Abstract

Many physiological and pathological conditions are associated with a change in the crystalline lens transmittance. Estimates of lens opacification, however, generally rely on subjective rather than objective measures in clinical practice. The goal of our study was to develop an improved psychophysical heterochromatic flicker photometry technique combined with existing mathematical models to evaluate the spectral transmittance of the human ocular media noninvasively. Our results show that it is possible to accurately estimate ocular media density in vivo in humans. Potential applications of our approach include basic research and clinical settings on visual and nonimage-forming visual systems.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. B 366, 1278–1292 (2011).
    [CrossRef]
  2. D. van Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Visual Res. 14, 1237–1244 (1974).
    [CrossRef]
  3. J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
    [CrossRef]
  4. P. Sample, F. Esterson, R. Weinreb, and R. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).
  5. C. A. Johnson, D. L. Howard, D. Marshall, and H. Shu, “A noninvasive video-based method for measuring lens transmission properties of the human eye,” Optom. Vis. Sci. 70, 944–955 (1993).
    [CrossRef]
  6. B. R. Wooten, B. R. Hammond, and L. M. Renzi, “Using scotopic and photopic flicker to measure lens optical density,” Ophthalmic Physiol. Opt. 27, 321–328 (2007).
    [CrossRef]
  7. J. Dillon, L. Zheng, J. C. Merriam, and E. R. Gaillard, “Transmission of light to the aging human retina: possible implications for age related macular degeneration,” Exp. Eye Res. 79, 753–759 (2004).
    [CrossRef]
  8. A. E. Broendsted, M. Stormly Hansen, H. Lund-Andersen, B. Sander, and L. Kessel, “Human lens transmission of blue light: a comparison of autofluorescence-based and direct spectral transmission determination,” Ophthalmol. Res. 46, 118–124 (2011).
    [CrossRef]
  9. J. van de Kraats and D. van Norren, “Optical density of the aging human ocular media in the visible and the UV,” J. Opt. Soc. Am. A 24, 1842–1857 (2007).
    [CrossRef]
  10. H. J. Dartnall, J. K. Bowmaker, and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. Lond. Ser. B 220, 115–130 (1983).
    [CrossRef]
  11. M. S. Griswold and W. S. Stark, “Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet,” Vis. Res. 32, 1739–1743 (1992).
    [CrossRef]
  12. G. Wald, “The photochemistry of vision,” Doc. Ophthalmol. 3, 94–137 (1949).
    [CrossRef]
  13. V. I. Govardovskii, N. Fyhrquist, T. Reuter, D. G. Kuzmin, and K. Donner, “In search of the visual pigment template,” Vis. Neurosci. 17, 509–528 (2000).
    [CrossRef]
  14. T. W. Kraft, D. M. Schneeweis, and J. L. Schnapf, “Visual transduction in human rod photoreceptors,” J. Physiol. 464, 747–765 (1993).
  15. T. Lamb, “Photoreceptor spectral sensitivities: common shape in the long-wavelength region,” Vis. Res. 35, 3083–3091 (1995).
    [CrossRef]
  16. N. Pousset, B. Rougi, and A. Razet, “Impact of current supply on LED colour,” Lighting Res. Technol. 42, 371–383 (2010).
    [CrossRef]
  17. D. Dumortier, B. Coutelier, T. Faulcon, and F. Roy, “PHOTOLUX: a new luminance mapping system based on Nikon Coolpix digital cameras,” in Proceedings of Lux Europa (Lux Europa, 2005), pp. 308–311.
  18. O. A. R. Mahroo and T. D. Lamb, “Recovery of the human photopic electroretinogram after bleaching exposures: estimation of pigment regeneration kinetics,” J. Physiol. 554, 417–437 (2003).
    [CrossRef]
  19. O. Howells, F. Eperjesi, and H. Bartlett, “Measuring macular pigment optical density in vivo: a review of techniques,” Graefes Arch. Clin. Exp. Ophthalmol. 249, 315–347 (2011).
    [CrossRef]
  20. N. P. A. Zagers and D. van Norren, “Absorption of the eye lens and macular pigment derived from the reflectance of cone photoreceptors,” J. Opt. Soc. Am. A 21, 2257–2268 (2004).
    [CrossRef]
  21. S. Hecht, S. Shlaer, and M. H. Pirenne, “Energy, quanta and vision,” J. Gen. Physiol. 25, 819–840 (1942).
    [CrossRef]
  22. C. J. Bassi and M. K. Powers, “Daily fluctuations in the detectability of dim lights by humans,” Physiol. Behav. 38, 871–877 (1986).
    [CrossRef]
  23. J. D. Conner, “The temporal properties of rod vision,” J. Physiol. 332, 139–155 (1982).
  24. H. E. Ives, “Critical frequency relations in scotopic vision,” J. Opt. Soc. Am. 6, 254–267 (1922).
    [CrossRef]
  25. B. R. Hammond and B. R. Wooten, “CFF thresholds: relation to macular pigment optical density,” Ophthalmic Physiol. Opt. 25, 315–319 (2005).
    [CrossRef]
  26. K. O’Brien, B. Smollon, B. Wooten, and B. Hammond, “Determining heterochromatic flicker photometry frequency for macular pigment optical densitometry by critical flicker fusion frequency,” J. Vis. 11, 55–55 (2011).
    [CrossRef]
  27. R. Nygaard and T. Frumkes, “Frequency dependence in scotopic flicker sensitivity,” Vis. Res. 25, 115–127 (1985).
    [CrossRef]
  28. R. Gortlemeyer and H. Wieman, “Retest reliability and construct validity of critical flicker fusion frequency,” Pharmacopsychiatry 15, 24–28 (1982).
    [CrossRef]
  29. R. A. Bone and J. T. Landrum, “Heterochromatic flicker photometry,” Arch. Biochem. Biophys. 430, 137–142 (2004).
    [CrossRef]
  30. J. S. Werner, S. K. Donnelly, and R. Kliegl, “Aging and human macular pigment density,” Vis. Res. 27, 257–268 (1987).
    [CrossRef]
  31. J. L. Barbur, E. Konstantakopoulou, M. Rodriguez-Carmona, J. A. Harlow, A. G. Robson, and J. D. Moreland, “The macular assessment profile test—a new VDU-based technique for measuring the spatial distribution of the macular pigment, lens density and rapid flicker sensitivity,” Ophthalmic Physiol. Opt. 30, 470–483 (2010).
    [CrossRef]
  32. G. Wald and P. K. Brown, “Human rhodopsin,” Science 127, 222–249 (1958).
    [CrossRef]
  33. W. Rushton, “Visual pigments in man,” in Handbook of Sensory Physiology. Photochemistry of Vision, H. J. A. Dartnall, ed. (Springer, 1972), pp. 481–528.
  34. H. J. A. Dartnall, “The interpretation of spectral sensitivity curves,” Brit. Med. Bull. 9, 24–30 (1953).
  35. M. Alpern, A. B. Fulton, and B. N. Baker, “Self-screening of rhodopsin in rod outer segments,” Vis. Res. 27, 1459–1470 (1987).
    [CrossRef]
  36. D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “The photocurrent, noise and spectral sensitivity of rods of the monkey macaca fascicularis,” J. Physiol. 357, 575–607 (1984).
  37. E. J. Warrant and D. Nilsson, “Absorption of white light in photoreceptors,” Vis. Res. 38, 195–207 (1998).
    [CrossRef]
  38. A. T. Liem, J. E. Keunen, D. van Norren, and J. van de Kraats, “Rod densitometry in the aging human eye,” Invest. Ophthalmol. Vis. Sci. 32, 2676–2682 (1991).
  39. G. R. Jackson, C. Owsley, and G. McGwin, “Aging and dark adaptation,” Vis. Res. 39, 3975–3982 (1999).
    [CrossRef]
  40. T. F. Chen, G. V. G. Baranoski, and K. F. Lin, “Bulk scattering approximations for He–Ne laser transmitted through paper,” Opt. Express 16, 21762–21771 (2008).
    [CrossRef]
  41. D. M. Gakamsky, B. Dhillon, J. Babraj, M. Shelton, and S. D. Smith, “Exploring the possibility of early cataract diagnostics based on tryptophan fluorescence,” J. R. Soc. Interface 8, 1616–1621 (2011).
    [CrossRef]
  42. W. Ambach, M. Blumthaler, T. Schöpf, E. Ambach, F. Katzgraber, F. Daxecker, and A. Daxer, “Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation,” Doc. Ophthalmol. 88, 165–173 (1994).
    [CrossRef]
  43. E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. Vis. Sci. 1, 776–783 (1962).
  44. L. Kolozsv, A. Ngrdi, B. Hopp, and Z. Bor, “UV absorbance of the human cornea in the 240- to 400 nm range,” Invest. Ophthalmol. Vis. Sci. 43, 2165–2168 (2002).
  45. R. C. Smith, and K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
    [CrossRef]
  46. T. J. T. P. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vis. Res. 37, 249–253 (1997).
    [CrossRef]
  47. E. R. Gaillard, L. Zheng, J. C. Merriam, and J. Dillon, “Age-related changes in the absorption characteristics of the primate lens,” Invest. Ophthalmol. Vis. Sci. 41, 1454–1459 (2000).
  48. H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Progr. Biophys. Mol. Biol. 86, 407–485 (2004).
    [CrossRef]
  49. D. van Norren and J. van de Kraats, “Spectral transmission of intraocular lenses expressed as a virtual age,” Br. J. Ophthalmol. 91, 1374–1375 (2007).
    [CrossRef]
  50. C. W. Tyler, “Two processes control variations in flicker sensitivity over the life span,” J. Opt. Soc. Am. A 6, 481–490 (1989).
    [CrossRef]
  51. C. B. Y. Kim and M. J. Mayer, “Foveal flicker sensitivity in healthy aging eyes. II. Cross-sectional aging trends from 18 through 77 years of age,” J. Opt. Soc. Am. A 11, 1958–1969 (1994).
    [CrossRef]
  52. R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. 395, 577–587 (1988).
  53. B. R. Hammond, J. E. Nanez, C. Fair, and D. M. Snodderly, “Iris color and age-related changes in lens optical density,” J. Ophthalmic Physiol. Opt. 20, 381–386 (2000).
    [CrossRef]
  54. K. Sagawa and Y. Takahashi, “Spectral luminous efficiency as a function of age,” J. Opt. Soc. Am. A 18, 2659–2667 (2001).
    [CrossRef]
  55. M. C. Gimenez, M. J. Kanis, D. G. M. Beersma, B. A. E. van der Pol, D. van Norren, and M. C. M. Gordijn, “In vivo quantification of the retinal reflectance spectral composition in elderly subjects before and after cataract surgery: implications for the non-visual effects of light,” J. Biol. Rhythms 25, 123–131 (2010).
    [CrossRef]
  56. A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vis. Res. 39, 2901–2927 (1999).
    [CrossRef]
  57. N. P. Cottaris, “Artifacts in spatiochromatic stimuli due to variations in preretinal absorption and axial chromatic aberration: implications for color physiology,” J. Opt. Soc. Am. A 20, 1694–1713 (2003).
    [CrossRef]
  58. W. N. Charman, “Age, lens transmittance, and the possible effects of light on melatonin suppression,” Ophthalmic Physiol. Opt. 23, 181–187 (2003).
    [CrossRef]
  59. F. Delori, D. G. Goger, B. R. Hammond, D. M. Snodderly, and S. A. Burns, “Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry,” J. Opt. Soc. Am. A 18, 1212–1230 (2001).
    [CrossRef]
  60. J. Hammond, B. R. Wooten, and D. M. Snodderly, “Individual variations in the spatial profile of human macular pigment,” J. Opt. Soc. Am. A 14, 1187–1196 (1997).
    [CrossRef]
  61. S. F. Chen, Y. Chang, and J. C. Wu, “The spatial distribution of macular pigment in humans,” Curr. Eye Res. 23, 422–434 (2001).
  62. T. van den Berg and K. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vis. Res. 34, 1453–1456 (1994).
    [CrossRef]
  63. J. A. J. Van Loo and J. M. Enoch, “The scotopic Stiles-Crawford effect,” Vis. Res. 15, 1005–1009 (1975).
    [CrossRef]
  64. J. A. Van Best and E. V. Kuppens, “Summary of studies on the blue-green autofluorescence and light transmission of the ocular lens,” J. Biomed. Opt. 1, 243–250 (1996).
    [CrossRef]
  65. J. A. Zuclich, R. D. Glickman, and A. R. Menendez, “In situ measurements of lens fluorescence and its interference with visual function,” Invest. Ophthalmol. Vis. Sci. 33, 410–415 (1992).
  66. T. J. T. P. van den Berg, L. Franssen, and J. E. Coppens, “Straylight in the human eye: testing objectivity and optical character of the psychophysical measurement,” Ophthalmic Physiol. Opt. 29, 345–350 (2009).
    [CrossRef]
  67. R. A. Weale, “Human lenticular fluorescence and transmissivity, and their effects on vision,” Exp. Eye Res. 41, 457–473 (1985).
  68. G. F. Cooper and J. G. Robson, “The yellow colour of the lens of man and other primates,” J. Physiol. 203, 411–417 (1969).
  69. N. T. Yu, M. Bando, and J. F. Kuck, “Fluorescence/Raman intensity ratio for monitoring the pathologic state of human lens,” Invest. Ophthalmol. Vis. Sci. 26, 97–101 (1985).
  70. R. A. Weale, “A theoretical link between lenticular absorbance and fluorescence,” Proc. Biol. Sci. 263, 1111–1116 (1996).
  71. T. J. van den Berg, “Quantal and visual efficiency of fluorescence in the lens of the human eye,” Invest. Ophthalmol. Vis. Sci. 34, 3566–3573 (1993).
  72. J. L. Brown, “Flash blindness,” Am. J. Ophthalmol. 60, 505–520 (1965).
  73. R. Gray, S. A. Perkins, R. Suryakumar, B. Neuman, and W. A. Maxwell, “Reduced effect of glare disability on driving performance in patients with blue light–filtering intraocular lenses,” J. Cataract Refract.Surg. 37, 38–44 (2011).
    [CrossRef]
  74. T. van den Berg, J. Ijspeert, and P. de Waard, “Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall,” Vis. Res. 31, 1361–1367 (1991).
    [CrossRef]
  75. W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, and F. H. Schmidt, “The loss of light energy in retina and choroid,” Arch. Ophthalmol. 64, 606–615 (1960).
    [CrossRef]
  76. D. Snodderly, P. Brown, F. Delori, and J. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).
  77. J. Bowmaker, S. Astell, D. Hunt, and J. Mollon, “Photosensitive and photostable pigments in the retinae of old world monkeys,” J. Exp. Biol. 156, 1–19 (1991).
  78. R. Hubbard and A. Kropf, “The action of light on rhodopsin,” Proc. Natl. Acad. Sci. USA 44, 130–139 (1958).
  79. C. Grimm, C. E. Rem, P. O. Rol, and T. P. Williams, “Blue light’s effects on rhodopsin: photoreversal of bleaching in living rat eyes,” Invest. Ophthalmol. Vis. Sci. 41, 3984–3990 (2000).
  80. P. Chen, W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. Van Boemel, L. Wu, M. Yang, and H. K. Fong, “A photic visual cycle of rhodopsin regeneration is dependent on Rgr,” Nat. Genet. 28, 256–260 (2001).
    [CrossRef]
  81. A. Wenzel, V. Oberhauser, E. N. Pugh, T. D. Lamb, C. Grimm, M. Samardzija, E. Fahl, M. W. Seeliger, C. E. Rem, and J. von Lintig, “The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light,” J. Biol. Chem. 280, 29874–29884 (2005).
    [CrossRef]
  82. J. Xu, J. Pokorny, and V. C. Smith, “Optical density of the human lens,” J. Opt. Soc. Am. A 14, 953–960 (1997).
    [CrossRef]
  83. M. Ozolinsh and P. Paulins, “LED based dual wavelength heterochromatic flicker method for separate evaluation of lutein and zeaxanthin in retina,” presented at the International Symposium on Biomedical Engineering and Medical Physics, 10–12 October 2012, Riga, Latvia.
  84. M. Potash and B. Jones, “Aging and decision criteria for the detection of tones in noise,” J. Gerontol. 14, 953–960(1997).
  85. D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295, 1070–1073 (2002).
    [CrossRef]
  86. O. Dkhissi-Benyahya, C. Gronfier, W. D. Vanssay, F. Flamant, and H. M. Cooper, “Modeling the role of mid-wavelength cones in circadian responses to light,” Neuron 53, 677–687 (2007).
    [CrossRef]
  87. L. S. Mure, P. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
    [CrossRef]

