Abstract

The Abney effect refers to changes in the hue of lights as they are desaturated. Normally the purity is varied by desaturating with a fixed spectrum. Mizokami et al. [J. Vis. 6, 996 (2006) [CrossRef]  ] instead varied purity by using Gaussian spectra and increasing their bandwidth. Under these conditions the hues of lights at short and medium wavelengths tended to remain constant and thus were tied to a fixed property of the stimulus such as the spectral peak, possibly reflecting a compensation for the spectral filtering effects of the eye. Here we test this account more completely by comparing constant hue loci across a wide range of wavelengths and between the fovea and periphery. Purity was varied by adding either a fixed spectrum or by varying the spectral bandwidth, using an Agile Light Source capable of generating arbitrary spectra. For both types of spectra, hue loci were approximated by the Gaussian model at short and medium wavelengths, though the model failed to predict the precise form of the hue changes or the differences between the fovea and periphery. Our results suggest that a Gaussian model provides a useful heuristic for predicting constant hue loci and the form of the Abney effect at short and medium wavelengths and may approximate the inferences underlying the representation of hue in the visual system.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Abney, “On the changes in hue of spectrum colors by dilution with white light,” Proc. R. Soc. Lond. 82, 120–127 (1909).
  2. H. Westphal, “Unmittelbare Bestimmung der Urfarben,” Z. Sinnephysiologie 44, 479–486 (1909).
  3. M. Ayama, T. Nakatsue, and P. K. Kaiser, “Constant hue loci of unique and binary balanced hues at 10, 100, and 1000 Td,” J. Opt. Soc. Am. A 4, 1136–1144 (1987).
  4. S. A. Burns, A. E. Elsner, J. Pokorny, and V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
    [CrossRef]
  5. M. Ikeda and I. Uehira, “Unique hue loci and implications,” Color Res. Appl. 14, 318–324 (1989).
    [CrossRef]
  6. T. D. Kulp and K. Fuld, “The prediction of hue and saturation for non-spectral lights,” Vis. Res. 35, 2967–2983 (1995).
    [CrossRef]
  7. W. Kurtenbach, C. E. Sternheim, and L. Spillmann, “Change in hue of spectral colors by dilution with white light (Abney effect),” J. Opt. Soc. Am. A 1, 365–372 (1984).
    [CrossRef]
  8. R. D. Pridmore, “Effect of purity on hue (Abney effect) in various conditions,” Color Res. Appl. 32, 25–39 (2007).
    [CrossRef]
  9. J. Larimer, “Opponent-process additivity—I: red–green equilibria,” Vis. Res. 14, 1127–1140 (1974).
    [CrossRef]
  10. J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity. II. Yellow/blue equilibria and nonlinear models,” Vis. Res. 15, 723–731 (1975).
    [CrossRef]
  11. Y. Mizokami, J. S. Werner, M. A. Crognale, and M. A. Webster, “Nonlinearities in color coding: compensating color appearance for the eye’s spectral sensitivity,” J. Vision 6, 996–1007 (2006).
    [CrossRef]
  12. D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Investig. Ophthalmol. Vis. Sci. 25, 674–685 (1984).
  13. M. A. Crognale, M. A. Webster, and A. Fong, “Application of digital micromirror devices to vision science: shaping the spectrum of stimuli,” Proc. SPIE 7210, paper 7210-4 (2009).
    [CrossRef]
  14. V. Bonnardel, H. Bellemare, and J. D. Mollon, “Measurements of human sensitivity to comb-filtered spectra,” Vis. Res. 36, 2713–2720 (1996).
    [CrossRef]
  15. J. D. Mollon, “Specifying, generating and measuring colours,” in Vision Research: A Practical Guide to Laboratory Methods, J. Robson and R. Carpenter, eds. (Oxford University, 1999).
  16. B. R. Wooten, B. R. Hammond, R. I. Land, and D. M. Snodderly, “A practical method for measuring macular pigment optical density,” Investig. Ophthalmol. Vis. Sci. 40, 2481–2489 (1999).
  17. J. S. Werner and B. E. Schefrin, “Loci of achromatic points throughout the life span,” J. Opt. Soc. Am. A 10, 1509–1516 (1993).
    [CrossRef]
  18. D. Beer, J. Wortman, G. Horwitz, and D. MacLeod, “Compensation of white for macular filtering,” J. Vision 5, 282a (2005), abstract.
    [CrossRef]
  19. M. A. Webster and D. Leonard, “Adaptation and perceptual norms in color vision,” J. Opt. Soc. Am. A 25, 2817–2825 (2008).
    [CrossRef]
  20. B. E. Schefrin and J. S. Werner, “Loci of spectral unique hues throughout the life span,” J. Opt. Soc. Am. A 7, 305–311 (1990).
    [CrossRef]
  21. M. A. Webster, K. Halen, A. J. Meyers, P. Winkler, and J. S. Werner, “Colour appearance and compensation in the near periphery,” Proc. R. Soc. Lond. Ser. B 277, 1817–1825 (2010).
    [CrossRef]
  22. F. Long, Z. Yang, and D. Purves, “Spectral statistics in natural scenes predict hue, saturation, and brightness,” Proc. Natl. Acad. Sci. USA 103, 6013–6018 (2006).
    [CrossRef]
  23. M. A. Webster and D. I. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
    [CrossRef]
  24. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
    [CrossRef]
  25. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
    [CrossRef]
  26. G. Jordan and J. D. Mollon, “Rayleigh matches and unique green,” Vis. Res. 35, 613–620 (1995).
    [CrossRef]
  27. D. I. A. MacLeod and J. Golz, “A computational analysis of colour constancy,” in Colour Perception: Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003), pp. 205–242.
  28. Y. Mizokami and M. A. Webster, “Are Gaussian spectra a viable perceptual assumption in color appearance?” J. Opt. Soc. Am. A 29, A10–A18 (2012).
    [CrossRef]

