).
[CrossRef]

Cho, A. Y.

J. S. Smith, L. C. Chiu, S. Margalit, A. Yariv, and A. Y. Cho, “A new infrared detector using electron emission from multiple quantum wells,” J. Vac. Sci. Technol. B 1, 376–378 (1983).
[CrossRef]

Choi, K. K.

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, “Corrugated quantum well infrared photodetectors for normal incident light coupling,” Appl. Phys. Lett. 68, 1446–1448 (1996).
[CrossRef]

K. K. Choi, The Physics of Quantum Well Infrared Photodetectors (World Scientific, 1997).
[CrossRef]

Collins, R. W.

H. FujiwaraJ. Koh, P. I. Rovira, and R. W. Collins, “Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films,” Phys. Rev. B 61, 10832–10844 (2000).
[CrossRef]

Djurišic, A. B.

Dubowskia, J. J.

D. Lepage and J. J. Dubowskia, “Surface plasmon assisted photoluminescence in GaAsCAlGaAs quantum well microstructures,” Appl. Phys. Lett. 91, 163106 (2007).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Elazar, J. M.

Forouhi, A. R.

A. R. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 38, 1865–1874 (1988).
[CrossRef]

Fujiwara, H.

H. FujiwaraJ. Koh, P. I. Rovira, and R. W. Collins, “Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films,” Phys. Rev. B 61, 10832–10844 (2000).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Hasnain, G.

G. Hasnain, B. F. Levine, C. G. Bethea, R. A. Logan, J. Walker, and R. J. Malik, “GaAs/AlGaAs multiquantum well infrared detector arrays using etched gratings,” Appl. Phys. Lett. 54, 2515–2527 (1989).
[CrossRef]

Huang, C. -F.

K.-C. Shen, C.-Y. Chen, C.-F. Huang, J.-Y. Wang, Y.-C. Lu, Y.-W. Kiang, C. C. Yang, and Y.-J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin and G. Sun, “Enhancement of light absorption in a quantum well by surface plasmon polariton,” Appl. Phys. Lett. 94, 191106 (2009).
[CrossRef]

Kiang, Y. -W.

K.-C. Shen, C.-Y. Chen, C.-F. Huang, J.-Y. Wang, Y.-C. Lu, Y.-W. Kiang, C. C. Yang, and Y.-J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

Koh, J.

H. FujiwaraJ. Koh, P. I. Rovira, and R. W. Collins, “Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films,” Phys. Rev. B 61, 10832–10844 (2000).
[CrossRef]

Koidl, P.

H. Schneider, C. Schönbein, M. Walther, P. Koidl, and G. Weimann, “Influence of optical interference on quantum well infrared photodetectors in a 45 waveguide geometry,” Appl. Phys. Lett. 74, 16–18 (1999).
[CrossRef]

Landgren, G.

J. Y. Andersson and G. Landgren, “Intersubband transitions in single AlGaAs/GaAs quantum wells studied by Fourier transform infrared spectroscopy,” J. Appl. Phys. 64, 4123–4126 (1988).
[CrossRef]

Lee, C. P.

C. P. Lee, K. H. Chang, and K. L. Tsai, “Quantum well infrared photodetectors with bi-periodic grating couplers,” Appl. Phys. Lett. 61, 2437–2439 (1992).
[CrossRef]

Leibenguth, R. E.

G. Sarusi, B. F. Levine, S. J. Pearton, K. M. S. Bandara, and R. E. Leibenguth, “Improved performance of quantum well infrared photodetectors using random scattering optical coupling,” Appl. Phys. Lett. 64, 960–962 (1994).
[CrossRef]

Lepage, D.

D. Lepage and J. J. Dubowskia, “Surface plasmon assisted photoluminescence in GaAsCAlGaAs quantum well microstructures,” Appl. Phys. Lett. 91, 163106 (2007).
[CrossRef]

Levine, B. F.

G. Sarusi, B. F. Levine, S. J. Pearton, K. M. S. Bandara, and R. E. Leibenguth, “Improved performance of quantum well infrared photodetectors using random scattering optical coupling,” Appl. Phys. Lett. 64, 960–962 (1994).
[CrossRef]

G. Hasnain, B. F. Levine, C. G. Bethea, R. A. Logan, J. Walker, and R. J. Malik, “GaAs/AlGaAs multiquantum well infrared detector arrays using etched gratings,” Appl. Phys. Lett. 54, 2515–2527 (1989).
[CrossRef]

Li, N.

N. Li, H.-l. Zhen, W.-p. Wang, J. Wang, X.-s. Chen, Z. Li, W.-x. Wang, H. Chen, F.-q. Liu, and L. Wei, “Quantum structure optimization for infrared detection,” Proc. SPIE 7383, 738306 (2009).
[CrossRef]

Li, S. S.