2011 (6)

R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. B 366, 1278–1292 (2011).
[CrossRef]

A. E. Broendsted, M. Stormly Hansen, H. Lund-Andersen, B. Sander, and L. Kessel, “Human lens transmission of blue light: a comparison of autofluorescence-based and direct spectral transmission determination,” Ophthalmol. Res. 46, 118–124 (2011).
[CrossRef]

O. Howells, F. Eperjesi, and H. Bartlett, “Measuring macular pigment optical density in vivo: a review of techniques,” Graefes Arch. Clin. Exp. Ophthalmol. 249, 315–347 (2011).
[CrossRef]

K. O’Brien, B. Smollon, B. Wooten, and B. Hammond, “Determining heterochromatic flicker photometry frequency for macular pigment optical densitometry by critical flicker fusion frequency,” J. Vis. 11, 55–55 (2011).
[CrossRef]

D. M. Gakamsky, B. Dhillon, J. Babraj, M. Shelton, and S. D. Smith, “Exploring the possibility of early cataract diagnostics based on tryptophan fluorescence,” J. R. Soc. Interface 8, 1616–1621 (2011).
[CrossRef]

R. Gray, S. A. Perkins, R. Suryakumar, B. Neuman, and W. A. Maxwell, “Reduced effect of glare disability on driving performance in patients with blue light–filtering intraocular lenses,” J. Cataract Refract.Surg. 37, 38–44 (2011).
[CrossRef]

