Abstract

The cone contrasts carrying different dimensions of color vision vary greatly in magnitude, yet the perceived contrast of color and luminance in the world appears similar. We examined how this perceptual balance is adjusted by adaptation to the contrast in images. Observers set the level of L vs. M and S vs. LM contrast in 1/f noise images to match the perceived strength of a fixed level of luminance contrast. The perceptual balance of color in the images was roughly consistent with the range of contrast characteristic of natural images. Relative perceived contrast could be strongly biased by brief prior exposure to images with lower or higher levels of chromatic contrast. Similar adaptation effects were found for luminance contrast in images of natural scenes. For both, observers reliably chose the contrast balance that appeared correct, and these choices were rapidly recalibrated by adaptation. This recalibration of the norm for contrast could reflect both changes in sensitivity and shifts in criterion. Our results are consistent with the possibility that color mechanisms adjust the range of their responses to match the range of signals in the environment, and that contrast adaptation plays an important role in these adjustments.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. Lond. B 220, 89–113 (1983).
    [CrossRef]
  2. D. L. Ruderman, T. W. Cronin, and C. C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998).
    [CrossRef]
  3. L. T. Maloney, “Physics-based approaches to modeling surface color perception,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge University, 1999), pp. 387–416.
  4. D. I. A. MacLeod, “Colour discrimination, colour constancy, and natural scene statistics (the Verriest lecture),” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 189–217.
  5. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
    [CrossRef]
  6. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
    [CrossRef]
  7. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
    [CrossRef]
  8. S. Laughlin, “A simple coding procedure enhances a neuron’s information capacity,” Z. Naturforsch. C 36, 910–912 (1981).
  9. A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, and R. T. Eskew, “Colour is what the eye sees best,” Nature 361, 348–350 (1993).
    [CrossRef]
  10. K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
  11. G. R. Cole, T. Hine, and W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993).
    [CrossRef]
  12. R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000).
    [CrossRef]
  13. K. T. Mullen, S. O. Dumoulin, and R. F. Hess, “Color responses of the human lateral geniculate nucleus: selective amplification of S-cone signals between the lateral geniculate nucleus and primary visual cortex measured with high-field fMRI,” Eur. J. Neurosci. 28, 1911–1923 (2008).
    [CrossRef]
  14. B. E. Schefrin and J. S. Werner, “Loci of spectral unique hues throughout the life span,” J. Opt. Soc. Am. A 7, 305–311 (1990).
    [CrossRef]
  15. M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000).
    [CrossRef]
  16. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
    [CrossRef]
  17. J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
    [CrossRef]
  18. M. A. Webster, “Adaptation and visual coding,” J. Vis. 11 (5), 3 (2011).
    [CrossRef]
  19. C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).
  20. A. S. Gilinsky, “Orientation-specific effects of patterns of adapting light on visual acuity,” J. Opt. Soc. Am. 58, 13–18 (1968).
    [CrossRef]
  21. C. Blakemore, J. P. Muncey, and R. M. Ridley, “Stimulus specificity in the human visual system,” Vis. Res. 13, 1915–1931 (1973).
    [CrossRef]
  22. M. A. Georgeson, “The effect of spatial adaptation on perceived contrast,” Spat. Vis. 1, 103–112 (1985).
    [CrossRef]
  23. R. J. Snowden and S. T. Hammett, “Subtractive and divisive adaptation in the human visual system,” Nature 355, 248–250 (1992).
    [CrossRef]
  24. M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
    [CrossRef]
  25. P. J. Bex, S. G. Solomon, and S. C. Dakin, “Contrast sensitivity in natural scenes depends on edge as well as spatial frequency structure,” J. Vis. 9 (10), 1 (2009).
    [CrossRef]
  26. M. A. Webster and E. Miyahara, “Contrast adaptation and the spatial structure of natural images,” J. Opt. Soc. Am. A 14, 2355–2366 (1997).
    [CrossRef]
  27. M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997).
    [CrossRef]
  28. A. Bradley, E. Switkes, and K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vis. Res. 28, 841–856 (1988).
    [CrossRef]
  29. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
    [CrossRef]
  30. M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
    [CrossRef]
  31. M. A. Webster and D. Leonard, “Adaptation and perceptual norms in color vision,” J. Opt. Soc. Am. A 25, 2817–2825 (2008).
    [CrossRef]
  32. D. G. Albrecht and D. B. Hamilton, “Striate cortex of monkey and cat: contrast response function,” J. Neurophysiol. 48, 217–237 (1982).
  33. S. N. Yendrikhovskij, F. J. J. Blommaert, and H. de Ridder, “Color reproduction and the naturalness constraint,” Color Res. Appl. 24, 52–67 (1999).
    [CrossRef]
  34. E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7, 2032–2040 (1990).
    [CrossRef]
  35. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987).
    [CrossRef]
  36. C. A. Párraga, T. Troscianko, and D. J. Tolhurst, “Spatiochromatic properties of natural images and human vision,” Curr. Biol. 12, 483–487 (2002).
    [CrossRef]
  37. E. Switkes and M. A. Crognale, “Comparison of color and luminance contrast: apples versus oranges?” Vis. Res. 39, 1823–1831 (1999).
    [CrossRef]
  38. E. Switkes, “Contrast salience across three-dimensional chromoluminance space,” Vis. Res. 48, 1812–1819 (2008).
    [CrossRef]
  39. M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
    [CrossRef]
  40. M. A. Webster, Y. Mizokami, and S. M. Webster, “Seasonal variations in the color statistics of natural images,” Network, 213–233 (2007).
    [CrossRef]
  41. F. A. Kingdom, J. Bell, E. Gheorghiu, and G. Malkoc, “Chromatic variations suppress suprathreshold brightness variations,” J. Vis. 10 (10), 13 (2010).
    [CrossRef]
  42. D. H. Brainard, “Cone contrast and opponent modulation color spaces,” in Human Color Vision, Kaiser and R. M. Boynton, eds. (Optical Society of America, 1996), pp. 563–579.
  43. B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision DeficienciesC. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.
  44. B. Singer and M. D’Zmura, “Color contrast induction,” Vis. Res. 34, 3111–3126 (1994).
    [CrossRef]
  45. D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Vis. Neurosci. 9, 181–197 (1992).
    [CrossRef]
  46. C. Chubb, G. Sperling, and J. A. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
    [CrossRef]
  47. V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005).
    [CrossRef]
  48. J. S. Lauritzen and D. J. Tolhurst, “Contrast constancy in natural scenes in shadow or direct light: a proposed role for contrast-normalisation (non-specific suppression) in visual cortex,” Network 16, 151–173 (2005).
    [CrossRef]
  49. M. A. Webster, “Human colour perception and its adaptation,” Netw. Comput. Neural Syst. 7, 587–634 (1996).
    [CrossRef]
  50. A. Kohn, “Visual adaptation: physiology, mechanisms, and functional benefits,” J. Neurophysiol. 97, 3155–3164 (2007).
    [CrossRef]
  51. D. Chander and E. J. Chichilnisky, “Adaptation to temporal contrast in primate and salamander retina,” J. Neurosci. 21, 9904–9916 (2001).
  52. S. A. Baccus and M. Meister, “Fast and slow contrast adaptation in retinal circuitry,” Neuron 36, 909–919 (2002).
    [CrossRef]
  53. R. M. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Retin. Res. 3, 263–343 (1984).
    [CrossRef]
  54. S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, “Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997).
    [CrossRef]
  55. B. Wark, B. N. Lundstrom, and A. Fairhall, “Sensory adaptation,” Curr. Opin. Neurobiol. 17, 423–429 (2007).
    [CrossRef]
  56. S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
    [CrossRef]
  57. P. Zhang, M. Bao, M. Kwon, S. He, and S. A. Engel, “Effects of orientation-specific visual deprivation induced with altered reality,” Curr. Biol. 19, 1956–1960 (2009).
    [CrossRef]
  58. M. Kwon, G. E. Legge, F. Fang, A. M. Cheong, and S. He, “Adaptive changes in visual cortex following prolonged contrast reduction,” J. Vis. 9 (2), 20 (2009).
    [CrossRef]
  59. M. A. Hietanen, S. L. Cloherty, C. W. Clifford, and M. R. Ibbotson, “Differential changes in perceived contrast following contrast adaptation in humans,” Vis. Res. 50, 12–19 (2010).
    [CrossRef]
  60. I. Fine, D. I. MacLeod, and G. M. Boynton, “Surface segmentation based on the luminance and color statistics of natural scenes,” J. Opt. Soc. Am. A 20, 1283–1291 (2003).
    [CrossRef]
  61. T. Hansen and K. R. Gegenfurtner, “Independence of color and luminance edges in natural scenes,” Vis. Neurosci. 26, 35–49 (2009).
    [CrossRef]
  62. A. P. Johnson, F. A. Kingdom, and C. L. Baker, “Spatiochromatic statistics of natural scenes: first- and second-order information and their correlational structure,” J. Opt. Soc. Am. A 22, 2050–2059 (2005).
    [CrossRef]
  63. R. M. Boynton, M. M. Hayhoe, and D. I. A. MacLeod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” J. Mod. Opt. 24, 159–177 (1977).
    [CrossRef]
  64. R. T. Eskew, C. F. Stromeyer, C. J. Picotte, and R. E. Kronauer, “Detection uncertainty and the facilitation of chromatic detection by luminance contours,” J. Opt. Soc. Am. A 8, 394–403 (1991).
    [CrossRef]
  65. K. K. De Valois and E. Switkes, “Simultaneous masking interactions between chromatic and luminance gratings, ” J. Opt. Soc. Am. 73, 11–18 (1983).
    [CrossRef]
  66. E. Switkes, A. Bradley, and K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162(1988).
    [CrossRef]
  67. C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements,” Vis. Res. 40, 773–788 (2000).
    [CrossRef]
  68. K. T. Mullen and M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136–3151 (1994).
    [CrossRef]
  69. S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psych. 59, 143–166 (2008).
    [CrossRef]
  70. F. A. Kingdom and R. Kasrai, “Colour unmasks dark targets in complex displays,” Vis. Res. 46, 814–822 (2006).
    [CrossRef]
  71. G. E. Legge and J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
    [CrossRef]