Y. C. Wang and S. S. Li, “A planar two-dimensional circular aperture metal grating coupler for quantum well infrared photodetectors,” J. Appl. Phys. 75, 8168–8174 (1994).
[CrossRef]

Li, Z.

N. Li, H.-l. Zhen, W.-p. Wang, J. Wang, X.-s. Chen, Z. Li, W.-x. Wang, H. Chen, F.-q. Liu, and L. Wei, “Quantum structure optimization for infrared detection,” Proc. SPIE 7383, 738306 (2009).
[CrossRef]

Liu, F. -q.

N. Li, H.-l. Zhen, W.-p. Wang, J. Wang, X.-s. Chen, Z. Li, W.-x. Wang, H. Chen, F.-q. Liu, and L. Wei, “Quantum structure optimization for infrared detection,” Proc. SPIE 7383, 738306 (2009).
[CrossRef]

Liu, H. C.

H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors Physics and Applications (Springer, 2007).

Logan, R. A.

G. Hasnain, B. F. Levine, C. G. Bethea, R. A. Logan, J. Walker, and R. J. Malik, “GaAs/AlGaAs multiquantum well infrared detector arrays using etched gratings,” Appl. Phys. Lett. 54, 2515–2527 (1989).
[CrossRef]

Lu, W.

Lu, Y. -C.

K.-C. Shen, C.-Y. Chen, C.-F. Huang, J.-Y. Wang, Y.-C. Lu, Y.-W. Kiang, C. C. Yang, and Y.-J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

Majewski, M. L.

Malik, R. J.

G. Hasnain, B. F. Levine, C. G. Bethea, R. A. Logan, J. Walker, and R. J. Malik, “GaAs/AlGaAs multiquantum well infrared detector arrays using etched gratings,” Appl. Phys. Lett. 54, 2515–2527 (1989).
[CrossRef]

Margalit, S.

J. S. Smith, L. C. Chiu, S. Margalit, A. Yariv, and A. Y. Cho, “A new infrared detector using electron emission from multiple quantum wells,” J. Vac. Sci. Technol. B 1, 376–378 (1983).
[CrossRef]

Pearton, S. J.

G. Sarusi, B. F. Levine, S. J. Pearton, K. M. S. Bandara, and R. E. Leibenguth, “Improved performance of quantum well infrared photodetectors using random scattering optical coupling,” Appl. Phys. Lett. 64, 960–962 (1994).
[CrossRef]

Rakic, A. D.

Rovira, P. I.

H. FujiwaraJ. Koh, P. I. Rovira, and R. W. Collins, “Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films,” Phys. Rev. B 61, 10832–10844 (2000).
[CrossRef]

Sarusi, G.

G. Sarusi, B. F. Levine, S. J. Pearton, K. M. S. Bandara, and R. E. Leibenguth, “Improved performance of quantum well infrared photodetectors using random scattering optical coupling,” Appl. Phys. Lett. 64, 960–962 (1994).
[CrossRef]

Schneider, H.

H. Schneider, C. Schönbein, M. Walther, P. Koidl, and G. Weimann, “Influence of optical interference on quantum well infrared photodetectors in a 45 waveguide geometry,” Appl. Phys. Lett. 74, 16–18 (1999).
[CrossRef]

H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors Physics and Applications (Springer, 2007).

Schönbein, C.

H. Schneider, C. Schönbein, M. Walther, P. Koidl, and G. Weimann, “Influence of optical interference on quantum well infrared photodetectors in a 45 waveguide geometry,” Appl. Phys. Lett. 74, 16–18 (1999).
[CrossRef]

Shen, K. -C.

K.-C. Shen, C.-Y. Chen, C.-F. Huang, J.-Y. Wang, Y.-C. Lu, Y.-W. Kiang, C. C. Yang, and Y.-J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

Smith, J. S.

J. S. Smith, L. C. Chiu, S. Margalit, A. Yariv, and A. Y. Cho, “A new infrared detector using electron emission from multiple quantum wells,” J. Vac. Sci. Technol. B 1, 376–378 (1983).
[CrossRef]

Sun, G.

J. B. Khurgin and G. Sun, “Enhancement of light absorption in a quantum well by surface plasmon polariton,” Appl. Phys. Lett. 94, 191106 (2009).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Tidrow, M. Z.

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, “Corrugated quantum well infrared photodetectors for normal incident light coupling,” Appl. Phys. Lett. 68, 1446–1448 (1996).
[CrossRef]

Tsai, K. L.

C. P. Lee, K. H. Chang, and K. L. Tsai, “Quantum well infrared photodetectors with bi-periodic grating couplers,” Appl. Phys. Lett. 61, 2437–2439 (1992).
[CrossRef]

Tsui, D. C.