2010 (3)

M. C. Gimenez, M. J. Kanis, D. G. M. Beersma, B. A. E. van der Pol, D. van Norren, and M. C. M. Gordijn, “In vivo quantification of the retinal reflectance spectral composition in elderly subjects before and after cataract surgery: implications for the non-visual effects of light,” J. Biol. Rhythms 25, 123–131 (2010).
[CrossRef]

J. L. Barbur, E. Konstantakopoulou, M. Rodriguez-Carmona, J. A. Harlow, A. G. Robson, and J. D. Moreland, “The macular assessment profile test—a new VDU-based technique for measuring the spatial distribution of the macular pigment, lens density and rapid flicker sensitivity,” Ophthalmic Physiol. Opt. 30, 470–483 (2010).
[CrossRef]

N. Pousset, B. Rougi, and A. Razet, “Impact of current supply on LED colour,” Lighting Res. Technol. 42, 371–383 (2010).
[CrossRef]

2009 (2)

T. J. T. P. van den Berg, L. Franssen, and J. E. Coppens, “Straylight in the human eye: testing objectivity and optical character of the psychophysical measurement,” Ophthalmic Physiol. Opt. 29, 345–350 (2009).
[CrossRef]

L. S. Mure, P. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

2008 (1)

2007 (4)

D. van Norren and J. van de Kraats, “Spectral transmission of intraocular lenses expressed as a virtual age,” Br. J. Ophthalmol. 91, 1374–1375 (2007).
[CrossRef]

J. van de Kraats and D. van Norren, “Optical density of the aging human ocular media in the visible and the UV,” J. Opt. Soc. Am. A 24, 1842–1857 (2007).
[CrossRef]

B. R. Wooten, B. R. Hammond, and L. M. Renzi, “Using scotopic and photopic flicker to measure lens optical density,” Ophthalmic Physiol. Opt. 27, 321–328 (2007).
[CrossRef]

O. Dkhissi-Benyahya, C. Gronfier, W. D. Vanssay, F. Flamant, and H. M. Cooper, “Modeling the role of mid-wavelength cones in circadian responses to light,” Neuron 53, 677–687 (2007).
[CrossRef]

2005 (2)

A. Wenzel, V. Oberhauser, E. N. Pugh, T. D. Lamb, C. Grimm, M. Samardzija, E. Fahl, M. W. Seeliger, C. E. Rem, and J. von Lintig, “The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light,” J. Biol. Chem. 280, 29874–29884 (2005).
[CrossRef]

B. R. Hammond and B. R. Wooten, “CFF thresholds: relation to macular pigment optical density,” Ophthalmic Physiol. Opt. 25, 315–319 (2005).
[CrossRef]

2004 (4)

R. A. Bone and J. T. Landrum, “Heterochromatic flicker photometry,” Arch. Biochem. Biophys. 430, 137–142 (2004).
[CrossRef]

N. P. A. Zagers and D. van Norren, “Absorption of the eye lens and macular pigment derived from the reflectance of cone photoreceptors,” J. Opt. Soc. Am. A 21, 2257–2268 (2004).
[CrossRef]

J. Dillon, L. Zheng, J. C. Merriam, and E. R. Gaillard, “Transmission of light to the aging human retina: possible implications for age related macular degeneration,” Exp. Eye Res. 79, 753–759 (2004).
[CrossRef]

H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Progr. Biophys. Mol. Biol. 86, 407–485 (2004).
[CrossRef]

2003 (3)

N. P. Cottaris, “Artifacts in spatiochromatic stimuli due to variations in preretinal absorption and axial chromatic aberration: implications for color physiology,” J. Opt. Soc. Am. A 20, 1694–1713 (2003).
[CrossRef]

W. N. Charman, “Age, lens transmittance, and the possible effects of light on melatonin suppression,” Ophthalmic Physiol. Opt. 23, 181–187 (2003).
[CrossRef]

O. A. R. Mahroo and T. D. Lamb, “Recovery of the human photopic electroretinogram after bleaching exposures: estimation of pigment regeneration kinetics,” J. Physiol. 554, 417–437 (2003).
[CrossRef]

2002 (2)

L. Kolozsv, A. Ngrdi, B. Hopp, and Z. Bor, “UV absorbance of the human cornea in the 240- to 400 nm range,” Invest. Ophthalmol. Vis. Sci. 43, 2165–2168 (2002).

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295, 1070–1073 (2002).
[CrossRef]

2001 (4)

P. Chen, W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. Van Boemel, L. Wu, M. Yang, and H. K. Fong, “A photic visual cycle of rhodopsin regeneration is dependent on Rgr,” Nat. Genet. 28, 256–260 (2001).
[CrossRef]

K. Sagawa and Y. Takahashi, “Spectral luminous efficiency as a function of age,” J. Opt. Soc. Am. A 18, 2659–2667 (2001).
[CrossRef]

F. Delori, D. G. Goger, B. R. Hammond, D. M. Snodderly, and S. A. Burns, “Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry,” J. Opt. Soc. Am. A 18, 1212–1230 (2001).
[CrossRef]

S. F. Chen, Y. Chang, and J. C. Wu, “The spatial distribution of macular pigment in humans,” Curr. Eye Res. 23, 422–434 (2001).

2000 (4)

B. R. Hammond, J. E. Nanez, C. Fair, and D. M. Snodderly, “Iris color and age-related changes in lens optical density,” J. Ophthalmic Physiol. Opt. 20, 381–386 (2000).
[CrossRef]

E. R. Gaillard, L. Zheng, J. C. Merriam, and J. Dillon, “Age-related changes in the absorption characteristics of the primate lens,” Invest. Ophthalmol. Vis. Sci. 41, 1454–1459 (2000).

V. I. Govardovskii, N. Fyhrquist, T. Reuter, D. G. Kuzmin, and K. Donner, “In search of the visual pigment template,” Vis. Neurosci. 17, 509–528 (2000).
[CrossRef]

C. Grimm, C. E. Rem, P. O. Rol, and T. P. Williams, “Blue light’s effects on rhodopsin: photoreversal of bleaching in living rat eyes,” Invest. Ophthalmol. Vis. Sci. 41, 3984–3990 (2000).

1999 (2)

G. R. Jackson, C. Owsley, and G. McGwin, “Aging and dark adaptation,” Vis. Res. 39, 3975–3982 (1999).
[CrossRef]

A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vis. Res. 39, 2901–2927 (1999).
[CrossRef]

1998 (1)

E. J. Warrant and D. Nilsson, “Absorption of white light in photoreceptors,” Vis. Res. 38, 195–207 (1998).
[CrossRef]

1997 (4)

T. J. T. P. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vis. Res. 37, 249–253 (1997).
[CrossRef]

J. Hammond, B. R. Wooten, and D. M. Snodderly, “Individual variations in the spatial profile of human macular pigment,” J. Opt. Soc. Am. A 14, 1187–1196 (1997).
[CrossRef]

J. Xu, J. Pokorny, and V. C. Smith, “Optical density of the human lens,” J. Opt. Soc. Am. A 14, 953–960 (1997).
[CrossRef]

M. Potash and B. Jones, “Aging and decision criteria for the detection of tones in noise,” J. Gerontol. 14, 953–960(1997).

1996 (2)

J. A. Van Best and E. V. Kuppens, “Summary of studies on the blue-green autofluorescence and light transmission of the ocular lens,” J. Biomed. Opt. 1, 243–250 (1996).
[CrossRef]

R. A. Weale, “A theoretical link between lenticular absorbance and fluorescence,” Proc. Biol. Sci. 263, 1111–1116 (1996).

1995 (1)

T. Lamb, “Photoreceptor spectral sensitivities: common shape in the long-wavelength region,” Vis. Res. 35, 3083–3091 (1995).
[CrossRef]

1994 (3)

T. van den Berg and K. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vis. Res. 34, 1453–1456 (1994).
[CrossRef]

W. Ambach, M. Blumthaler, T. Schöpf, E. Ambach, F. Katzgraber, F. Daxecker, and A. Daxer, “Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation,” Doc. Ophthalmol. 88, 165–173 (1994).
[CrossRef]

C. B. Y. Kim and M. J. Mayer, “Foveal flicker sensitivity in healthy aging eyes. II. Cross-sectional aging trends from 18 through 77 years of age,” J. Opt. Soc. Am. A 11, 1958–1969 (1994).
[CrossRef]

1993 (3)

T. J. van den Berg, “Quantal and visual efficiency of fluorescence in the lens of the human eye,” Invest. Ophthalmol. Vis. Sci. 34, 3566–3573 (1993).

C. A. Johnson, D. L. Howard, D. Marshall, and H. Shu, “A noninvasive video-based method for measuring lens transmission properties of the human eye,” Optom. Vis. Sci. 70, 944–955 (1993).
[CrossRef]

T. W. Kraft, D. M. Schneeweis, and J. L. Schnapf, “Visual transduction in human rod photoreceptors,” J. Physiol. 464, 747–765 (1993).