2011 (1)

M. A. Webster, “Adaptation and visual coding,” J. Vis. 11 (5), 3 (2011).
[CrossRef]

2010 (2)

F. A. Kingdom, J. Bell, E. Gheorghiu, and G. Malkoc, “Chromatic variations suppress suprathreshold brightness variations,” J. Vis. 10 (10), 13 (2010).
[CrossRef]

M. A. Hietanen, S. L. Cloherty, C. W. Clifford, and M. R. Ibbotson, “Differential changes in perceived contrast following contrast adaptation in humans,” Vis. Res. 50, 12–19 (2010).
[CrossRef]

2009 (4)

P. Zhang, M. Bao, M. Kwon, S. He, and S. A. Engel, “Effects of orientation-specific visual deprivation induced with altered reality,” Curr. Biol. 19, 1956–1960 (2009).
[CrossRef]

M. Kwon, G. E. Legge, F. Fang, A. M. Cheong, and S. He, “Adaptive changes in visual cortex following prolonged contrast reduction,” J. Vis. 9 (2), 20 (2009).
[CrossRef]

T. Hansen and K. R. Gegenfurtner, “Independence of color and luminance edges in natural scenes,” Vis. Neurosci. 26, 35–49 (2009).
[CrossRef]

P. J. Bex, S. G. Solomon, and S. C. Dakin, “Contrast sensitivity in natural scenes depends on edge as well as spatial frequency structure,” J. Vis. 9 (10), 1 (2009).
[CrossRef]

2008 (4)

K. T. Mullen, S. O. Dumoulin, and R. F. Hess, “Color responses of the human lateral geniculate nucleus: selective amplification of S-cone signals between the lateral geniculate nucleus and primary visual cortex measured with high-field fMRI,” Eur. J. Neurosci. 28, 1911–1923 (2008).
[CrossRef]

E. Switkes, “Contrast salience across three-dimensional chromoluminance space,” Vis. Res. 48, 1812–1819 (2008).
[CrossRef]

S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psych. 59, 143–166 (2008).
[CrossRef]

M. A. Webster and D. Leonard, “Adaptation and perceptual norms in color vision,” J. Opt. Soc. Am. A 25, 2817–2825 (2008).
[CrossRef]

2007 (3)

M. A. Webster, Y. Mizokami, and S. M. Webster, “Seasonal variations in the color statistics of natural images,” Network, 213–233 (2007).
[CrossRef]