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, “Corrugated quantum well infrared photodetectors for normal incident light coupling,” Appl. Phys. Lett. 68, 1446–1448 (1996).
[CrossRef]

Walker, J.

G. Hasnain, B. F. Levine, C. G. Bethea, R. A. Logan, J. Walker, and R. J. Malik, “GaAs/AlGaAs multiquantum well infrared detector arrays using etched gratings,” Appl. Phys. Lett. 54, 2515–2527 (1989).
[CrossRef]

Walther, M.

H. Schneider, C. Schönbein, M. Walther, P. Koidl, and G. Weimann, “Influence of optical interference on quantum well infrared photodetectors in a 45 waveguide geometry,” Appl. Phys. Lett. 74, 16–18 (1999).
[CrossRef]

Wang, J.

J. Wang, X. Chen, and W. Lu, “High-efficiency surface plasmon polariton source,” J. Opt. Soc. Am. B 26, B139–B142 (2009).
[CrossRef]

N. Li, H.-l. Zhen, W.-p. Wang, J. Wang, X.-s. Chen, Z. Li, W.-x. Wang, H. Chen, F.-q. Liu, and L. Wei, “Quantum structure optimization for infrared detection,” Proc. SPIE 7383, 738306 (2009).
[CrossRef]

Wang, J. -Y.

K.-C. Shen, C.-Y. Chen, C.-F. Huang, J.-Y. Wang, Y.-C. Lu, Y.-W. Kiang, C. C. Yang, and Y.-J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

Wang, W. -p.

N. Li, H.-l. Zhen, W.-p. Wang, J. Wang, X.-s. Chen, Z. Li, W.-x. Wang, H. Chen, F.-q. Liu, and L. Wei, “Quantum structure optimization for infrared detection,” Proc. SPIE 7383, 738306 (2009).
[CrossRef]

Wang, W. -x.

N. Li, H.-l. Zhen, W.-p. Wang, J. Wang, X.-s. Chen, Z. Li, W.-x. Wang, H. Chen, F.-q. Liu, and L. Wei, “Quantum structure optimization for infrared detection,” Proc. SPIE 7383, 738306 (2009).
[CrossRef]

Wang, Y. C.

Y. C. Wang and S. S. Li, “A planar two-dimensional circular aperture metal grating coupler for quantum well infrared photodetectors,” J. Appl. Phys. 75, 8168–8174 (1994).
[CrossRef]

Wei, L.

N. Li, H.-l. Zhen, W.-p. Wang, J. Wang, X.-s. Chen, Z. Li, W.-x. Wang, H. Chen, F.-q. Liu, and L. Wei, “Quantum structure optimization for infrared detection,” Proc. SPIE 7383, 738306 (2009).
[CrossRef]

Weimann, G.

H. Schneider, C. Schönbein, M. Walther, P. Koidl, and G. Weimann, “Influence of optical interference on quantum well infrared photodetectors in a 45 waveguide geometry,” Appl. Phys. Lett. 74, 16–18 (1999).
[CrossRef]

Yang, C. C.

K.-C. Shen, C.-Y. Chen, C.-F. Huang, J.-Y. Wang, Y.-C. Lu, Y.-W. Kiang, C. C. Yang, and Y.-J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

Yang, Y. -J.

K.-C. Shen, C.-Y. Chen, C.-F. Huang, J.-Y. Wang, Y.-C. Lu, Y.-W. Kiang, C. C. Yang, and Y.-J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

Yariv, A.

J. S. Smith, L. C. Chiu, S. Margalit, A. Yariv, and A. Y. Cho, “A new infrared detector using electron emission from multiple quantum wells,” J. Vac. Sci. Technol. B 1, 376–378 (1983).
[CrossRef]

Zhen, H. -l.

N. Li, H.-l. Zhen, W.-p. Wang, J. Wang, X.-s. Chen, Z. Li, W.-x. Wang, H. Chen, F.-q. Liu, and L. Wei, “Quantum structure optimization for infrared detection,” Proc. SPIE 7383, 738306 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (8)

H. Schneider, C. Schönbein, M. Walther, P. Koidl, and G. Weimann, “Influence of optical interference on quantum well infrared photodetectors in a 45 waveguide geometry,” Appl. Phys. Lett. 74, 16–18 (1999).
[CrossRef]

D. Lepage and J. J. Dubowskia, “Surface plasmon assisted photoluminescence in GaAsCAlGaAs quantum well microstructures,” Appl. Phys. Lett. 91, 163106 (2007).
[CrossRef]

K.-C. Shen, C.-Y. Chen, C.-F. Huang, J.-Y. Wang, Y.-C. Lu, Y.-W. Kiang, C. C. Yang, and Y.-J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

J. B. Khurgin and G. Sun, “Enhancement of light absorption in a quantum well by surface plasmon polariton,” Appl. Phys. Lett. 94, 191106 (2009).
[CrossRef]