1992 (2)

M. S. Griswold and W. S. Stark, “Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet,” Vis. Res. 32, 1739–1743 (1992).
[CrossRef]

J. A. Zuclich, R. D. Glickman, and A. R. Menendez, “In situ measurements of lens fluorescence and its interference with visual function,” Invest. Ophthalmol. Vis. Sci. 33, 410–415 (1992).

1991 (3)

T. van den Berg, J. Ijspeert, and P. de Waard, “Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall,” Vis. Res. 31, 1361–1367 (1991).
[CrossRef]

A. T. Liem, J. E. Keunen, D. van Norren, and J. van de Kraats, “Rod densitometry in the aging human eye,” Invest. Ophthalmol. Vis. Sci. 32, 2676–2682 (1991).

J. Bowmaker, S. Astell, D. Hunt, and J. Mollon, “Photosensitive and photostable pigments in the retinae of old world monkeys,” J. Exp. Biol. 156, 1–19 (1991).

1989 (1)

1988 (2)

R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. 395, 577–587 (1988).

P. Sample, F. Esterson, R. Weinreb, and R. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).

1987 (3)

J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[CrossRef]

M. Alpern, A. B. Fulton, and B. N. Baker, “Self-screening of rhodopsin in rod outer segments,” Vis. Res. 27, 1459–1470 (1987).
[CrossRef]

J. S. Werner, S. K. Donnelly, and R. Kliegl, “Aging and human macular pigment density,” Vis. Res. 27, 257–268 (1987).
[CrossRef]

1986 (1)

C. J. Bassi and M. K. Powers, “Daily fluctuations in the detectability of dim lights by humans,” Physiol. Behav. 38, 871–877 (1986).
[CrossRef]

1985 (3)

R. Nygaard and T. Frumkes, “Frequency dependence in scotopic flicker sensitivity,” Vis. Res. 25, 115–127 (1985).
[CrossRef]

N. T. Yu, M. Bando, and J. F. Kuck, “Fluorescence/Raman intensity ratio for monitoring the pathologic state of human lens,” Invest. Ophthalmol. Vis. Sci. 26, 97–101 (1985).

R. A. Weale, “Human lenticular fluorescence and transmissivity, and their effects on vision,” Exp. Eye Res. 41, 457–473 (1985).

1984 (2)

D. Snodderly, P. Brown, F. Delori, and J. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).

D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “The photocurrent, noise and spectral sensitivity of rods of the monkey macaca fascicularis,” J. Physiol. 357, 575–607 (1984).

1983 (1)

H. J. Dartnall, J. K. Bowmaker, and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. Lond. Ser. B 220, 115–130 (1983).
[CrossRef]

1982 (2)

R. Gortlemeyer and H. Wieman, “Retest reliability and construct validity of critical flicker fusion frequency,” Pharmacopsychiatry 15, 24–28 (1982).
[CrossRef]

J. D. Conner, “The temporal properties of rod vision,” J. Physiol. 332, 139–155 (1982).

1981 (1)

1975 (1)

J. A. J. Van Loo and J. M. Enoch, “The scotopic Stiles-Crawford effect,” Vis. Res. 15, 1005–1009 (1975).
[CrossRef]

1974 (1)

D. van Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Visual Res. 14, 1237–1244 (1974).
[CrossRef]

1969 (1)

G. F. Cooper and J. G. Robson, “The yellow colour of the lens of man and other primates,” J. Physiol. 203, 411–417 (1969).

1965 (1)

J. L. Brown, “Flash blindness,” Am. J. Ophthalmol. 60, 505–520 (1965).

1962 (1)

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. Vis. Sci. 1, 776–783 (1962).

1960 (1)

W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, and F. H. Schmidt, “The loss of light energy in retina and choroid,” Arch. Ophthalmol. 64, 606–615 (1960).
[CrossRef]

1958 (2)

G. Wald and P. K. Brown, “Human rhodopsin,” Science 127, 222–249 (1958).
[CrossRef]

R. Hubbard and A. Kropf, “The action of light on rhodopsin,” Proc. Natl. Acad. Sci. USA 44, 130–139 (1958).

1953 (1)

H. J. A. Dartnall, “The interpretation of spectral sensitivity curves,” Brit. Med. Bull. 9, 24–30 (1953).

1949 (1)

G. Wald, “The photochemistry of vision,” Doc. Ophthalmol. 3, 94–137 (1949).
[CrossRef]

1942 (1)

S. Hecht, S. Shlaer, and M. H. Pirenne, “Energy, quanta and vision,” J. Gen. Physiol. 25, 819–840 (1942).
[CrossRef]

1922 (1)

Alpern, M.

M. Alpern, A. B. Fulton, and B. N. Baker, “Self-screening of rhodopsin in rod outer segments,” Vis. Res. 27, 1459–1470 (1987).
[CrossRef]

Ambach, E.

W. Ambach, M. Blumthaler, T. Schöpf, E. Ambach, F. Katzgraber, F. Daxecker, and A. Daxer, “Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation,” Doc. Ophthalmol. 88, 165–173 (1994).
[CrossRef]

Ambach, W.

W. Ambach, M. Blumthaler, T. Schöpf, E. Ambach, F. Katzgraber, F. Daxecker, and A. Daxer, “Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation,” Doc. Ophthalmol. 88, 165–173 (1994).
[CrossRef]

Astell, S.

J. Bowmaker, S. Astell, D. Hunt, and J. Mollon, “Photosensitive and photostable pigments in the retinae of old world monkeys,” J. Exp. Biol. 156, 1–19 (1991).

Auran, J.

D. Snodderly, P. Brown, F. Delori, and J. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).

Babraj, J.

D. M. Gakamsky, B. Dhillon, J. Babraj, M. Shelton, and S. D. Smith, “Exploring the possibility of early cataract diagnostics based on tryptophan fluorescence,” J. R. Soc. Interface 8, 1616–1621 (2011).
[CrossRef]

Baker, B. N.

M. Alpern, A. B. Fulton, and B. N. Baker, “Self-screening of rhodopsin in rod outer segments,” Vis. Res. 27, 1459–1470 (1987).
[CrossRef]

Baker, K. S.

Bando, M.

N. T. Yu, M. Bando, and J. F. Kuck, “Fluorescence/Raman intensity ratio for monitoring the pathologic state of human lens,” Invest. Ophthalmol. Vis. Sci. 26, 97–101 (1985).

Baranoski, G. V. G.

Barbur, J. L.

J. L. Barbur, E. Konstantakopoulou, M. Rodriguez-Carmona, J. A. Harlow, A. G. Robson, and J. D. Moreland, “The macular assessment profile test—a new VDU-based technique for measuring the spatial distribution of the macular pigment, lens density and rapid flicker sensitivity,” Ophthalmic Physiol. Opt. 30, 470–483 (2010).
[CrossRef]

Bartlett, H.

O. Howells, F. Eperjesi, and H. Bartlett, “Measuring macular pigment optical density in vivo: a review of techniques,” Graefes Arch. Clin. Exp. Ophthalmol. 249, 315–347 (2011).
[CrossRef]

Bassi, C. J.

C. J. Bassi and M. K. Powers, “Daily fluctuations in the detectability of dim lights by humans,” Physiol. Behav. 38, 871–877 (1986).
[CrossRef]

Baylor, D. A.

D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “The photocurrent, noise and spectral sensitivity of rods of the monkey macaca fascicularis,” J. Physiol. 357, 575–607 (1984).

Beersma, D. G. M.

M. C. Gimenez, M. J. Kanis, D. G. M. Beersma, B. A. E. van der Pol, D. van Norren, and M. C. M. Gordijn, “In vivo quantification of the retinal reflectance spectral composition in elderly subjects before and after cataract surgery: implications for the non-visual effects of light,” J. Biol. Rhythms 25, 123–131 (2010).
[CrossRef]

Berson, D. M.

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295, 1070–1073 (2002).
[CrossRef]

Bloemendal, H.

H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Progr. Biophys. Mol. Biol. 86, 407–485 (2004).
[CrossRef]

Blumthaler, M.

W. Ambach, M. Blumthaler, T. Schöpf, E. Ambach, F. Katzgraber, F. Daxecker, and A. Daxer, “Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation,” Doc. Ophthalmol. 88, 165–173 (1994).
[CrossRef]

Boettner, E. A.

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. Vis. Sci. 1, 776–783 (1962).

Bone, R. A.

R. A. Bone and J. T. Landrum, “Heterochromatic flicker photometry,” Arch. Biochem. Biophys. 430, 137–142 (2004).
[CrossRef]

Bor, Z.

L. Kolozsv, A. Ngrdi, B. Hopp, and Z. Bor, “UV absorbance of the human cornea in the 240- to 400 nm range,” Invest. Ophthalmol. Vis. Sci. 43, 2165–2168 (2002).

Bowmaker, J.

J. Bowmaker, S. Astell, D. Hunt, and J. Mollon, “Photosensitive and photostable pigments in the retinae of old world monkeys,” J. Exp. Biol. 156, 1–19 (1991).

Bowmaker, J. K.

H. J. Dartnall, J. K. Bowmaker, and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. Lond. Ser. B 220, 115–130 (1983).
[CrossRef]

Boynton, R.

P. Sample, F. Esterson, R. Weinreb, and R. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).

Broendsted, A. E.