A. Kohn, “Visual adaptation: physiology, mechanisms, and functional benefits,” J. Neurophysiol. 97, 3155–3164 (2007).
[CrossRef]

B. Wark, B. N. Lundstrom, and A. Fairhall, “Sensory adaptation,” Curr. Opin. Neurobiol. 17, 423–429 (2007).
[CrossRef]

2006 (1)

F. A. Kingdom and R. Kasrai, “Colour unmasks dark targets in complex displays,” Vis. Res. 46, 814–822 (2006).
[CrossRef]

2005 (4)

A. P. Johnson, F. A. Kingdom, and C. L. Baker, “Spatiochromatic statistics of natural scenes: first- and second-order information and their correlational structure,” J. Opt. Soc. Am. A 22, 2050–2059 (2005).
[CrossRef]

V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005).
[CrossRef]

J. S. Lauritzen and D. J. Tolhurst, “Contrast constancy in natural scenes in shadow or direct light: a proposed role for contrast-normalisation (non-specific suppression) in visual cortex,” Network 16, 151–173 (2005).
[CrossRef]

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

2004 (1)

S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef]

2003 (1)

2002 (3)

S. A. Baccus and M. Meister, “Fast and slow contrast adaptation in retinal circuitry,” Neuron 36, 909–919 (2002).
[CrossRef]

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

C. A. Párraga, T. Troscianko, and D. J. Tolhurst, “Spatiochromatic properties of natural images and human vision,” Curr. Biol. 12, 483–487 (2002).
[CrossRef]

2001 (1)

D. Chander and E. J. Chichilnisky, “Adaptation to temporal contrast in primate and salamander retina,” J. Neurosci. 21, 9904–9916 (2001).

2000 (5)

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000).
[CrossRef]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000).
[CrossRef]

C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements,” Vis. Res. 40, 773–788 (2000).
[CrossRef]

1999 (3)

S. N. Yendrikhovskij, F. J. J. Blommaert, and H. de Ridder, “Color reproduction and the naturalness constraint,” Color Res. Appl. 24, 52–67 (1999).
[CrossRef]

E. Switkes and M. A. Crognale, “Comparison of color and luminance contrast: apples versus oranges?” Vis. Res. 39, 1823–1831 (1999).
[CrossRef]

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

1998 (1)

1997 (3)

M. A. Webster and E. Miyahara, “Contrast adaptation and the spatial structure of natural images,” J. Opt. Soc. Am. A 14, 2355–2366 (1997).
[CrossRef]

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, “Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997).
[CrossRef]

M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997).
[CrossRef]

1996 (1)

M. A. Webster, “Human colour perception and its adaptation,” Netw. Comput. Neural Syst. 7, 587–634 (1996).
[CrossRef]

1994 (3)

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

B. Singer and M. D’Zmura, “Color contrast induction,” Vis. Res. 34, 3111–3126 (1994).
[CrossRef]

K. T. Mullen and M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136–3151 (1994).
[CrossRef]

1993 (2)

G. R. Cole, T. Hine, and W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993).
[CrossRef]

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, and R. T. Eskew, “Colour is what the eye sees best,” Nature 361, 348–350 (1993).
[CrossRef]

1992 (2)

R. J. Snowden and S. T. Hammett, “Subtractive and divisive adaptation in the human visual system,” Nature 355, 248–250 (1992).
[CrossRef]

D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Vis. Neurosci. 9, 181–197 (1992).
[CrossRef]

1991 (3)

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef]

R. T. Eskew, C. F. Stromeyer, C. J. Picotte, and R. E. Kronauer, “Detection uncertainty and the facilitation of chromatic detection by luminance contours,” J. Opt. Soc. Am. A 8, 394–403 (1991).
[CrossRef]

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

1990 (2)

1989 (1)

C. Chubb, G. Sperling, and J. A. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
[CrossRef]

1988 (2)

E. Switkes, A. Bradley, and K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162(1988).
[CrossRef]

A. Bradley, E. Switkes, and K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vis. Res. 28, 841–856 (1988).
[CrossRef]

1987 (1)

1985 (2)

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

M. A. Georgeson, “The effect of spatial adaptation on perceived contrast,” Spat. Vis. 1, 103–112 (1985).
[CrossRef]

1984 (1)

R. M. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Retin. Res. 3, 263–343 (1984).
[CrossRef]

1983 (2)

G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. Lond. B 220, 89–113 (1983).
[CrossRef]

K. K. De Valois and E. Switkes, “Simultaneous masking interactions between chromatic and luminance gratings, ” J. Opt. Soc. Am. 73, 11–18 (1983).
[CrossRef]

1982 (2)

D. G. Albrecht and D. B. Hamilton, “Striate cortex of monkey and cat: contrast response function,” J. Neurophysiol. 48, 217–237 (1982).

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

1981 (1)

S. Laughlin, “A simple coding procedure enhances a neuron’s information capacity,” Z. Naturforsch. C 36, 910–912 (1981).

1980 (1)

1977 (1)

R. M. Boynton, M. M. Hayhoe, and D. I. A. MacLeod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” J. Mod. Opt. 24, 159–177 (1977).
[CrossRef]

1973 (1)

C. Blakemore, J. P. Muncey, and R. M. Ridley, “Stimulus specificity in the human visual system,” Vis. Res. 13, 1915–1931 (1973).
[CrossRef]

1969 (1)

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).

1968 (1)

Albrecht, D. G.

D. G. Albrecht and D. B. Hamilton, “Striate cortex of monkey and cat: contrast response function,” J. Neurophysiol. 48, 217–237 (1982).

Allen, K. A.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef]

Baccus, S. A.

S. A. Baccus and M. Meister, “Fast and slow contrast adaptation in retinal circuitry,” Neuron 36, 909–919 (2002).
[CrossRef]

Baker, C. L.

Bao, M.

P. Zhang, M. Bao, M. Kwon, S. He, and S. A. Engel, “Effects of orientation-specific visual deprivation induced with altered reality,” Curr. Biol. 19, 1956–1960 (2009).
[CrossRef]

Bell, J.

F. A. Kingdom, J. Bell, E. Gheorghiu, and G. Malkoc, “Chromatic variations suppress suprathreshold brightness variations,” J. Vis. 10 (10), 13 (2010).
[CrossRef]

Berry, M. J.

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, “Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997).
[CrossRef]

Bex, P. J.

