Abstract

We have developed an objective for ultraviolet imaging and spectroscopy under cryogenic conditions. The objective was made of a single piece of silica with two spherical mirror surfaces. The pair of mirrors works as a reflecting objective for the optical rays that travel inside the silica. The extra refraction at liquid helium–silica interfaces was found to cause practically no chromatic aberration in the wavelength region from 360 to 980 nm. Using the objective with a focal length of 2 mm and a numerical aperture of 0.6, imaging an area of 130μm×130μm is possible with almost diffraction-limited quality.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Jasny, J. Sepiol, T. Irngartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425-1430 (1996).
    [CrossRef]
  2. R. Zondervan, F. Kulzer, H. van der Meer, J. A. J. M. Disselhorst, and M. Orrit, “Laser-driven microsecond temperature cycles analyzed by fluorescence polarization microscopy,” Biophys. J. 90, 2958-2969 (2006).
    [CrossRef] [PubMed]
  3. M. Vácha, H. Yokoyama, T. Tokizaki, M. Furuki, and T. Tani, “Laser scanning microscope for low temperature single molecule and microscale spectroscopy based on gradient index optics,” Rev. Sci. Instrum. 70, 2041-2045 (1999).
    [CrossRef]
  4. S. Fujiyoshi, M. Fujiwara, C. Kim, M. Matsushita, A. M. van Oijen, and J. Schmidt, “Single-component reflecting objective for low-temperature spectroscopy in the entire visible region,” Appl. Phys. Lett. 91, 051125 (2007).
    [CrossRef]
  5. S. Fujiyoshi, M. Fujiwara, and M. Matsushita, “Visible fluorescence spectroscopy of single proteins at liquid-helium temperature,” Phys. Rev. Lett. 100, 168101 (2008).
    [CrossRef] [PubMed]
  6. A. Bloess, Y. Durand, M. Matsushita, H. van der Meer, G. J. Brakenhoff, and J. Schmidt, “Optical far-field microscopy of single molecules with 3.4 nm lateral resolution,” J. Microsc. 205, 76-85 (2002).
    [CrossRef] [PubMed]
  7. ZEMAX-EE version August 1, 2006, ZEMAX Development Corporation, Bellevue, Wash., USA, 2006.
  8. In the measurement of Figs. 3(a) and 3(b) of our previous work in , we erroneously measured the backside of the sample plate. This causes the inconsistency between Figs. 3(a) and 3(b) of and Fig. of this paper. In the blue curve of the shorter wavelength peaks at a positive Δz and the red of the longer wavelength at a negative Δz, but vice versa in this work.

2008 (1)

S. Fujiyoshi, M. Fujiwara, and M. Matsushita, “Visible fluorescence spectroscopy of single proteins at liquid-helium temperature,” Phys. Rev. Lett. 100, 168101 (2008).
[CrossRef] [PubMed]

2007 (1)

S. Fujiyoshi, M. Fujiwara, C. Kim, M. Matsushita, A. M. van Oijen, and J. Schmidt, “Single-component reflecting objective for low-temperature spectroscopy in the entire visible region,” Appl. Phys. Lett. 91, 051125 (2007).
[CrossRef]

2006 (1)

R. Zondervan, F. Kulzer, H. van der Meer, J. A. J. M. Disselhorst, and M. Orrit, “Laser-driven microsecond temperature cycles analyzed by fluorescence polarization microscopy,” Biophys. J. 90, 2958-2969 (2006).
[CrossRef] [PubMed]

2002 (1)

A. Bloess, Y. Durand, M. Matsushita, H. van der Meer, G. J. Brakenhoff, and J. Schmidt, “Optical far-field microscopy of single molecules with 3.4 nm lateral resolution,” J. Microsc. 205, 76-85 (2002).
[CrossRef] [PubMed]

1999 (1)

M. Vácha, H. Yokoyama, T. Tokizaki, M. Furuki, and T. Tani, “Laser scanning microscope for low temperature single molecule and microscale spectroscopy based on gradient index optics,” Rev. Sci. Instrum. 70, 2041-2045 (1999).
[CrossRef]

1996 (1)

J. Jasny, J. Sepiol, T. Irngartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425-1430 (1996).
[CrossRef]

Bloess, A.

A. Bloess, Y. Durand, M. Matsushita, H. van der Meer, G. J. Brakenhoff, and J. Schmidt, “Optical far-field microscopy of single molecules with 3.4 nm lateral resolution,” J. Microsc. 205, 76-85 (2002).
[CrossRef] [PubMed]

Brakenhoff, G. J.