2012 (1)

2010 (1)

M. A. Webster, K. Halen, A. J. Meyers, P. Winkler, and J. S. Werner, “Colour appearance and compensation in the near periphery,” Proc. R. Soc. Lond. Ser. B 277, 1817–1825 (2010).
[CrossRef]

2009 (1)

M. A. Crognale, M. A. Webster, and A. Fong, “Application of digital micromirror devices to vision science: shaping the spectrum of stimuli,” Proc. SPIE 7210, paper 7210-4 (2009).
[CrossRef]

2008 (1)

2007 (1)

R. D. Pridmore, “Effect of purity on hue (Abney effect) in various conditions,” Color Res. Appl. 32, 25–39 (2007).
[CrossRef]

2006 (2)

Y. Mizokami, J. S. Werner, M. A. Crognale, and M. A. Webster, “Nonlinearities in color coding: compensating color appearance for the eye’s spectral sensitivity,” J. Vision 6, 996–1007 (2006).
[CrossRef]

F. Long, Z. Yang, and D. Purves, “Spectral statistics in natural scenes predict hue, saturation, and brightness,” Proc. Natl. Acad. Sci. USA 103, 6013–6018 (2006).
[CrossRef]

2005 (2)

D. Beer, J. Wortman, G. Horwitz, and D. MacLeod, “Compensation of white for macular filtering,” J. Vision 5, 282a (2005), abstract.
[CrossRef]

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

1999 (2)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

B. R. Wooten, B. R. Hammond, R. I. Land, and D. M. Snodderly, “A practical method for measuring macular pigment optical density,” Investig. Ophthalmol. Vis. Sci. 40, 2481–2489 (1999).