P. J. Bex, S. G. Solomon, and S. C. Dakin, “Contrast sensitivity in natural scenes depends on edge as well as spatial frequency structure,” J. Vis. 9 (10), 1 (2009).
[CrossRef]

Bialek, W.

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, “Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997).
[CrossRef]

Blakemore, C.

C. Blakemore, J. P. Muncey, and R. M. Ridley, “Stimulus specificity in the human visual system,” Vis. Res. 13, 1915–1931 (1973).
[CrossRef]

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).

Blommaert, F. J. J.

S. N. Yendrikhovskij, F. J. J. Blommaert, and H. de Ridder, “Color reproduction and the naturalness constraint,” Color Res. Appl. 24, 52–67 (1999).
[CrossRef]

Bonin, V.

V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005).
[CrossRef]

Boynton, G. M.

Boynton, R. M.

R. M. Boynton, M. M. Hayhoe, and D. I. A. MacLeod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” J. Mod. Opt. 24, 159–177 (1977).
[CrossRef]

Bradley, A.

A. Bradley, E. Switkes, and K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vis. Res. 28, 841–856 (1988).
[CrossRef]

E. Switkes, A. Bradley, and K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162(1988).
[CrossRef]

Brainard, D. H.

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements,” Vis. Res. 40, 773–788 (2000).
[CrossRef]

D. H. Brainard, “Cone contrast and opponent modulation color spaces,” in Human Color Vision, Kaiser and R. M. Boynton, eds. (Optical Society of America, 1996), pp. 563–579.

Buchsbaum, G.

G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. Lond. B 220, 89–113 (1983).
[CrossRef]

Calderone, J. B.

Campbell, F. W.

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).

Carandini, M.

V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005).
[CrossRef]

Carroll, J.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

Chander, D.

D. Chander and E. J. Chichilnisky, “Adaptation to temporal contrast in primate and salamander retina,” J. Neurosci. 21, 9904–9916 (2001).

Chaparro, A.

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, and R. T. Eskew, “Colour is what the eye sees best,” Nature 361, 348–350 (1993).
[CrossRef]

Chen, C.

C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements,” Vis. Res. 40, 773–788 (2000).
[CrossRef]

Cheong, A. M.

M. Kwon, G. E. Legge, F. Fang, A. M. Cheong, and S. He, “Adaptive changes in visual cortex following prolonged contrast reduction,” J. Vis. 9 (2), 20 (2009).
[CrossRef]

Chiao, C. C.

Chichilnisky, E. J.

D. Chander and E. J. Chichilnisky, “Adaptation to temporal contrast in primate and salamander retina,” J. Neurosci. 21, 9904–9916 (2001).

Chubb, C.

C. Chubb, G. Sperling, and J. A. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
[CrossRef]

Clifford, C. W.

M. A. Hietanen, S. L. Cloherty, C. W. Clifford, and M. R. Ibbotson, “Differential changes in perceived contrast following contrast adaptation in humans,” Vis. Res. 50, 12–19 (2010).
[CrossRef]

Cloherty, S. L.

M. A. Hietanen, S. L. Cloherty, C. W. Clifford, and M. R. Ibbotson, “Differential changes in perceived contrast following contrast adaptation in humans,” Vis. Res. 50, 12–19 (2010).
[CrossRef]

Cole, G. R.

Cottaris, N. P.

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000).
[CrossRef]

Crognale, M. A.

E. Switkes and M. A. Crognale, “Comparison of color and luminance contrast: apples versus oranges?” Vis. Res. 39, 1823–1831 (1999).
[CrossRef]

Cronin, T. W.

Curcio, C. A.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef]

D’Zmura, M.

B. Singer and M. D’Zmura, “Color contrast induction,” Vis. Res. 34, 3111–3126 (1994).
[CrossRef]

Dakin, S. C.

P. J. Bex, S. G. Solomon, and S. C. Dakin, “Contrast sensitivity in natural scenes depends on edge as well as spatial frequency structure,” J. Vis. 9 (10), 1 (2009).
[CrossRef]

de Ridder, H.

S. N. Yendrikhovskij, F. J. J. Blommaert, and H. de Ridder, “Color reproduction and the naturalness constraint,” Color Res. Appl. 24, 52–67 (1999).
[CrossRef]

De Valois, K.

A. Bradley, E. Switkes, and K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vis. Res. 28, 841–856 (1988).
[CrossRef]

De Valois, K. K.

De Valois, R. L.

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000).
[CrossRef]

Dhruv, N. T.

S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef]

Dumoulin, S. O.

K. T. Mullen, S. O. Dumoulin, and R. F. Hess, “Color responses of the human lateral geniculate nucleus: selective amplification of S-cone signals between the lateral geniculate nucleus and primary visual cortex measured with high-field fMRI,” Eur. J. Neurosci. 28, 1911–1923 (2008).
[CrossRef]

Elfar, S. D.

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000).
[CrossRef]

Engel, S. A.

P. Zhang, M. Bao, M. Kwon, S. He, and S. A. Engel, “Effects of orientation-specific visual deprivation induced with altered reality,” Curr. Biol. 19, 1956–1960 (2009).
[CrossRef]

Enroth-Cugell, C.

R. M. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Retin. Res. 3, 263–343 (1984).
[CrossRef]

Eskew, R. T.

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, and R. T. Eskew, “Colour is what the eye sees best,” Nature 361, 348–350 (1993).
[CrossRef]

R. T. Eskew, C. F. Stromeyer, C. J. Picotte, and R. E. Kronauer, “Detection uncertainty and the facilitation of chromatic detection by luminance contours,” J. Opt. Soc. Am. A 8, 394–403 (1991).
[CrossRef]

Fairhall, A.

B. Wark, B. N. Lundstrom, and A. Fairhall, “Sensory adaptation,” Curr. Opin. Neurobiol. 17, 423–429 (2007).
[CrossRef]

Fang, F.

M. Kwon, G. E. Legge, F. Fang, A. M. Cheong, and S. He, “Adaptive changes in visual cortex following prolonged contrast reduction,” J. Vis. 9 (2), 20 (2009).
[CrossRef]

Field, D. J.

Fine, I.

Foley, J. M.

C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements,” Vis. Res. 40, 773–788 (2000).
[CrossRef]

G. E. Legge and J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
[CrossRef]

Frazor, R. A.

V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005).
[CrossRef]

Gegenfurtner, K. R.

T. Hansen and K. R. Gegenfurtner, “Independence of color and luminance edges in natural scenes,” Vis. Neurosci. 26, 35–49 (2009).
[CrossRef]

Geisler, W. S.