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, “Corrugated quantum well infrared photodetectors for normal incident light coupling,” Appl. Phys. Lett. 68, 1446–1448 (1996).
[CrossRef]

G. Hasnain, B. F. Levine, C. G. Bethea, R. A. Logan, J. Walker, and R. J. Malik, “GaAs/AlGaAs multiquantum well infrared detector arrays using etched gratings,” Appl. Phys. Lett. 54, 2515–2527 (1989).
[CrossRef]

C. P. Lee, K. H. Chang, and K. L. Tsai, “Quantum well infrared photodetectors with bi-periodic grating couplers,” Appl. Phys. Lett. 61, 2437–2439 (1992).
[CrossRef]

G. Sarusi, B. F. Levine, S. J. Pearton, K. M. S. Bandara, and R. E. Leibenguth, “Improved performance of quantum well infrared photodetectors using random scattering optical coupling,” Appl. Phys. Lett. 64, 960–962 (1994).
[CrossRef]

J. Appl. Phys. (2)

J. Y. Andersson and G. Landgren, “Intersubband transitions in single AlGaAs/GaAs quantum wells studied by Fourier transform infrared spectroscopy,” J. Appl. Phys. 64, 4123–4126 (1988).
[CrossRef]

Y. C. Wang and S. S. Li, “A planar two-dimensional circular aperture metal grating coupler for quantum well infrared photodetectors,” J. Appl. Phys. 75, 8168–8174 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

J. S. Smith, L. C. Chiu, S. Margalit, A. Yariv, and A. Y. Cho, “A new infrared detector using electron emission from multiple quantum wells,” J. Vac. Sci. Technol. B 1, 376–378 (1983).
[CrossRef]

Nature (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Phys. Rev. B (2)

H. FujiwaraJ. Koh, P. I. Rovira, and R. W. Collins, “Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films,” Phys. Rev. B 61, 10832–10844 (2000).
[CrossRef]

A. R. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 38, 1865–1874 (1988).
[CrossRef]

Proc. SPIE (1)

N. Li, H.-l. Zhen, W.-p. Wang, J. Wang, X.-s. Chen, Z. Li, W.-x. Wang, H. Chen, F.-q. Liu, and L. Wei, “Quantum structure optimization for infrared detection,” Proc. SPIE 7383, 738306 (2009).
[CrossRef]

Other (3)

K. K. Choi, The Physics of Quantum Well Infrared Photodetectors (World Scientific, 1997).
[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors Physics and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the unit structure. The grating parameters are grating period d, filling factor f = a / d , and groove depth h. The thickness of GaAs/QWs/GaAs is L. The aperture and non-aperture parts are indicated by dotted (red online) and solid (green online) lines, respectively. The viewing angle at point P on aperture part of the grating is ϕ = ϕ 1 + ϕ 2 .

Fig. 2
Fig. 2

Dependence of | E z | on groove depth with f = 0.5 and d = 5 μ m . (a) F 1 = | 0 z 0 0 d E z ( x , z ) d x d z | . (b) F 2 ( z ) = | 0 d E z ( x , z ) d x | .

Fig. 3
Fig. 3

Dependence of | E z | on filling factor with h = 1.0 μ m , d = 5 μ m . (a) F 1 = | 0 z 0 0 d E z ( x , z ) d x d z | . (b) F 2 ( z ) = | 0 d E z ( x , z ) d x | .

Fig. 4
Fig. 4

Dependence of | E z | on period with f = 0.7 and h = 1 μ m . (a) F 1 = | 0 z 0 0 d E z ( x , z ) d x d z | . (b) F 2 ( z ) = | 0 d E z ( x , z ) d x | .

Fig. 5
Fig. 5

| E z | profile. (a) The first order SPP generation at d = d 1 s p and f = 0.1 ( F 1 = 11.6 ) . (b) The second order SPP generation at d = d 2 s p and f = 0.05 ( F 1 = 17.6 ) . (c) The field profile at d = d 1 s p and f = 0.7 ( F 1 = 15.7 ) . (d) Surface plasmon mode in Fig. 4 at h = 1.0 μ m ( F 1 = 15.2 ) . (e) Surface plasmon mode in Fig. 4 at h = 0.5 μ m ( F 1 = 35.4 ) . (f) Surface plasmon mode in Fig. 4 at h = 0.25 μ m ( F 1 = 15.5 ) .

Fig. 6
Fig. 6

| E z | distribution of the cavity modes with difference GaAs layer thickness ( L ) . (a), (b), (c), (d), (e), and (f) correspond to thicknesses of 4.6, 6.4, 7.8, 9.5, 10.6, and 11.8 μ m , respectively.

Tables (1)

Tables Icon

Table 1 Effects of Grating Interface on Coupling Period and Mode Profile

Metrics