1996 (1)

V. Bonnardel, H. Bellemare, and J. D. Mollon, “Measurements of human sensitivity to comb-filtered spectra,” Vis. Res. 36, 2713–2720 (1996).
[CrossRef]

1995 (2)

T. D. Kulp and K. Fuld, “The prediction of hue and saturation for non-spectral lights,” Vis. Res. 35, 2967–2983 (1995).
[CrossRef]

G. Jordan and J. D. Mollon, “Rayleigh matches and unique green,” Vis. Res. 35, 613–620 (1995).
[CrossRef]

1993 (1)

1990 (1)

1989 (1)

M. Ikeda and I. Uehira, “Unique hue loci and implications,” Color Res. Appl. 14, 318–324 (1989).
[CrossRef]

1988 (1)

1987 (1)

1984 (3)

S. A. Burns, A. E. Elsner, J. Pokorny, and V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

W. Kurtenbach, C. E. Sternheim, and L. Spillmann, “Change in hue of spectral colors by dilution with white light (Abney effect),” J. Opt. Soc. Am. A 1, 365–372 (1984).
[CrossRef]

D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Investig. Ophthalmol. Vis. Sci. 25, 674–685 (1984).

1975 (1)

J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity. II. Yellow/blue equilibria and nonlinear models,” Vis. Res. 15, 723–731 (1975).
[CrossRef]

1974 (1)

J. Larimer, “Opponent-process additivity—I: red–green equilibria,” Vis. Res. 14, 1127–1140 (1974).
[CrossRef]

1909 (2)

W. Abney, “On the changes in hue of spectrum colors by dilution with white light,” Proc. R. Soc. Lond. 82, 120–127 (1909).

H. Westphal, “Unmittelbare Bestimmung der Urfarben,” Z. Sinnephysiologie 44, 479–486 (1909).

Abney, W.

W. Abney, “On the changes in hue of spectrum colors by dilution with white light,” Proc. R. Soc. Lond. 82, 120–127 (1909).

Auran, J. D.

D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Investig. Ophthalmol. Vis. Sci. 25, 674–685 (1984).

Ayama, M.

Beer, D.

D. Beer, J. Wortman, G. Horwitz, and D. MacLeod, “Compensation of white for macular filtering,” J. Vision 5, 282a (2005), abstract.
[CrossRef]

Bellemare, H.

V. Bonnardel, H. Bellemare, and J. D. Mollon, “Measurements of human sensitivity to comb-filtered spectra,” Vis. Res. 36, 2713–2720 (1996).
[CrossRef]

Bonnardel, V.

V. Bonnardel, H. Bellemare, and J. D. Mollon, “Measurements of human sensitivity to comb-filtered spectra,” Vis. Res. 36, 2713–2720 (1996).
[CrossRef]

Burns, S. A.

S. A. Burns, A. E. Elsner, J. Pokorny, and V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

Carroll, J.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

Cicerone, C. M.

J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity. II. Yellow/blue equilibria and nonlinear models,” Vis. Res. 15, 723–731 (1975).
[CrossRef]

Crognale, M. A.

M. A. Crognale, M. A. Webster, and A. Fong, “Application of digital micromirror devices to vision science: shaping the spectrum of stimuli,” Proc. SPIE 7210, paper 7210-4 (2009).
[CrossRef]

Y. Mizokami, J. S. Werner, M. A. Crognale, and M. A. Webster, “Nonlinearities in color coding: compensating color appearance for the eye’s spectral sensitivity,” J. Vision 6, 996–1007 (2006).
[CrossRef]

Delori, F. C.

D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Investig. Ophthalmol. Vis. Sci. 25, 674–685 (1984).

Elsner, A. E.

S. A. Burns, A. E. Elsner, J. Pokorny, and V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

Fong, A.

M. A. Crognale, M. A. Webster, and A. Fong, “Application of digital micromirror devices to vision science: shaping the spectrum of stimuli,” Proc. SPIE 7210, paper 7210-4 (2009).
[CrossRef]

Fuld, K.

T. D. Kulp and K. Fuld, “The prediction of hue and saturation for non-spectral lights,” Vis. Res. 35, 2967–2983 (1995).
[CrossRef]

Golz, J.

D. I. A. MacLeod and J. Golz, “A computational analysis of colour constancy,” in Colour Perception: Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003), pp. 205–242.

Halen, K.

M. A. Webster, K. Halen, A. J. Meyers, P. Winkler, and J. S. Werner, “Colour appearance and compensation in the near periphery,” Proc. R. Soc. Lond. Ser. B 277, 1817–1825 (2010).
[CrossRef]

Hammond, B. R.