V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005).
[CrossRef]

Georgeson, M. A.

M. A. Georgeson, “The effect of spatial adaptation on perceived contrast,” Spat. Vis. 1, 103–112 (1985).
[CrossRef]

Gheorghiu, E.

F. A. Kingdom, J. Bell, E. Gheorghiu, and G. Malkoc, “Chromatic variations suppress suprathreshold brightness variations,” J. Vis. 10 (10), 13 (2010).
[CrossRef]

Gilinsky, A. S.

Gottschalk, A.

G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. Lond. B 220, 89–113 (1983).
[CrossRef]

Hamilton, D. B.

D. G. Albrecht and D. B. Hamilton, “Striate cortex of monkey and cat: contrast response function,” J. Neurophysiol. 48, 217–237 (1982).

Hammett, S. T.

R. J. Snowden and S. T. Hammett, “Subtractive and divisive adaptation in the human visual system,” Nature 355, 248–250 (1992).
[CrossRef]

Hansen, T.

T. Hansen and K. R. Gegenfurtner, “Independence of color and luminance edges in natural scenes,” Vis. Neurosci. 26, 35–49 (2009).
[CrossRef]

Hayhoe, M. M.

R. M. Boynton, M. M. Hayhoe, and D. I. A. MacLeod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” J. Mod. Opt. 24, 159–177 (1977).
[CrossRef]

He, S.

M. Kwon, G. E. Legge, F. Fang, A. M. Cheong, and S. He, “Adaptive changes in visual cortex following prolonged contrast reduction,” J. Vis. 9 (2), 20 (2009).
[CrossRef]

P. Zhang, M. Bao, M. Kwon, S. He, and S. A. Engel, “Effects of orientation-specific visual deprivation induced with altered reality,” Curr. Biol. 19, 1956–1960 (2009).
[CrossRef]

Heeger, D. J.

D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Vis. Neurosci. 9, 181–197 (1992).
[CrossRef]

Heeley, D. W.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Hess, R. F.

K. T. Mullen, S. O. Dumoulin, and R. F. Hess, “Color responses of the human lateral geniculate nucleus: selective amplification of S-cone signals between the lateral geniculate nucleus and primary visual cortex measured with high-field fMRI,” Eur. J. Neurosci. 28, 1911–1923 (2008).
[CrossRef]

Hietanen, M. A.

M. A. Hietanen, S. L. Cloherty, C. W. Clifford, and M. R. Ibbotson, “Differential changes in perceived contrast following contrast adaptation in humans,” Vis. Res. 50, 12–19 (2010).
[CrossRef]

Hine, T.

Hofer, H.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

Huang, E. P.

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, and R. T. Eskew, “Colour is what the eye sees best,” Nature 361, 348–350 (1993).
[CrossRef]

Hurley, J. B.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef]

Ibbotson, M. R.

M. A. Hietanen, S. L. Cloherty, C. W. Clifford, and M. R. Ibbotson, “Differential changes in perceived contrast following contrast adaptation in humans,” Vis. Res. 50, 12–19 (2010).
[CrossRef]

Jacobs, G. H.

Johnson, A. P.

Kasrai, R.

F. A. Kingdom and R. Kasrai, “Colour unmasks dark targets in complex displays,” Vis. Res. 46, 814–822 (2006).
[CrossRef]

Kingdom, F. A.

F. A. Kingdom, J. Bell, E. Gheorghiu, and G. Malkoc, “Chromatic variations suppress suprathreshold brightness variations,” J. Vis. 10 (10), 13 (2010).
[CrossRef]

S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psych. 59, 143–166 (2008).
[CrossRef]

F. A. Kingdom and R. Kasrai, “Colour unmasks dark targets in complex displays,” Vis. Res. 46, 814–822 (2006).
[CrossRef]

A. P. Johnson, F. A. Kingdom, and C. L. Baker, “Spatiochromatic statistics of natural scenes: first- and second-order information and their correlational structure,” J. Opt. Soc. Am. A 22, 2050–2059 (2005).
[CrossRef]

Klock, I. B.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef]

Kohn, A.

A. Kohn, “Visual adaptation: physiology, mechanisms, and functional benefits,” J. Neurophysiol. 97, 3155–3164 (2007).
[CrossRef]

Krauskopf, J.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Kronauer, R. E.

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, and R. T. Eskew, “Colour is what the eye sees best,” Nature 361, 348–350 (1993).
[CrossRef]

R. T. Eskew, C. F. Stromeyer, C. J. Picotte, and R. E. Kronauer, “Detection uncertainty and the facilitation of chromatic detection by luminance contours,” J. Opt. Soc. Am. A 8, 394–403 (1991).
[CrossRef]

Kwon, M.

M. Kwon, G. E. Legge, F. Fang, A. M. Cheong, and S. He, “Adaptive changes in visual cortex following prolonged contrast reduction,” J. Vis. 9 (2), 20 (2009).
[CrossRef]

P. Zhang, M. Bao, M. Kwon, S. He, and S. A. Engel, “Effects of orientation-specific visual deprivation induced with altered reality,” Curr. Biol. 19, 1956–1960 (2009).
[CrossRef]

Laughlin, S.

S. Laughlin, “A simple coding procedure enhances a neuron’s information capacity,” Z. Naturforsch. C 36, 910–912 (1981).

Lauritzen, J. S.

J. S. Lauritzen and D. J. Tolhurst, “Contrast constancy in natural scenes in shadow or direct light: a proposed role for contrast-normalisation (non-specific suppression) in visual cortex,” Network 16, 151–173 (2005).
[CrossRef]

Legge, G. E.

M. Kwon, G. E. Legge, F. Fang, A. M. Cheong, and S. He, “Adaptive changes in visual cortex following prolonged contrast reduction,” J. Vis. 9 (2), 20 (2009).
[CrossRef]

G. E. Legge and J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
[CrossRef]

Lennie, P.

S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef]

Leonard, D.

Lerea, C. L.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef]

Losada, M. A.

Lundstrom, B. N.

B. Wark, B. N. Lundstrom, and A. Fairhall, “Sensory adaptation,” Curr. Opin. Neurobiol. 17, 423–429 (2007).
[CrossRef]

MacLeod, D. I.

MacLeod, D. I. A.