A. E. Broendsted, M. Stormly Hansen, H. Lund-Andersen, B. Sander, and L. Kessel, “Human lens transmission of blue light: a comparison of autofluorescence-based and direct spectral transmission determination,” Ophthalmol. Res. 46, 118–124 (2011).
[CrossRef]

Bron, A. J.

R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. B 366, 1278–1292 (2011).
[CrossRef]

Brown, J. L.

J. L. Brown, “Flash blindness,” Am. J. Ophthalmol. 60, 505–520 (1965).

Brown, P.

D. Snodderly, P. Brown, F. Delori, and J. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).

Brown, P. K.

G. Wald and P. K. Brown, “Human rhodopsin,” Science 127, 222–249 (1958).
[CrossRef]

Burns, S. A.

Chan, G.

W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, and F. H. Schmidt, “The loss of light energy in retina and choroid,” Arch. Ophthalmol. 64, 606–615 (1960).
[CrossRef]

Chang, Y.

S. F. Chen, Y. Chang, and J. C. Wu, “The spatial distribution of macular pigment in humans,” Curr. Eye Res. 23, 422–434 (2001).

Charman, W. N.

W. N. Charman, “Age, lens transmittance, and the possible effects of light on melatonin suppression,” Ophthalmic Physiol. Opt. 23, 181–187 (2003).
[CrossRef]

Chen, J.

P. Chen, W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. Van Boemel, L. Wu, M. Yang, and H. K. Fong, “A photic visual cycle of rhodopsin regeneration is dependent on Rgr,” Nat. Genet. 28, 256–260 (2001).
[CrossRef]

Chen, P.

P. Chen, W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. Van Boemel, L. Wu, M. Yang, and H. K. Fong, “A photic visual cycle of rhodopsin regeneration is dependent on Rgr,” Nat. Genet. 28, 256–260 (2001).
[CrossRef]

Chen, S. F.

S. F. Chen, Y. Chang, and J. C. Wu, “The spatial distribution of macular pigment in humans,” Curr. Eye Res. 23, 422–434 (2001).

Chen, T. F.

Conner, J. D.

J. D. Conner, “The temporal properties of rod vision,” J. Physiol. 332, 139–155 (1982).

Cooper, G. F.

G. F. Cooper and J. G. Robson, “The yellow colour of the lens of man and other primates,” J. Physiol. 203, 411–417 (1969).

Cooper, H. M.

L. S. Mure, P. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

O. Dkhissi-Benyahya, C. Gronfier, W. D. Vanssay, F. Flamant, and H. M. Cooper, “Modeling the role of mid-wavelength cones in circadian responses to light,” Neuron 53, 677–687 (2007).
[CrossRef]

Coppens, J. E.

T. J. T. P. van den Berg, L. Franssen, and J. E. Coppens, “Straylight in the human eye: testing objectivity and optical character of the psychophysical measurement,” Ophthalmic Physiol. Opt. 29, 345–350 (2009).
[CrossRef]

Cornut, P.

L. S. Mure, P. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

Cottaris, N. P.

Coutelier, B.

D. Dumortier, B. Coutelier, T. Faulcon, and F. Roy, “PHOTOLUX: a new luminance mapping system based on Nikon Coolpix digital cameras,” in Proceedings of Lux Europa (Lux Europa, 2005), pp. 308–311.

Dartnall, H. J.

H. J. Dartnall, J. K. Bowmaker, and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. Lond. Ser. B 220, 115–130 (1983).
[CrossRef]

Dartnall, H. J. A.

H. J. A. Dartnall, “The interpretation of spectral sensitivity curves,” Brit. Med. Bull. 9, 24–30 (1953).

Daxecker, F.

W. Ambach, M. Blumthaler, T. Schöpf, E. Ambach, F. Katzgraber, F. Daxecker, and A. Daxer, “Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation,” Doc. Ophthalmol. 88, 165–173 (1994).
[CrossRef]

Daxer, A.

W. Ambach, M. Blumthaler, T. Schöpf, E. Ambach, F. Katzgraber, F. Daxecker, and A. Daxer, “Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation,” Doc. Ophthalmol. 88, 165–173 (1994).
[CrossRef]

de Jong, W.

H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Progr. Biophys. Mol. Biol. 86, 407–485 (2004).
[CrossRef]

de Waard, P.

T. van den Berg, J. Ijspeert, and P. de Waard, “Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall,” Vis. Res. 31, 1361–1367 (1991).
[CrossRef]

Delori, F.

F. Delori, D. G. Goger, B. R. Hammond, D. M. Snodderly, and S. A. Burns, “Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry,” J. Opt. Soc. Am. A 18, 1212–1230 (2001).
[CrossRef]

D. Snodderly, P. Brown, F. Delori, and J. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).

Denis, P.

L. S. Mure, P. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

Dhillon, B.

D. M. Gakamsky, B. Dhillon, J. Babraj, M. Shelton, and S. D. Smith, “Exploring the possibility of early cataract diagnostics based on tryptophan fluorescence,” J. R. Soc. Interface 8, 1616–1621 (2011).
[CrossRef]

Dillon, J.

J. Dillon, L. Zheng, J. C. Merriam, and E. R. Gaillard, “Transmission of light to the aging human retina: possible implications for age related macular degeneration,” Exp. Eye Res. 79, 753–759 (2004).
[CrossRef]

E. R. Gaillard, L. Zheng, J. C. Merriam, and J. Dillon, “Age-related changes in the absorption characteristics of the primate lens,” Invest. Ophthalmol. Vis. Sci. 41, 1454–1459 (2000).

Dkhissi-Benyahya, O.

O. Dkhissi-Benyahya, C. Gronfier, W. D. Vanssay, F. Flamant, and H. M. Cooper, “Modeling the role of mid-wavelength cones in circadian responses to light,” Neuron 53, 677–687 (2007).
[CrossRef]

Donnelly, S. K.

J. S. Werner, S. K. Donnelly, and R. Kliegl, “Aging and human macular pigment density,” Vis. Res. 27, 257–268 (1987).
[CrossRef]

Donner, K.

V. I. Govardovskii, N. Fyhrquist, T. Reuter, D. G. Kuzmin, and K. Donner, “In search of the visual pigment template,” Vis. Neurosci. 17, 509–528 (2000).
[CrossRef]

Drouyer, E.

L. S. Mure, P. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

Dumortier, D.

D. Dumortier, B. Coutelier, T. Faulcon, and F. Roy, “PHOTOLUX: a new luminance mapping system based on Nikon Coolpix digital cameras,” in Proceedings of Lux Europa (Lux Europa, 2005), pp. 308–311.

Dunn, F. A.

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295, 1070–1073 (2002).
[CrossRef]

Enoch, J. M.

J. A. J. Van Loo and J. M. Enoch, “The scotopic Stiles-Crawford effect,” Vis. Res. 15, 1005–1009 (1975).
[CrossRef]

Eperjesi, F.

O. Howells, F. Eperjesi, and H. Bartlett, “Measuring macular pigment optical density in vivo: a review of techniques,” Graefes Arch. Clin. Exp. Ophthalmol. 249, 315–347 (2011).
[CrossRef]

Esterson, F.

P. Sample, F. Esterson, R. Weinreb, and R. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).

Fach, C.

A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vis. Res. 39, 2901–2927 (1999).
[CrossRef]

Fahl, E.

A. Wenzel, V. Oberhauser, E. N. Pugh, T. D. Lamb, C. Grimm, M. Samardzija, E. Fahl, M. W. Seeliger, C. E. Rem, and J. von Lintig, “The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light,” J. Biol. Chem. 280, 29874–29884 (2005).
[CrossRef]

Fair, C.

B. R. Hammond, J. E. Nanez, C. Fair, and D. M. Snodderly, “Iris color and age-related changes in lens optical density,” J. Ophthalmic Physiol. Opt. 20, 381–386 (2000).
[CrossRef]

Faulcon, T.

D. Dumortier, B. Coutelier, T. Faulcon, and F. Roy, “PHOTOLUX: a new luminance mapping system based on Nikon Coolpix digital cameras,” in Proceedings of Lux Europa (Lux Europa, 2005), pp. 308–311.

Flamant, F.

O. Dkhissi-Benyahya, C. Gronfier, W. D. Vanssay, F. Flamant, and H. M. Cooper, “Modeling the role of mid-wavelength cones in circadian responses to light,” Neuron 53, 677–687 (2007).
[CrossRef]

Fong, H. K.

P. Chen, W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. Van Boemel, L. Wu, M. Yang, and H. K. Fong, “A photic visual cycle of rhodopsin regeneration is dependent on Rgr,” Nat. Genet. 28, 256–260 (2001).
[CrossRef]

Franssen, L.

T. J. T. P. van den Berg, L. Franssen, and J. E. Coppens, “Straylight in the human eye: testing objectivity and optical character of the psychophysical measurement,” Ophthalmic Physiol. Opt. 29, 345–350 (2009).
[CrossRef]

Frumkes, T.

R. Nygaard and T. Frumkes, “Frequency dependence in scotopic flicker sensitivity,” Vis. Res. 25, 115–127 (1985).
[CrossRef]

Fulton, A. B.