B. R. Wooten, B. R. Hammond, R. I. Land, and D. M. Snodderly, “A practical method for measuring macular pigment optical density,” Investig. Ophthalmol. Vis. Sci. 40, 2481–2489 (1999).

Hofer, H.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

Horwitz, G.

D. Beer, J. Wortman, G. Horwitz, and D. MacLeod, “Compensation of white for macular filtering,” J. Vision 5, 282a (2005), abstract.
[CrossRef]

Ikeda, M.

M. Ikeda and I. Uehira, “Unique hue loci and implications,” Color Res. Appl. 14, 318–324 (1989).
[CrossRef]

Jordan, G.

G. Jordan and J. D. Mollon, “Rayleigh matches and unique green,” Vis. Res. 35, 613–620 (1995).
[CrossRef]

Kaiser, P. K.

Krantz, D. H.

J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity. II. Yellow/blue equilibria and nonlinear models,” Vis. Res. 15, 723–731 (1975).
[CrossRef]

Kulp, T. D.

T. D. Kulp and K. Fuld, “The prediction of hue and saturation for non-spectral lights,” Vis. Res. 35, 2967–2983 (1995).
[CrossRef]

Kurtenbach, W.

Land, R. I.

B. R. Wooten, B. R. Hammond, R. I. Land, and D. M. Snodderly, “A practical method for measuring macular pigment optical density,” Investig. Ophthalmol. Vis. Sci. 40, 2481–2489 (1999).

Larimer, J.

J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity. II. Yellow/blue equilibria and nonlinear models,” Vis. Res. 15, 723–731 (1975).
[CrossRef]

J. Larimer, “Opponent-process additivity—I: red–green equilibria,” Vis. Res. 14, 1127–1140 (1974).
[CrossRef]

Leonard, D.

Long, F.

F. Long, Z. Yang, and D. Purves, “Spectral statistics in natural scenes predict hue, saturation, and brightness,” Proc. Natl. Acad. Sci. USA 103, 6013–6018 (2006).
[CrossRef]

MacLeod, D.

D. Beer, J. Wortman, G. Horwitz, and D. MacLeod, “Compensation of white for macular filtering,” J. Vision 5, 282a (2005), abstract.
[CrossRef]

MacLeod, D. I.

MacLeod, D. I. A.

D. I. A. MacLeod and J. Golz, “A computational analysis of colour constancy,” in Colour Perception: Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003), pp. 205–242.

Meyers, A. J.

M. A. Webster, K. Halen, A. J. Meyers, P. Winkler, and J. S. Werner, “Colour appearance and compensation in the near periphery,” Proc. R. Soc. Lond. Ser. B 277, 1817–1825 (2010).
[CrossRef]

Mizokami, Y.

Y. Mizokami and M. A. Webster, “Are Gaussian spectra a viable perceptual assumption in color appearance?” J. Opt. Soc. Am. A 29, A10–A18 (2012).
[CrossRef]

Y. Mizokami, J. S. Werner, M. A. Crognale, and M. A. Webster, “Nonlinearities in color coding: compensating color appearance for the eye’s spectral sensitivity,” J. Vision 6, 996–1007 (2006).
[CrossRef]

Mollon, J. D.

V. Bonnardel, H. Bellemare, and J. D. Mollon, “Measurements of human sensitivity to comb-filtered spectra,” Vis. Res. 36, 2713–2720 (1996).
[CrossRef]

G. Jordan and J. D. Mollon, “Rayleigh matches and unique green,” Vis. Res. 35, 613–620 (1995).
[CrossRef]

J. D. Mollon, “Specifying, generating and measuring colours,” in Vision Research: A Practical Guide to Laboratory Methods, J. Robson and R. Carpenter, eds. (Oxford University, 1999).

Nakatsue, T.

Neitz, J.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

Neitz, M.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

Pokorny, J.

S. A. Burns, A. E. Elsner, J. Pokorny, and V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

Pridmore, R. D.

R. D. Pridmore, “Effect of purity on hue (Abney effect) in various conditions,” Color Res. Appl. 32, 25–39 (2007).
[CrossRef]

Purves, D.