R. M. Boynton, M. M. Hayhoe, and D. I. A. MacLeod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” J. Mod. Opt. 24, 159–177 (1977).
[CrossRef]

D. I. A. MacLeod, “Colour discrimination, colour constancy, and natural scene statistics (the Verriest lecture),” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 189–217.

Mahon, L. E.

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000).
[CrossRef]

Malkoc, G.

F. A. Kingdom, J. Bell, E. Gheorghiu, and G. Malkoc, “Chromatic variations suppress suprathreshold brightness variations,” J. Vis. 10 (10), 13 (2010).
[CrossRef]

M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000).
[CrossRef]

Maloney, L. T.

L. T. Maloney, “Physics-based approaches to modeling surface color perception,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge University, 1999), pp. 387–416.

Mante, V.

V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005).
[CrossRef]

McIlhagga, W.

Meister, M.

S. A. Baccus and M. Meister, “Fast and slow contrast adaptation in retinal circuitry,” Neuron 36, 909–919 (2002).
[CrossRef]

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, “Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997).
[CrossRef]

Metha, A.

Milam, A. H.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef]

Miyahara, E.

Mizokami, Y.

M. A. Webster, Y. Mizokami, and S. M. Webster, “Seasonal variations in the color statistics of natural images,” Network, 213–233 (2007).
[CrossRef]

Mollon, J. D.

M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997).
[CrossRef]

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision DeficienciesC. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.

Mullen, K. T.

K. T. Mullen, S. O. Dumoulin, and R. F. Hess, “Color responses of the human lateral geniculate nucleus: selective amplification of S-cone signals between the lateral geniculate nucleus and primary visual cortex measured with high-field fMRI,” Eur. J. Neurosci. 28, 1911–1923 (2008).
[CrossRef]

K. T. Mullen and M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136–3151 (1994).
[CrossRef]

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

Muncey, J. P.

C. Blakemore, J. P. Muncey, and R. M. Ridley, “Stimulus specificity in the human visual system,” Vis. Res. 13, 1915–1931 (1973).
[CrossRef]

Neitz, J.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

Neitz, M.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

Párraga, C. A.

C. A. Párraga, T. Troscianko, and D. J. Tolhurst, “Spatiochromatic properties of natural images and human vision,” Curr. Biol. 12, 483–487 (2002).
[CrossRef]

Peirce, J. W.

S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef]

Peli, E.

Picotte, C. J.

Raker, V. E.

Regan, B. C.

B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision DeficienciesC. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.

Ridley, R. M.

C. Blakemore, J. P. Muncey, and R. M. Ridley, “Stimulus specificity in the human visual system,” Vis. Res. 13, 1915–1931 (1973).
[CrossRef]

Roorda, A.

Ruderman, D. L.

Schefrin, B. E.

Shapley, R. M.

R. M. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Retin. Res. 3, 263–343 (1984).
[CrossRef]

Shevell, S. K.

S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psych. 59, 143–166 (2008).
[CrossRef]

Singer, B.

B. Singer and M. D’Zmura, “Color contrast induction,” Vis. Res. 34, 3111–3126 (1994).
[CrossRef]

Sloan, K. R.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef]

Smirnakis, S. M.

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, “Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997).
[CrossRef]

Snowden, R. J.

R. J. Snowden and S. T. Hammett, “Subtractive and divisive adaptation in the human visual system,” Nature 355, 248–250 (1992).
[CrossRef]

Solomon, J. A.

C. Chubb, G. Sperling, and J. A. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
[CrossRef]

Solomon, S. G.

P. J. Bex, S. G. Solomon, and S. C. Dakin, “Contrast sensitivity in natural scenes depends on edge as well as spatial frequency structure,” J. Vis. 9 (10), 1 (2009).
[CrossRef]

S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef]

Sperling, G.

C. Chubb, G. Sperling, and J. A. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
[CrossRef]

Stromeyer, C. F.

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, and R. T. Eskew, “Colour is what the eye sees best,” Nature 361, 348–350 (1993).
[CrossRef]

R. T. Eskew, C. F. Stromeyer, C. J. Picotte, and R. E. Kronauer, “Detection uncertainty and the facilitation of chromatic detection by luminance contours,” J. Opt. Soc. Am. A 8, 394–403 (1991).
[CrossRef]

Switkes, E.

E. Switkes, “Contrast salience across three-dimensional chromoluminance space,” Vis. Res. 48, 1812–1819 (2008).
[CrossRef]

E. Switkes and M. A. Crognale, “Comparison of color and luminance contrast: apples versus oranges?” Vis. Res. 39, 1823–1831 (1999).
[CrossRef]

E. Switkes, A. Bradley, and K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162(1988).
[CrossRef]

A. Bradley, E. Switkes, and K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vis. Res. 28, 841–856 (1988).
[CrossRef]

K. K. De Valois and E. Switkes, “Simultaneous masking interactions between chromatic and luminance gratings, ” J. Opt. Soc. Am. 73, 11–18 (1983).
[CrossRef]

Tolhurst, D. J.

J. S. Lauritzen and D. J. Tolhurst, “Contrast constancy in natural scenes in shadow or direct light: a proposed role for contrast-normalisation (non-specific suppression) in visual cortex,” Network 16, 151–173 (2005).
[CrossRef]

C. A. Párraga, T. Troscianko, and D. J. Tolhurst, “Spatiochromatic properties of natural images and human vision,” Curr. Biol. 12, 483–487 (2002).
[CrossRef]

Troscianko, T.

C. A. Párraga, T. Troscianko, and D. J. Tolhurst, “Spatiochromatic properties of natural images and human vision,” Curr. Biol. 12, 483–487 (2002).
[CrossRef]

Wark, B.

B. Wark, B. N. Lundstrom, and A. Fairhall, “Sensory adaptation,” Curr. Opin. Neurobiol. 17, 423–429 (2007).
[CrossRef]

Warland, D. K.

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, “Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997).
[CrossRef]

Webster, M. A.

M. A. Webster, “Adaptation and visual coding,” J. Vis. 11 (5), 3 (2011).
[CrossRef]

M. A. Webster and D. Leonard, “Adaptation and perceptual norms in color vision,” J. Opt. Soc. Am. A 25, 2817–2825 (2008).
[CrossRef]

M. A. Webster, Y. Mizokami, and S. M. Webster, “Seasonal variations in the color statistics of natural images,” Network, 213–233 (2007).
[CrossRef]

M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000).
[CrossRef]

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

M. A. Webster and E. Miyahara, “Contrast adaptation and the spatial structure of natural images,” J. Opt. Soc. Am. A 14, 2355–2366 (1997).
[CrossRef]

M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997).
[CrossRef]

M. A. Webster, “Human colour perception and its adaptation,” Netw. Comput. Neural Syst. 7, 587–634 (1996).
[CrossRef]

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

Webster, S. M.