M. Alpern, A. B. Fulton, and B. N. Baker, “Self-screening of rhodopsin in rod outer segments,” Vis. Res. 27, 1459–1470 (1987).
[CrossRef]

Fyhrquist, N.

V. I. Govardovskii, N. Fyhrquist, T. Reuter, D. G. Kuzmin, and K. Donner, “In search of the visual pigment template,” Vis. Neurosci. 17, 509–528 (2000).
[CrossRef]

Gaillard, E. R.

J. Dillon, L. Zheng, J. C. Merriam, and E. R. Gaillard, “Transmission of light to the aging human retina: possible implications for age related macular degeneration,” Exp. Eye Res. 79, 753–759 (2004).
[CrossRef]

E. R. Gaillard, L. Zheng, J. C. Merriam, and J. Dillon, “Age-related changes in the absorption characteristics of the primate lens,” Invest. Ophthalmol. Vis. Sci. 41, 1454–1459 (2000).

Gakamsky, D. M.

D. M. Gakamsky, B. Dhillon, J. Babraj, M. Shelton, and S. D. Smith, “Exploring the possibility of early cataract diagnostics based on tryptophan fluorescence,” J. R. Soc. Interface 8, 1616–1621 (2011).
[CrossRef]

Geeraets, W. J.

W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, and F. H. Schmidt, “The loss of light energy in retina and choroid,” Arch. Ophthalmol. 64, 606–615 (1960).
[CrossRef]

Gimenez, M. C.

M. C. Gimenez, M. J. Kanis, D. G. M. Beersma, B. A. E. van der Pol, D. van Norren, and M. C. M. Gordijn, “In vivo quantification of the retinal reflectance spectral composition in elderly subjects before and after cataract surgery: implications for the non-visual effects of light,” J. Biol. Rhythms 25, 123–131 (2010).
[CrossRef]

Glickman, R. D.

J. A. Zuclich, R. D. Glickman, and A. R. Menendez, “In situ measurements of lens fluorescence and its interference with visual function,” Invest. Ophthalmol. Vis. Sci. 33, 410–415 (1992).

Goger, D. G.

Gordijn, M. C. M.

M. C. Gimenez, M. J. Kanis, D. G. M. Beersma, B. A. E. van der Pol, D. van Norren, and M. C. M. Gordijn, “In vivo quantification of the retinal reflectance spectral composition in elderly subjects before and after cataract surgery: implications for the non-visual effects of light,” J. Biol. Rhythms 25, 123–131 (2010).
[CrossRef]

Gortlemeyer, R.

R. Gortlemeyer and H. Wieman, “Retest reliability and construct validity of critical flicker fusion frequency,” Pharmacopsychiatry 15, 24–28 (1982).
[CrossRef]

Govardovskii, V. I.

V. I. Govardovskii, N. Fyhrquist, T. Reuter, D. G. Kuzmin, and K. Donner, “In search of the visual pigment template,” Vis. Neurosci. 17, 509–528 (2000).
[CrossRef]

Gray, R.

R. Gray, S. A. Perkins, R. Suryakumar, B. Neuman, and W. A. Maxwell, “Reduced effect of glare disability on driving performance in patients with blue light–filtering intraocular lenses,” J. Cataract Refract.Surg. 37, 38–44 (2011).
[CrossRef]

Grimm, C.

A. Wenzel, V. Oberhauser, E. N. Pugh, T. D. Lamb, C. Grimm, M. Samardzija, E. Fahl, M. W. Seeliger, C. E. Rem, and J. von Lintig, “The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light,” J. Biol. Chem. 280, 29874–29884 (2005).
[CrossRef]

C. Grimm, C. E. Rem, P. O. Rol, and T. P. Williams, “Blue light’s effects on rhodopsin: photoreversal of bleaching in living rat eyes,” Invest. Ophthalmol. Vis. Sci. 41, 3984–3990 (2000).

Griswold, M. S.

M. S. Griswold and W. S. Stark, “Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet,” Vis. Res. 32, 1739–1743 (1992).
[CrossRef]

Gronfier, C.

L. S. Mure, P. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

O. Dkhissi-Benyahya, C. Gronfier, W. D. Vanssay, F. Flamant, and H. M. Cooper, “Modeling the role of mid-wavelength cones in circadian responses to light,” Neuron 53, 677–687 (2007).
[CrossRef]

Guerry, D.

W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, and F. H. Schmidt, “The loss of light energy in retina and choroid,” Arch. Ophthalmol. 64, 606–615 (1960).
[CrossRef]

Ham, W. T.

W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, and F. H. Schmidt, “The loss of light energy in retina and choroid,” Arch. Ophthalmol. 64, 606–615 (1960).
[CrossRef]

Hammond, B.

K. O’Brien, B. Smollon, B. Wooten, and B. Hammond, “Determining heterochromatic flicker photometry frequency for macular pigment optical densitometry by critical flicker fusion frequency,” J. Vis. 11, 55–55 (2011).
[CrossRef]

Hammond, B. R.

B. R. Wooten, B. R. Hammond, and L. M. Renzi, “Using scotopic and photopic flicker to measure lens optical density,” Ophthalmic Physiol. Opt. 27, 321–328 (2007).
[CrossRef]

B. R. Hammond and B. R. Wooten, “CFF thresholds: relation to macular pigment optical density,” Ophthalmic Physiol. Opt. 25, 315–319 (2005).
[CrossRef]

F. Delori, D. G. Goger, B. R. Hammond, D. M. Snodderly, and S. A. Burns, “Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry,” J. Opt. Soc. Am. A 18, 1212–1230 (2001).
[CrossRef]

B. R. Hammond, J. E. Nanez, C. Fair, and D. M. Snodderly, “Iris color and age-related changes in lens optical density,” J. Ophthalmic Physiol. Opt. 20, 381–386 (2000).
[CrossRef]

Hammond, J.

Hansen, M. Stormly

A. E. Broendsted, M. Stormly Hansen, H. Lund-Andersen, B. Sander, and L. Kessel, “Human lens transmission of blue light: a comparison of autofluorescence-based and direct spectral transmission determination,” Ophthalmol. Res. 46, 118–124 (2011).
[CrossRef]

Hao, W.

P. Chen, W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. Van Boemel, L. Wu, M. Yang, and H. K. Fong, “A photic visual cycle of rhodopsin regeneration is dependent on Rgr,” Nat. Genet. 28, 256–260 (2001).
[CrossRef]

Harlow, J. A.

J. L. Barbur, E. Konstantakopoulou, M. Rodriguez-Carmona, J. A. Harlow, A. G. Robson, and J. D. Moreland, “The macular assessment profile test—a new VDU-based technique for measuring the spatial distribution of the macular pigment, lens density and rapid flicker sensitivity,” Ophthalmic Physiol. Opt. 30, 470–483 (2010).
[CrossRef]

Hecht, S.

S. Hecht, S. Shlaer, and M. H. Pirenne, “Energy, quanta and vision,” J. Gen. Physiol. 25, 819–840 (1942).
[CrossRef]

Hopp, B.

L. Kolozsv, A. Ngrdi, B. Hopp, and Z. Bor, “UV absorbance of the human cornea in the 240- to 400 nm range,” Invest. Ophthalmol. Vis. Sci. 43, 2165–2168 (2002).

Howard, D. L.

C. A. Johnson, D. L. Howard, D. Marshall, and H. Shu, “A noninvasive video-based method for measuring lens transmission properties of the human eye,” Optom. Vis. Sci. 70, 944–955 (1993).
[CrossRef]

Howells, O.

O. Howells, F. Eperjesi, and H. Bartlett, “Measuring macular pigment optical density in vivo: a review of techniques,” Graefes Arch. Clin. Exp. Ophthalmol. 249, 315–347 (2011).
[CrossRef]

Hubbard, R.

R. Hubbard and A. Kropf, “The action of light on rhodopsin,” Proc. Natl. Acad. Sci. USA 44, 130–139 (1958).

Hunt, D.

J. Bowmaker, S. Astell, D. Hunt, and J. Mollon, “Photosensitive and photostable pigments in the retinae of old world monkeys,” J. Exp. Biol. 156, 1–19 (1991).

Ijspeert, J.

T. van den Berg, J. Ijspeert, and P. de Waard, “Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall,” Vis. Res. 31, 1361–1367 (1991).
[CrossRef]

Ives, H. E.

Jackson, G. R.

G. R. Jackson, C. Owsley, and G. McGwin, “Aging and dark adaptation,” Vis. Res. 39, 3975–3982 (1999).
[CrossRef]

Jaenicke, R.

H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Progr. Biophys. Mol. Biol. 86, 407–485 (2004).
[CrossRef]

Johnson, C. A.

C. A. Johnson, D. L. Howard, D. Marshall, and H. Shu, “A noninvasive video-based method for measuring lens transmission properties of the human eye,” Optom. Vis. Sci. 70, 944–955 (1993).
[CrossRef]

Jones, B.

M. Potash and B. Jones, “Aging and decision criteria for the detection of tones in noise,” J. Gerontol. 14, 953–960(1997).