F. Long, Z. Yang, and D. Purves, “Spectral statistics in natural scenes predict hue, saturation, and brightness,” Proc. Natl. Acad. Sci. USA 103, 6013–6018 (2006).
[CrossRef]

Roorda, A.

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

Schefrin, B. E.

Smith, V. C.

S. A. Burns, A. E. Elsner, J. Pokorny, and V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

Snodderly, D. M.

B. R. Wooten, B. R. Hammond, R. I. Land, and D. M. Snodderly, “A practical method for measuring macular pigment optical density,” Investig. Ophthalmol. Vis. Sci. 40, 2481–2489 (1999).

D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Investig. Ophthalmol. Vis. Sci. 25, 674–685 (1984).

Spillmann, L.

Sternheim, C. E.

Uehira, I.

M. Ikeda and I. Uehira, “Unique hue loci and implications,” Color Res. Appl. 14, 318–324 (1989).
[CrossRef]

Webster, M. A.

Y. Mizokami and M. A. Webster, “Are Gaussian spectra a viable perceptual assumption in color appearance?” J. Opt. Soc. Am. A 29, A10–A18 (2012).
[CrossRef]

M. A. Webster, K. Halen, A. J. Meyers, P. Winkler, and J. S. Werner, “Colour appearance and compensation in the near periphery,” Proc. R. Soc. Lond. Ser. B 277, 1817–1825 (2010).
[CrossRef]

M. A. Crognale, M. A. Webster, and A. Fong, “Application of digital micromirror devices to vision science: shaping the spectrum of stimuli,” Proc. SPIE 7210, paper 7210-4 (2009).
[CrossRef]

M. A. Webster and D. Leonard, “Adaptation and perceptual norms in color vision,” J. Opt. Soc. Am. A 25, 2817–2825 (2008).
[CrossRef]

Y. Mizokami, J. S. Werner, M. A. Crognale, and M. A. Webster, “Nonlinearities in color coding: compensating color appearance for the eye’s spectral sensitivity,” J. Vision 6, 996–1007 (2006).
[CrossRef]

M. A. Webster and D. I. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
[CrossRef]

Werner, J. S.

M. A. Webster, K. Halen, A. J. Meyers, P. Winkler, and J. S. Werner, “Colour appearance and compensation in the near periphery,” Proc. R. Soc. Lond. Ser. B 277, 1817–1825 (2010).
[CrossRef]

Y. Mizokami, J. S. Werner, M. A. Crognale, and M. A. Webster, “Nonlinearities in color coding: compensating color appearance for the eye’s spectral sensitivity,” J. Vision 6, 996–1007 (2006).
[CrossRef]

J. S. Werner and B. E. Schefrin, “Loci of achromatic points throughout the life span,” J. Opt. Soc. Am. A 10, 1509–1516 (1993).
[CrossRef]

B. E. Schefrin and J. S. Werner, “Loci of spectral unique hues throughout the life span,” J. Opt. Soc. Am. A 7, 305–311 (1990).
[CrossRef]

Westphal, H.

H. Westphal, “Unmittelbare Bestimmung der Urfarben,” Z. Sinnephysiologie 44, 479–486 (1909).

Williams, D. R.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

Winkler, P.

M. A. Webster, K. Halen, A. J. Meyers, P. Winkler, and J. S. Werner, “Colour appearance and compensation in the near periphery,” Proc. R. Soc. Lond. Ser. B 277, 1817–1825 (2010).
[CrossRef]

Wooten, B. R.

B. R. Wooten, B. R. Hammond, R. I. Land, and D. M. Snodderly, “A practical method for measuring macular pigment optical density,” Investig. Ophthalmol. Vis. Sci. 40, 2481–2489 (1999).

Wortman, J.

D. Beer, J. Wortman, G. Horwitz, and D. MacLeod, “Compensation of white for macular filtering,” J. Vision 5, 282a (2005), abstract.
[CrossRef]

Yang, Z.