M. A. Webster, Y. Mizokami, and S. M. Webster, “Seasonal variations in the color statistics of natural images,” Network, 213–233 (2007).
[CrossRef]

Werner, J. S.

Williams, D. R.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Wilson, J. A.

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000).
[CrossRef]

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

Yamauchi, Y.

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

Yendrikhovskij, S. N.

S. N. Yendrikhovskij, F. J. J. Blommaert, and H. de Ridder, “Color reproduction and the naturalness constraint,” Color Res. Appl. 24, 52–67 (1999).
[CrossRef]

Zhang, P.

P. Zhang, M. Bao, M. Kwon, S. He, and S. A. Engel, “Effects of orientation-specific visual deprivation induced with altered reality,” Curr. Biol. 19, 1956–1960 (2009).
[CrossRef]

Annu. Rev. Psych. (1)

S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psych. 59, 143–166 (2008).
[CrossRef]

Color Res. Appl. (1)

S. N. Yendrikhovskij, F. J. J. Blommaert, and H. de Ridder, “Color reproduction and the naturalness constraint,” Color Res. Appl. 24, 52–67 (1999).
[CrossRef]

Curr. Biol. (2)

P. Zhang, M. Bao, M. Kwon, S. He, and S. A. Engel, “Effects of orientation-specific visual deprivation induced with altered reality,” Curr. Biol. 19, 1956–1960 (2009).
[CrossRef]

C. A. Párraga, T. Troscianko, and D. J. Tolhurst, “Spatiochromatic properties of natural images and human vision,” Curr. Biol. 12, 483–487 (2002).
[CrossRef]

Curr. Opin. Neurobiol. (1)

B. Wark, B. N. Lundstrom, and A. Fairhall, “Sensory adaptation,” Curr. Opin. Neurobiol. 17, 423–429 (2007).
[CrossRef]

Eur. J. Neurosci. (1)

K. T. Mullen, S. O. Dumoulin, and R. F. Hess, “Color responses of the human lateral geniculate nucleus: selective amplification of S-cone signals between the lateral geniculate nucleus and primary visual cortex measured with high-field fMRI,” Eur. J. Neurosci. 28, 1911–1923 (2008).
[CrossRef]

J. Comp. Neurol. (1)

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef]

J. Mod. Opt. (1)

R. M. Boynton, M. M. Hayhoe, and D. I. A. MacLeod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” J. Mod. Opt. 24, 159–177 (1977).
[CrossRef]

J. Neurophysiol. (2)

D. G. Albrecht and D. B. Hamilton, “Striate cortex of monkey and cat: contrast response function,” J. Neurophysiol. 48, 217–237 (1982).

A. Kohn, “Visual adaptation: physiology, mechanisms, and functional benefits,” J. Neurophysiol. 97, 3155–3164 (2007).
[CrossRef]

J. Neurosci. (2)

D. Chander and E. J. Chichilnisky, “Adaptation to temporal contrast in primate and salamander retina,” J. Neurosci. 21, 9904–9916 (2001).

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (14)

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000).
[CrossRef]

I. Fine, D. I. MacLeod, and G. M. Boynton, “Surface segmentation based on the luminance and color statistics of natural scenes,” J. Opt. Soc. Am. A 20, 1283–1291 (2003).
[CrossRef]

A. P. Johnson, F. A. Kingdom, and C. L. Baker, “Spatiochromatic statistics of natural scenes: first- and second-order information and their correlational structure,” J. Opt. Soc. Am. A 22, 2050–2059 (2005).
[CrossRef]

M. A. Webster and D. Leonard, “Adaptation and perceptual norms in color vision,” J. Opt. Soc. Am. A 25, 2817–2825 (2008).
[CrossRef]

K. T. Mullen and M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136–3151 (1994).
[CrossRef]

D. L. Ruderman, T. W. Cronin, and C. C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998).
[CrossRef]

M. A. Webster and E. Miyahara, “Contrast adaptation and the spatial structure of natural images,” J. Opt. Soc. Am. A 14, 2355–2366 (1997).
[CrossRef]

D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987).
[CrossRef]

E. Switkes, A. Bradley, and K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162(1988).
[CrossRef]

B. E. Schefrin and J. S. Werner, “Loci of spectral unique hues throughout the life span,” J. Opt. Soc. Am. A 7, 305–311 (1990).
[CrossRef]

E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7, 2032–2040 (1990).
[CrossRef]

R. T. Eskew, C. F. Stromeyer, C. J. Picotte, and R. E. Kronauer, “Detection uncertainty and the facilitation of chromatic detection by luminance contours,” J. Opt. Soc. Am. A 8, 394–403 (1991).
[CrossRef]

G. R. Cole, T. Hine, and W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993).
[CrossRef]

J. Physiol. (2)

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).

J. Vis. (4)

F. A. Kingdom, J. Bell, E. Gheorghiu, and G. Malkoc, “Chromatic variations suppress suprathreshold brightness variations,” J. Vis. 10 (10), 13 (2010).
[CrossRef]

M. A. Webster, “Adaptation and visual coding,” J. Vis. 11 (5), 3 (2011).
[CrossRef]

M. Kwon, G. E. Legge, F. Fang, A. M. Cheong, and S. He, “Adaptive changes in visual cortex following prolonged contrast reduction,” J. Vis. 9 (2), 20 (2009).
[CrossRef]

P. J. Bex, S. G. Solomon, and S. C. Dakin, “Contrast sensitivity in natural scenes depends on edge as well as spatial frequency structure,” J. Vis. 9 (10), 1 (2009).
[CrossRef]

Nat. Neurosci. (1)

V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005).
[CrossRef]

Nature (5)

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, and R. T. Eskew, “Colour is what the eye sees best,” Nature 361, 348–350 (1993).
[CrossRef]

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, “Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997).
[CrossRef]

R. J. Snowden and S. T. Hammett, “Subtractive and divisive adaptation in the human visual system,” Nature 355, 248–250 (1992).
[CrossRef]

Netw. Comput. Neural Syst. (1)