A. Bloess, Y. Durand, M. Matsushita, H. van der Meer, G. J. Brakenhoff, and J. Schmidt, “Optical far-field microscopy of single molecules with 3.4 nm lateral resolution,” J. Microsc. 205, 76-85 (2002).
[CrossRef] [PubMed]

Disselhorst, J. A. J. M.

R. Zondervan, F. Kulzer, H. van der Meer, J. A. J. M. Disselhorst, and M. Orrit, “Laser-driven microsecond temperature cycles analyzed by fluorescence polarization microscopy,” Biophys. J. 90, 2958-2969 (2006).
[CrossRef] [PubMed]

Durand, Y.

A. Bloess, Y. Durand, M. Matsushita, H. van der Meer, G. J. Brakenhoff, and J. Schmidt, “Optical far-field microscopy of single molecules with 3.4 nm lateral resolution,” J. Microsc. 205, 76-85 (2002).
[CrossRef] [PubMed]

Fujiwara, M.

S. Fujiyoshi, M. Fujiwara, and M. Matsushita, “Visible fluorescence spectroscopy of single proteins at liquid-helium temperature,” Phys. Rev. Lett. 100, 168101 (2008).
[CrossRef] [PubMed]

S. Fujiyoshi, M. Fujiwara, C. Kim, M. Matsushita, A. M. van Oijen, and J. Schmidt, “Single-component reflecting objective for low-temperature spectroscopy in the entire visible region,” Appl. Phys. Lett. 91, 051125 (2007).
[CrossRef]

Fujiyoshi, S.

S. Fujiyoshi, M. Fujiwara, and M. Matsushita, “Visible fluorescence spectroscopy of single proteins at liquid-helium temperature,” Phys. Rev. Lett. 100, 168101 (2008).
[CrossRef] [PubMed]

S. Fujiyoshi, M. Fujiwara, C. Kim, M. Matsushita, A. M. van Oijen, and J. Schmidt, “Single-component reflecting objective for low-temperature spectroscopy in the entire visible region,” Appl. Phys. Lett. 91, 051125 (2007).
[CrossRef]

Furuki, M.

M. Vácha, H. Yokoyama, T. Tokizaki, M. Furuki, and T. Tani, “Laser scanning microscope for low temperature single molecule and microscale spectroscopy based on gradient index optics,” Rev. Sci. Instrum. 70, 2041-2045 (1999).
[CrossRef]

Irngartinger, T.

J. Jasny, J. Sepiol, T. Irngartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425-1430 (1996).
[CrossRef]

Jasny, J.

J. Jasny, J. Sepiol, T. Irngartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425-1430 (1996).
[CrossRef]

Kim, C.

S. Fujiyoshi, M. Fujiwara, C. Kim, M. Matsushita, A. M. van Oijen, and J. Schmidt, “Single-component reflecting objective for low-temperature spectroscopy in the entire visible region,” Appl. Phys. Lett. 91, 051125 (2007).
[CrossRef]

Kulzer, F.

R. Zondervan, F. Kulzer, H. van der Meer, J. A. J. M. Disselhorst, and M. Orrit, “Laser-driven microsecond temperature cycles analyzed by fluorescence polarization microscopy,” Biophys. J. 90, 2958-2969 (2006).
[CrossRef] [PubMed]

Matsushita, M.

S. Fujiyoshi, M. Fujiwara, and M. Matsushita, “Visible fluorescence spectroscopy of single proteins at liquid-helium temperature,” Phys. Rev. Lett. 100, 168101 (2008).
[CrossRef] [PubMed]

S. Fujiyoshi, M. Fujiwara, C. Kim, M. Matsushita, A. M. van Oijen, and J. Schmidt, “Single-component reflecting objective for low-temperature spectroscopy in the entire visible region,” Appl. Phys. Lett. 91, 051125 (2007).
[CrossRef]

A. Bloess, Y. Durand, M. Matsushita, H. van der Meer, G. J. Brakenhoff, and J. Schmidt, “Optical far-field microscopy of single molecules with 3.4 nm lateral resolution,” J. Microsc. 205, 76-85 (2002).
[CrossRef] [PubMed]

Orrit, M.