F. Long, Z. Yang, and D. Purves, “Spectral statistics in natural scenes predict hue, saturation, and brightness,” Proc. Natl. Acad. Sci. USA 103, 6013–6018 (2006).
[CrossRef]

Color Res. Appl. (2)

M. Ikeda and I. Uehira, “Unique hue loci and implications,” Color Res. Appl. 14, 318–324 (1989).
[CrossRef]

R. D. Pridmore, “Effect of purity on hue (Abney effect) in various conditions,” Color Res. Appl. 32, 25–39 (2007).
[CrossRef]

Investig. Ophthalmol. Vis. Sci. (2)

D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Investig. Ophthalmol. Vis. Sci. 25, 674–685 (1984).

B. R. Wooten, B. R. Hammond, R. I. Land, and D. M. Snodderly, “A practical method for measuring macular pigment optical density,” Investig. Ophthalmol. Vis. Sci. 40, 2481–2489 (1999).

J. Neurosci. (1)

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

J. Opt. Soc. Am. A (7)

J. Vision (2)

Y. Mizokami, J. S. Werner, M. A. Crognale, and M. A. Webster, “Nonlinearities in color coding: compensating color appearance for the eye’s spectral sensitivity,” J. Vision 6, 996–1007 (2006).
[CrossRef]

D. Beer, J. Wortman, G. Horwitz, and D. MacLeod, “Compensation of white for macular filtering,” J. Vision 5, 282a (2005), abstract.
[CrossRef]

Nature (1)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

F. Long, Z. Yang, and D. Purves, “Spectral statistics in natural scenes predict hue, saturation, and brightness,” Proc. Natl. Acad. Sci. USA 103, 6013–6018 (2006).
[CrossRef]

Proc. R. Soc. Lond. (1)

W. Abney, “On the changes in hue of spectrum colors by dilution with white light,” Proc. R. Soc. Lond. 82, 120–127 (1909).

Proc. R. Soc. Lond. Ser. B (1)

M. A. Webster, K. Halen, A. J. Meyers, P. Winkler, and J. S. Werner, “Colour appearance and compensation in the near periphery,” Proc. R. Soc. Lond. Ser. B 277, 1817–1825 (2010).
[CrossRef]

Proc. SPIE (1)

M. A. Crognale, M. A. Webster, and A. Fong, “Application of digital micromirror devices to vision science: shaping the spectrum of stimuli,” Proc. SPIE 7210, paper 7210-4 (2009).
[CrossRef]

Vis. Res. (6)

V. Bonnardel, H. Bellemare, and J. D. Mollon, “Measurements of human sensitivity to comb-filtered spectra,” Vis. Res. 36, 2713–2720 (1996).
[CrossRef]

S. A. Burns, A. E. Elsner, J. Pokorny, and V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

J. Larimer, “Opponent-process additivity—I: red–green equilibria,” Vis. Res. 14, 1127–1140 (1974).
[CrossRef]

J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity. II. Yellow/blue equilibria and nonlinear models,” Vis. Res. 15, 723–731 (1975).
[CrossRef]

T. D. Kulp and K. Fuld, “The prediction of hue and saturation for non-spectral lights,” Vis. Res. 35, 2967–2983 (1995).
[CrossRef]

G. Jordan and J. D. Mollon, “Rayleigh matches and unique green,” Vis. Res. 35, 613–620 (1995).
[CrossRef]

Z. Sinnephysiologie (1)

H. Westphal, “Unmittelbare Bestimmung der Urfarben,” Z. Sinnephysiologie 44, 479–486 (1909).

Other (2)

J. D. Mollon, “Specifying, generating and measuring colours,” in Vision Research: A Practical Guide to Laboratory Methods, J. Robson and R. Carpenter, eds. (Oxford University, 1999).

D. I. A. MacLeod and J. Golz, “A computational analysis of colour constancy,” in Colour Perception: Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003), pp. 205–242.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Comparison of requested and generated Gaussian spectra with the OL 490 light source.

Fig. 2.
Fig. 2.

Schematic examples of the two types of stimuli tested. (a) Spectra that varied as a Gaussian but differed in bandwidth. (b) Spectra composed of two components—a single peak wavelength of variable height mixed with a fixed pair of complementary wavelengths providing a desaturating white.