M. A. Webster, “Human colour perception and its adaptation,” Netw. Comput. Neural Syst. 7, 587–634 (1996).
[CrossRef]

Network (2)

J. S. Lauritzen and D. J. Tolhurst, “Contrast constancy in natural scenes in shadow or direct light: a proposed role for contrast-normalisation (non-specific suppression) in visual cortex,” Network 16, 151–173 (2005).
[CrossRef]

M. A. Webster, Y. Mizokami, and S. M. Webster, “Seasonal variations in the color statistics of natural images,” Network, 213–233 (2007).
[CrossRef]

Neuron (3)

S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef]

S. A. Baccus and M. Meister, “Fast and slow contrast adaptation in retinal circuitry,” Neuron 36, 909–919 (2002).
[CrossRef]

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. USA (2)

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000).
[CrossRef]

C. Chubb, G. Sperling, and J. A. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
[CrossRef]

Proc. R. Soc. Lond. B (1)

G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. Lond. B 220, 89–113 (1983).
[CrossRef]

Prog. Retin. Res. (1)

R. M. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Retin. Res. 3, 263–343 (1984).
[CrossRef]

Spat. Vis. (1)

M. A. Georgeson, “The effect of spatial adaptation on perceived contrast,” Spat. Vis. 1, 103–112 (1985).
[CrossRef]

Vis. Neurosci. (2)

T. Hansen and K. R. Gegenfurtner, “Independence of color and luminance edges in natural scenes,” Vis. Neurosci. 26, 35–49 (2009).
[CrossRef]

D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Vis. Neurosci. 9, 181–197 (1992).
[CrossRef]

Vis. Res. (12)

B. Singer and M. D’Zmura, “Color contrast induction,” Vis. Res. 34, 3111–3126 (1994).
[CrossRef]

E. Switkes and M. A. Crognale, “Comparison of color and luminance contrast: apples versus oranges?” Vis. Res. 39, 1823–1831 (1999).
[CrossRef]

E. Switkes, “Contrast salience across three-dimensional chromoluminance space,” Vis. Res. 48, 1812–1819 (2008).
[CrossRef]

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997).
[CrossRef]

A. Bradley, E. Switkes, and K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vis. Res. 28, 841–856 (1988).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

M. A. Hietanen, S. L. Cloherty, C. W. Clifford, and M. R. Ibbotson, “Differential changes in perceived contrast following contrast adaptation in humans,” Vis. Res. 50, 12–19 (2010).
[CrossRef]

C. Blakemore, J. P. Muncey, and R. M. Ridley, “Stimulus specificity in the human visual system,” Vis. Res. 13, 1915–1931 (1973).
[CrossRef]

C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements,” Vis. Res. 40, 773–788 (2000).
[CrossRef]

F. A. Kingdom and R. Kasrai, “Colour unmasks dark targets in complex displays,” Vis. Res. 46, 814–822 (2006).
[CrossRef]

Z. Naturforsch. C (1)

S. Laughlin, “A simple coding procedure enhances a neuron’s information capacity,” Z. Naturforsch. C 36, 910–912 (1981).

Other (4)

L. T. Maloney, “Physics-based approaches to modeling surface color perception,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge University, 1999), pp. 387–416.

D. I. A. MacLeod, “Colour discrimination, colour constancy, and natural scene statistics (the Verriest lecture),” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 189–217.

D. H. Brainard, “Cone contrast and opponent modulation color spaces,” in Human Color Vision, Kaiser and R. M. Boynton, eds. (Optical Society of America, 1996), pp. 563–579.

B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision DeficienciesC. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Examples of the 1/f noise images. All images had a fixed level of luminance contrast relative to the original noise image while chromatic contrasts along the L vs. M and S vs. LM axes were varied separately to lower or higher levels for adaptation.

Fig. 2.
Fig. 2.

Examples of the grayscale images for assessing the perception of luminance contrast in images. Contrasts were scaled from 0 to 2× the original contrast (1).

Fig. 3.
Fig. 3.

Illustration of the spatial layout and temporal sequence of the two measurement conditions. In one case (top), the adapt and test images were alternated in the same centrally fixated field. Observers adjust the contrast of the test image. In the second case (bottom), the adapt and test images were again alternated in the same field shown to one side of fixation. The contrast of the test remained fixed, and it was matched by instead adjusting the contrast of a matching stimulus shown in a field on the other side of fixation.

Fig. 4.
Fig. 4.

Matches for the L vs. M and S vs. LM contrast in the noise images. Settings show the mean for five observers ±1 SE following adaptation to the different levels of chromatic contrast, or under adaptation to the uniform gray field (gray circle).

Fig. 5.
Fig. 5.

Asymmetric matches for the L vs. M and S vs. LM contrast in the noise images. Settings show the mean for three observers ±1 SE. In this case the matches correspond to the contrast in the right field image (under uniform field adaptation) that appeared equal to the contrast in the left field image (under adaptation to different levels of chromatic contrast).

Fig. 6.
Fig. 6.

Matches for the luminance and chromatic contrasts in the noise images compared to the range of contrasts in natural outdoor scenes from the Western Ghats in India (top row) or the Sierra Nevadas in the U.S. (bottom row). Each panel plots the contrasts along different pairs of the L vs. M, S vs. LM, and luminance axes. Unconnected symbols plot the RMS contrasts of individual scenes sampled during wet (green circles) or dry (red triangles) seasons, shown with the sensitivity-based contrast scaling reported in the study of the natural scenes [40]. Connected filled circles replot the preadapt (“none”) matches (±1 SE) of Fig. 4 in the same units, at either the original contrast tested in the experiment (lower left symbol) or scaled by a factor of 6 to show the predicted settings at higher absolute contrasts similar to the natural scenes. Dashed lines (= cone contrasts) plot the matching contrasts predicted by equal pooled cone contrast [42] along each axis.

Fig. 7.
Fig. 7.

Scaling at which the grayscale images appeared to have the correct contrast relative to the original contrast. Each point plots the mean settings for seven observers ±1 SE for a different image, under neutral adaptation to the gray field (gray circles), or after adapting to the same image displayed at 0.5× (black squares) or 1.5× (unfilled triangles) the original contrast.

Fig. 8.
Fig. 8.

Asymmetric matches for the grayscale images. Points plot the mean for five observers ±1 SE after adapting to the images at 0.5× or 1.5× the original contrast.

Metrics