R. Zondervan, F. Kulzer, H. van der Meer, J. A. J. M. Disselhorst, and M. Orrit, “Laser-driven microsecond temperature cycles analyzed by fluorescence polarization microscopy,” Biophys. J. 90, 2958-2969 (2006).
[CrossRef] [PubMed]

Renn, A.

J. Jasny, J. Sepiol, T. Irngartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425-1430 (1996).
[CrossRef]

Schmidt, J.

S. Fujiyoshi, M. Fujiwara, C. Kim, M. Matsushita, A. M. van Oijen, and J. Schmidt, “Single-component reflecting objective for low-temperature spectroscopy in the entire visible region,” Appl. Phys. Lett. 91, 051125 (2007).
[CrossRef]

A. Bloess, Y. Durand, M. Matsushita, H. van der Meer, G. J. Brakenhoff, and J. Schmidt, “Optical far-field microscopy of single molecules with 3.4 nm lateral resolution,” J. Microsc. 205, 76-85 (2002).
[CrossRef] [PubMed]

Sepiol, J.

J. Jasny, J. Sepiol, T. Irngartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425-1430 (1996).
[CrossRef]

Tani, T.

M. Vácha, H. Yokoyama, T. Tokizaki, M. Furuki, and T. Tani, “Laser scanning microscope for low temperature single molecule and microscale spectroscopy based on gradient index optics,” Rev. Sci. Instrum. 70, 2041-2045 (1999).
[CrossRef]

Tokizaki, T.

M. Vácha, H. Yokoyama, T. Tokizaki, M. Furuki, and T. Tani, “Laser scanning microscope for low temperature single molecule and microscale spectroscopy based on gradient index optics,” Rev. Sci. Instrum. 70, 2041-2045 (1999).
[CrossRef]

Traber, M.

J. Jasny, J. Sepiol, T. Irngartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425-1430 (1996).
[CrossRef]

Vácha, M.

M. Vácha, H. Yokoyama, T. Tokizaki, M. Furuki, and T. Tani, “Laser scanning microscope for low temperature single molecule and microscale spectroscopy based on gradient index optics,” Rev. Sci. Instrum. 70, 2041-2045 (1999).
[CrossRef]

van der Meer, H.

R. Zondervan, F. Kulzer, H. van der Meer, J. A. J. M. Disselhorst, and M. Orrit, “Laser-driven microsecond temperature cycles analyzed by fluorescence polarization microscopy,” Biophys. J. 90, 2958-2969 (2006).
[CrossRef] [PubMed]

A. Bloess, Y. Durand, M. Matsushita, H. van der Meer, G. J. Brakenhoff, and J. Schmidt, “Optical far-field microscopy of single molecules with 3.4 nm lateral resolution,” J. Microsc. 205, 76-85 (2002).
[CrossRef] [PubMed]

van Oijen, A. M.

S. Fujiyoshi, M. Fujiwara, C. Kim, M. Matsushita, A. M. van Oijen, and J. Schmidt, “Single-component reflecting objective for low-temperature spectroscopy in the entire visible region,” Appl. Phys. Lett. 91, 051125 (2007).
[CrossRef]

Wild, U. P.

J. Jasny, J. Sepiol, T. Irngartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425-1430 (1996).
[CrossRef]

Yokoyama, H.

M. Vácha, H. Yokoyama, T. Tokizaki, M. Furuki, and T. Tani, “Laser scanning microscope for low temperature single molecule and microscale spectroscopy based on gradient index optics,” Rev. Sci. Instrum. 70, 2041-2045 (1999).
[CrossRef]

Zondervan, R.

R. Zondervan, F. Kulzer, H. van der Meer, J. A. J. M. Disselhorst, and M. Orrit, “Laser-driven microsecond temperature cycles analyzed by fluorescence polarization microscopy,” Biophys. J. 90, 2958-2969 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. Fujiyoshi, M. Fujiwara, C. Kim, M. Matsushita, A. M. van Oijen, and J. Schmidt, “Single-component reflecting objective for low-temperature spectroscopy in the entire visible region,” Appl. Phys. Lett. 91, 051125 (2007).
[CrossRef]

Biophys. J. (1)

R. Zondervan, F. Kulzer, H. van der Meer, J. A. J. M. Disselhorst, and M. Orrit, “Laser-driven microsecond temperature cycles analyzed by fluorescence polarization microscopy,” Biophys. J. 90, 2958-2969 (2006).
[CrossRef] [PubMed]