Fig. 3.
Fig. 3.

Representative CIE 1931 chromaticities of the Gaussian (green) and Abney (black) spectra.

Fig. 4.
Fig. 4.

Illustration of the Abney effect. The center spot shows the undiluted blue from the monitor, while the corner spots are a mixture of equal luminances of the blue and the gray background. Note that the corner spots appear more purple and that the spots may appear to change in hue when directly fixated. The effect is best seen from a distance where each spot subtends 1°.

Fig. 5.
Fig. 5.

Average observer settings for Gaussian stimuli with bandwidths of 25, 50, and 100 nm. Symbols plot the peak wavelengths (connected symbols) at three bandwidths that were chosen to match the hue of the reference bandwidth of 75 nm (unconnected symbols at right). Solid lines represent foveal settings, and dashed lines represent peripheral settings. Error bars represent the standard error of the mean and where not shown are smaller than the symbols. Tukey significance columns are for the effects of observer, eccentricity, and bandwidth at each wavelength; *, p<0.05; **, p<0.01; ***, p<0.001; ns, not significant. The interaction was not significant at any wavelength.

Fig. 6.
Fig. 6.

Shifts in observer settings at each matching bandwidth as a function of the reference peak wavelength. Positive numbers on the Y axis indicate a shift toward longer wavelengths when the narrower-band light is shown. Lines indicate the predicted pattern if matches are made by maintaining a constant spectral peak (horizontal line, constant prediction for all conditions) or by maintaining constant cone ratios (linear predictions, shown for each stimulus bandwidth). Labels below each set of matches indicate whether the observed matches were better fit by the Gaussian prediction (G) or the linear cone ratios (L); ns, errors of prediction in the two models did not significantly differ.

Fig. 7.
Fig. 7.

Average observers’ settings for hue matches with the Abney spectra. Unconnected symbols represent the dominant wavelength of the narrowband reference light; corresponding lines show settings for four purity levels of the desaturated matching light, corresponding to the relative intensity of the chromatic component of the three-primary spectrum (with 100% corresponding to the highest saturation). Foveal settings are represented by solid lines and peripheral settings by dashed lines. Error bars represent the standard error of the mean. Significance columns are for the effects of observer, eccentricity, and relative purity at each wavelength; *, p<0.05; **, p<0.01; ***, p<0.001; ns, not significant.

Fig. 8.
Fig. 8.

Shifts in the matching wavelength chosen at each saturation level in the Abney stimuli as a function of the reference peak wavelength. Positive numbers on the Y axis indicate a shift toward longer wavelengths when the narrower-band light is shown. Curves indicate the predicted pattern if matches preserve constant cone ratios (horizontal line, constant prediction for all conditions) or preserve constant spectral peaks of Gaussian spectra with the same chromaticity (Gaussian predictions, shown for each stimulus bandwidth). Labels below each set of matches indicate whether the observed matches were better fit by the Gaussian prediction (G) or the linear cone ratios (L); ns, errors of prediction in two models did not significantly differ.

Fig. 9.
Fig. 9.

(a) Predicted Abney effects for observers with different densities of macular pigment (assuming each observer chooses the cone ratios such that constant hues correspond to constant peaks in Gaussian spectra). The three curves show the predictions assuming no macular pigment (e.g., the periphery, red circles) or a peak density of 0.31 (low macular pigment, blue triangles) or 0.76 (high macular pigment, green squares). (b) Differences in peak wavelength chosen between the fovea and periphery predicted by the difference in macular pigment, as a function of the reference wavelength. Predictions are shown for two levels of macular pigment density (high or low) and for two different saturation levels of the stimuli corresponding to equivalent Gaussian spectra with a bandwidth of 100 or 300 nm.

Fig. 10.
Fig. 10.

Observed differences in the magnitude of foveal and peripheral hue shifts for the Abney spectra. Positive differences correspond to larger changes in peak wavelength in the fovea. Each panel plots the results for a single observer, with the different lines corresponding to the different purities of the matching stimulus (as indicated by the percent intensity of the variable matching component).

Metrics