Kanis, M. J.

M. C. Gimenez, M. J. Kanis, D. G. M. Beersma, B. A. E. van der Pol, D. van Norren, and M. C. M. Gordijn, “In vivo quantification of the retinal reflectance spectral composition in elderly subjects before and after cataract surgery: implications for the non-visual effects of light,” J. Biol. Rhythms 25, 123–131 (2010).
[CrossRef]

Katzgraber, F.

W. Ambach, M. Blumthaler, T. Schöpf, E. Ambach, F. Katzgraber, F. Daxecker, and A. Daxer, “Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation,” Doc. Ophthalmol. 88, 165–173 (1994).
[CrossRef]

Kessel, L.

A. E. Broendsted, M. Stormly Hansen, H. Lund-Andersen, B. Sander, and L. Kessel, “Human lens transmission of blue light: a comparison of autofluorescence-based and direct spectral transmission determination,” Ophthalmol. Res. 46, 118–124 (2011).
[CrossRef]

Keunen, J. E.

A. T. Liem, J. E. Keunen, D. van Norren, and J. van de Kraats, “Rod densitometry in the aging human eye,” Invest. Ophthalmol. Vis. Sci. 32, 2676–2682 (1991).

Kim, C. B. Y.

Kliegl, R.

J. S. Werner, S. K. Donnelly, and R. Kliegl, “Aging and human macular pigment density,” Vis. Res. 27, 257–268 (1987).
[CrossRef]

Kolozsv, L.

L. Kolozsv, A. Ngrdi, B. Hopp, and Z. Bor, “UV absorbance of the human cornea in the 240- to 400 nm range,” Invest. Ophthalmol. Vis. Sci. 43, 2165–2168 (2002).

Konstantakopoulou, E.

J. L. Barbur, E. Konstantakopoulou, M. Rodriguez-Carmona, J. A. Harlow, A. G. Robson, and J. D. Moreland, “The macular assessment profile test—a new VDU-based technique for measuring the spatial distribution of the macular pigment, lens density and rapid flicker sensitivity,” Ophthalmic Physiol. Opt. 30, 470–483 (2010).
[CrossRef]

Kraft, T. W.

T. W. Kraft, D. M. Schneeweis, and J. L. Schnapf, “Visual transduction in human rod photoreceptors,” J. Physiol. 464, 747–765 (1993).

Kropf, A.

R. Hubbard and A. Kropf, “The action of light on rhodopsin,” Proc. Natl. Acad. Sci. USA 44, 130–139 (1958).

Kuck, J. F.

N. T. Yu, M. Bando, and J. F. Kuck, “Fluorescence/Raman intensity ratio for monitoring the pathologic state of human lens,” Invest. Ophthalmol. Vis. Sci. 26, 97–101 (1985).

Kuppens, E. V.

J. A. Van Best and E. V. Kuppens, “Summary of studies on the blue-green autofluorescence and light transmission of the ocular lens,” J. Biomed. Opt. 1, 243–250 (1996).
[CrossRef]

Kuzmin, D. G.

V. I. Govardovskii, N. Fyhrquist, T. Reuter, D. G. Kuzmin, and K. Donner, “In search of the visual pigment template,” Vis. Neurosci. 17, 509–528 (2000).
[CrossRef]

Lamb, T.

T. Lamb, “Photoreceptor spectral sensitivities: common shape in the long-wavelength region,” Vis. Res. 35, 3083–3091 (1995).
[CrossRef]

Lamb, T. D.

A. Wenzel, V. Oberhauser, E. N. Pugh, T. D. Lamb, C. Grimm, M. Samardzija, E. Fahl, M. W. Seeliger, C. E. Rem, and J. von Lintig, “The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light,” J. Biol. Chem. 280, 29874–29884 (2005).
[CrossRef]

O. A. R. Mahroo and T. D. Lamb, “Recovery of the human photopic electroretinogram after bleaching exposures: estimation of pigment regeneration kinetics,” J. Physiol. 554, 417–437 (2003).
[CrossRef]

Landrum, J. T.

R. A. Bone and J. T. Landrum, “Heterochromatic flicker photometry,” Arch. Biochem. Biophys. 430, 137–142 (2004).
[CrossRef]

Liem, A. T.

A. T. Liem, J. E. Keunen, D. van Norren, and J. van de Kraats, “Rod densitometry in the aging human eye,” Invest. Ophthalmol. Vis. Sci. 32, 2676–2682 (1991).

Lin, K. F.

Lubsen, N. H.

H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Progr. Biophys. Mol. Biol. 86, 407–485 (2004).
[CrossRef]

Lund-Andersen, H.

A. E. Broendsted, M. Stormly Hansen, H. Lund-Andersen, B. Sander, and L. Kessel, “Human lens transmission of blue light: a comparison of autofluorescence-based and direct spectral transmission determination,” Ophthalmol. Res. 46, 118–124 (2011).
[CrossRef]

Lutze, M.

Mahroo, O. A. R.

O. A. R. Mahroo and T. D. Lamb, “Recovery of the human photopic electroretinogram after bleaching exposures: estimation of pigment regeneration kinetics,” J. Physiol. 554, 417–437 (2003).
[CrossRef]

Marshall, D.

C. A. Johnson, D. L. Howard, D. Marshall, and H. Shu, “A noninvasive video-based method for measuring lens transmission properties of the human eye,” Optom. Vis. Sci. 70, 944–955 (1993).
[CrossRef]

Maxwell, W. A.

R. Gray, S. A. Perkins, R. Suryakumar, B. Neuman, and W. A. Maxwell, “Reduced effect of glare disability on driving performance in patients with blue light–filtering intraocular lenses,” J. Cataract Refract.Surg. 37, 38–44 (2011).
[CrossRef]

Mayer, M. J.

McGwin, G.

G. R. Jackson, C. Owsley, and G. McGwin, “Aging and dark adaptation,” Vis. Res. 39, 3975–3982 (1999).
[CrossRef]

Menendez, A. R.

J. A. Zuclich, R. D. Glickman, and A. R. Menendez, “In situ measurements of lens fluorescence and its interference with visual function,” Invest. Ophthalmol. Vis. Sci. 33, 410–415 (1992).

Merriam, J. C.

J. Dillon, L. Zheng, J. C. Merriam, and E. R. Gaillard, “Transmission of light to the aging human retina: possible implications for age related macular degeneration,” Exp. Eye Res. 79, 753–759 (2004).
[CrossRef]

E. R. Gaillard, L. Zheng, J. C. Merriam, and J. Dillon, “Age-related changes in the absorption characteristics of the primate lens,” Invest. Ophthalmol. Vis. Sci. 41, 1454–1459 (2000).

Michael, R.

R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. B 366, 1278–1292 (2011).
[CrossRef]

Mollon, J.

J. Bowmaker, S. Astell, D. Hunt, and J. Mollon, “Photosensitive and photostable pigments in the retinae of old world monkeys,” J. Exp. Biol. 156, 1–19 (1991).

Mollon, J. D.

H. J. Dartnall, J. K. Bowmaker, and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. Lond. Ser. B 220, 115–130 (1983).
[CrossRef]

Moreland, J. D.

J. L. Barbur, E. Konstantakopoulou, M. Rodriguez-Carmona, J. A. Harlow, A. G. Robson, and J. D. Moreland, “The macular assessment profile test—a new VDU-based technique for measuring the spatial distribution of the macular pigment, lens density and rapid flicker sensitivity,” Ophthalmic Physiol. Opt. 30, 470–483 (2010).
[CrossRef]

Mure, L. S.

L. S. Mure, P. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

Nanez, J. E.

B. R. Hammond, J. E. Nanez, C. Fair, and D. M. Snodderly, “Iris color and age-related changes in lens optical density,” J. Ophthalmic Physiol. Opt. 20, 381–386 (2000).
[CrossRef]

Neuman, B.

R. Gray, S. A. Perkins, R. Suryakumar, B. Neuman, and W. A. Maxwell, “Reduced effect of glare disability on driving performance in patients with blue light–filtering intraocular lenses,” J. Cataract Refract.Surg. 37, 38–44 (2011).
[CrossRef]

Ngrdi, A.

L. Kolozsv, A. Ngrdi, B. Hopp, and Z. Bor, “UV absorbance of the human cornea in the 240- to 400 nm range,” Invest. Ophthalmol. Vis. Sci. 43, 2165–2168 (2002).

Nilsson, D.

E. J. Warrant and D. Nilsson, “Absorption of white light in photoreceptors,” Vis. Res. 38, 195–207 (1998).
[CrossRef]

Nunn, B. J.

D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “The photocurrent, noise and spectral sensitivity of rods of the monkey macaca fascicularis,” J. Physiol. 357, 575–607 (1984).

Nygaard, R.

R. Nygaard and T. Frumkes, “Frequency dependence in scotopic flicker sensitivity,” Vis. Res. 25, 115–127 (1985).
[CrossRef]

O’Brien, K.

K. O’Brien, B. Smollon, B. Wooten, and B. Hammond, “Determining heterochromatic flicker photometry frequency for macular pigment optical densitometry by critical flicker fusion frequency,” J. Vis. 11, 55–55 (2011).
[CrossRef]

Oberhauser, V.