J. Microsc. (1)

A. Bloess, Y. Durand, M. Matsushita, H. van der Meer, G. J. Brakenhoff, and J. Schmidt, “Optical far-field microscopy of single molecules with 3.4 nm lateral resolution,” J. Microsc. 205, 76-85 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

S. Fujiyoshi, M. Fujiwara, and M. Matsushita, “Visible fluorescence spectroscopy of single proteins at liquid-helium temperature,” Phys. Rev. Lett. 100, 168101 (2008).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

M. Vácha, H. Yokoyama, T. Tokizaki, M. Furuki, and T. Tani, “Laser scanning microscope for low temperature single molecule and microscale spectroscopy based on gradient index optics,” Rev. Sci. Instrum. 70, 2041-2045 (1999).
[CrossRef]

J. Jasny, J. Sepiol, T. Irngartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425-1430 (1996).
[CrossRef]

Other (2)

ZEMAX-EE version August 1, 2006, ZEMAX Development Corporation, Bellevue, Wash., USA, 2006.

In the measurement of Figs. 3(a) and 3(b) of our previous work in , we erroneously measured the backside of the sample plate. This causes the inconsistency between Figs. 3(a) and 3(b) of and Fig. of this paper. In the blue curve of the shorter wavelength peaks at a positive Δz and the red of the longer wavelength at a negative Δz, but vice versa in this work.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Single-component reflecting objective. The parameters of the f = 2   mm objective are radius of convex mirror, R 1 = 2.472   mm ; concave mirror, R 2 = 6.472   mm ; polished spherical surface, R 3 = 4.329   mm ; maximum diameter of collimated light, ϕ a = 2.4   mm ; minimum diameter, ϕ b = 1.1   mm . Other symbols are O f , focal point; O M , center of the two spherical mirrors of R 1 and R 2 ; S, polished flat surface.

Fig. 2
Fig. 2

Experimental setup for dark-field imaging of polymer beads at a temperature of 1.5 K. The reflecting objective and the sample are immersed in liquid helium. Sample position can be controlled in axial and lateral directions from outside of the liquid-helium bath. The laser beam is focused from the backside of the sample. The signal light scattered at the bead is collected by the reflecting objective and focused by a concave mirror onto a CMOS camera.

Fig. 3
Fig. 3

Dark-field image of a polymer bead at seven different wavelengths ranging from 360 to 980 nm taken with the reflecting objective of f = 2   mm at 1.5 K. The cross section through the center of the disk is shown below each image. From the left image taken at 360 nm to the right at 980 nm, FWHM of the disk is 340, 390, 520, 620, 670, 750, and 800 nm.

Fig. 4
Fig. 4

(A) Fraunhofer diffraction patterns of a uniformly illuminated annular aperture with a central obstruction ratio of ϕ b / ϕ a calculated at (a) λ = 400 and (b) 800 nm. (B) PSF of the reflecting objectives of f = 2   mm [(c),(d)] and f = 4   mm [(e),(f)], calculated at λ = 400   nm [(c),(e)] and at λ = 800   nm [(d),(f)]. The cross section through the center of the disk is shown below each pattern.

Fig. 5
Fig. 5

Dark-field images of a polymer bead taken at 1.5 K. Images (a) and (b) were taken by the reflecting objective of f = 2   mm (the same as shown in Fig. 3). (c) and (d) were taken by the objective of f = 4   mm . The images taken by the two objectives are compared at a wavelength of λ = 400   nm in the left column of (a) and (c) and are compared at λ = 800   nm in the right column of (b) and (d). The origin was set to the center of the image taken at λ = 400   nm . The cross section through the center of the disk is shown below each image.

Fig. 6
Fig. 6

Axial chromatic aberration of the reflecting objective of (a) f = 2 and (b) 4 mm. From the image of a polymer bead, the intensity contained in a circle of the same diameter as the first dark ring of the Fraunhofer diffraction pattern is plotted as a function of the distance between the objective and the sample ( Δ z ) . The distance between the peaks of the two curves of λ = 360 and 980 nm represents the axial chromatic aberration. The measurements were made at 296 K.

Fig. 7
Fig. 7

Transmission images of a Ronchi-ruling slide glass taken with the reflecting objective of f = 2   mm . A part of the Ronchi ruling having the area of 42.6 μ m × 133.5 μ m was imaged at two different wavelengths of (a) λ = 360 and (b) 785 nm. The measurements were made at 296 K.

Metrics