A. Wenzel, V. Oberhauser, E. N. Pugh, T. D. Lamb, C. Grimm, M. Samardzija, E. Fahl, M. W. Seeliger, C. E. Rem, and J. von Lintig, “The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light,” J. Biol. Chem. 280, 29874–29884 (2005).
[CrossRef]

Ogden, T.

P. Chen, W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. Van Boemel, L. Wu, M. Yang, and H. K. Fong, “A photic visual cycle of rhodopsin regeneration is dependent on Rgr,” Nat. Genet. 28, 256–260 (2001).
[CrossRef]

Owsley, C.

G. R. Jackson, C. Owsley, and G. McGwin, “Aging and dark adaptation,” Vis. Res. 39, 3975–3982 (1999).
[CrossRef]

Ozolinsh, M.

M. Ozolinsh and P. Paulins, “LED based dual wavelength heterochromatic flicker method for separate evaluation of lutein and zeaxanthin in retina,” presented at the International Symposium on Biomedical Engineering and Medical Physics, 10–12 October 2012, Riga, Latvia.

Paulins, P.

M. Ozolinsh and P. Paulins, “LED based dual wavelength heterochromatic flicker method for separate evaluation of lutein and zeaxanthin in retina,” presented at the International Symposium on Biomedical Engineering and Medical Physics, 10–12 October 2012, Riga, Latvia.

Perkins, S. A.

R. Gray, S. A. Perkins, R. Suryakumar, B. Neuman, and W. A. Maxwell, “Reduced effect of glare disability on driving performance in patients with blue light–filtering intraocular lenses,” J. Cataract Refract.Surg. 37, 38–44 (2011).
[CrossRef]

Pirenne, M. H.

S. Hecht, S. Shlaer, and M. H. Pirenne, “Energy, quanta and vision,” J. Gen. Physiol. 25, 819–840 (1942).
[CrossRef]

Pokorny, J.

Potash, M.

M. Potash and B. Jones, “Aging and decision criteria for the detection of tones in noise,” J. Gerontol. 14, 953–960(1997).

Pousset, N.

N. Pousset, B. Rougi, and A. Razet, “Impact of current supply on LED colour,” Lighting Res. Technol. 42, 371–383 (2010).
[CrossRef]

Powers, M. K.

C. J. Bassi and M. K. Powers, “Daily fluctuations in the detectability of dim lights by humans,” Physiol. Behav. 38, 871–877 (1986).
[CrossRef]

Pugh, E. N.

A. Wenzel, V. Oberhauser, E. N. Pugh, T. D. Lamb, C. Grimm, M. Samardzija, E. Fahl, M. W. Seeliger, C. E. Rem, and J. von Lintig, “The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light,” J. Biol. Chem. 280, 29874–29884 (2005).
[CrossRef]

Razet, A.

N. Pousset, B. Rougi, and A. Razet, “Impact of current supply on LED colour,” Lighting Res. Technol. 42, 371–383 (2010).
[CrossRef]

Rem, C. E.

A. Wenzel, V. Oberhauser, E. N. Pugh, T. D. Lamb, C. Grimm, M. Samardzija, E. Fahl, M. W. Seeliger, C. E. Rem, and J. von Lintig, “The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light,” J. Biol. Chem. 280, 29874–29884 (2005).
[CrossRef]

C. Grimm, C. E. Rem, P. O. Rol, and T. P. Williams, “Blue light’s effects on rhodopsin: photoreversal of bleaching in living rat eyes,” Invest. Ophthalmol. Vis. Sci. 41, 3984–3990 (2000).

Renzi, L. M.

B. R. Wooten, B. R. Hammond, and L. M. Renzi, “Using scotopic and photopic flicker to measure lens optical density,” Ophthalmic Physiol. Opt. 27, 321–328 (2007).
[CrossRef]

Reuter, T.

V. I. Govardovskii, N. Fyhrquist, T. Reuter, D. G. Kuzmin, and K. Donner, “In search of the visual pigment template,” Vis. Neurosci. 17, 509–528 (2000).
[CrossRef]

Rieux, C.

L. S. Mure, P. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

Rife, L.

P. Chen, W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. Van Boemel, L. Wu, M. Yang, and H. K. Fong, “A photic visual cycle of rhodopsin regeneration is dependent on Rgr,” Nat. Genet. 28, 256–260 (2001).
[CrossRef]

Robson, A. G.

J. L. Barbur, E. Konstantakopoulou, M. Rodriguez-Carmona, J. A. Harlow, A. G. Robson, and J. D. Moreland, “The macular assessment profile test—a new VDU-based technique for measuring the spatial distribution of the macular pigment, lens density and rapid flicker sensitivity,” Ophthalmic Physiol. Opt. 30, 470–483 (2010).
[CrossRef]

Robson, J. G.

G. F. Cooper and J. G. Robson, “The yellow colour of the lens of man and other primates,” J. Physiol. 203, 411–417 (1969).

Rodriguez-Carmona, M.

J. L. Barbur, E. Konstantakopoulou, M. Rodriguez-Carmona, J. A. Harlow, A. G. Robson, and J. D. Moreland, “The macular assessment profile test—a new VDU-based technique for measuring the spatial distribution of the macular pigment, lens density and rapid flicker sensitivity,” Ophthalmic Physiol. Opt. 30, 470–483 (2010).
[CrossRef]

Rol, P. O.

C. Grimm, C. E. Rem, P. O. Rol, and T. P. Williams, “Blue light’s effects on rhodopsin: photoreversal of bleaching in living rat eyes,” Invest. Ophthalmol. Vis. Sci. 41, 3984–3990 (2000).

Rougi, B.

N. Pousset, B. Rougi, and A. Razet, “Impact of current supply on LED colour,” Lighting Res. Technol. 42, 371–383 (2010).
[CrossRef]

Roy, F.

D. Dumortier, B. Coutelier, T. Faulcon, and F. Roy, “PHOTOLUX: a new luminance mapping system based on Nikon Coolpix digital cameras,” in Proceedings of Lux Europa (Lux Europa, 2005), pp. 308–311.

Rushton, W.

W. Rushton, “Visual pigments in man,” in Handbook of Sensory Physiology. Photochemistry of Vision, H. J. A. Dartnall, ed. (Springer, 1972), pp. 481–528.

Sagawa, K.

Samardzija, M.

A. Wenzel, V. Oberhauser, E. N. Pugh, T. D. Lamb, C. Grimm, M. Samardzija, E. Fahl, M. W. Seeliger, C. E. Rem, and J. von Lintig, “The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light,” J. Biol. Chem. 280, 29874–29884 (2005).
[CrossRef]

Sample, P.

P. Sample, F. Esterson, R. Weinreb, and R. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).

Sander, B.

A. E. Broendsted, M. Stormly Hansen, H. Lund-Andersen, B. Sander, and L. Kessel, “Human lens transmission of blue light: a comparison of autofluorescence-based and direct spectral transmission determination,” Ophthalmol. Res. 46, 118–124 (2011).
[CrossRef]

Schmidt, F. H.

W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, and F. H. Schmidt, “The loss of light energy in retina and choroid,” Arch. Ophthalmol. 64, 606–615 (1960).
[CrossRef]

Schnapf, J. L.

T. W. Kraft, D. M. Schneeweis, and J. L. Schnapf, “Visual transduction in human rod photoreceptors,” J. Physiol. 464, 747–765 (1993).

D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “The photocurrent, noise and spectral sensitivity of rods of the monkey macaca fascicularis,” J. Physiol. 357, 575–607 (1984).

Schneeweis, D. M.

T. W. Kraft, D. M. Schneeweis, and J. L. Schnapf, “Visual transduction in human rod photoreceptors,” J. Physiol. 464, 747–765 (1993).

Schöpf, T.

W. Ambach, M. Blumthaler, T. Schöpf, E. Ambach, F. Katzgraber, F. Daxecker, and A. Daxer, “Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation,” Doc. Ophthalmol. 88, 165–173 (1994).
[CrossRef]

Seeliger, M. W.

A. Wenzel, V. Oberhauser, E. N. Pugh, T. D. Lamb, C. Grimm, M. Samardzija, E. Fahl, M. W. Seeliger, C. E. Rem, and J. von Lintig, “The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light,” J. Biol. Chem. 280, 29874–29884 (2005).
[CrossRef]

Sharpe, L. T.

A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vis. Res. 39, 2901–2927 (1999).
[CrossRef]

Shelton, M.

D. M. Gakamsky, B. Dhillon, J. Babraj, M. Shelton, and S. D. Smith, “Exploring the possibility of early cataract diagnostics based on tryptophan fluorescence,” J. R. Soc. Interface 8, 1616–1621 (2011).
[CrossRef]

Shen, D.

P. Chen, W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. Van Boemel, L. Wu, M. Yang, and H. K. Fong, “A photic visual cycle of rhodopsin regeneration is dependent on Rgr,” Nat. Genet. 28, 256–260 (2001).
[CrossRef]

Shlaer, S.

S. Hecht, S. Shlaer, and M. H. Pirenne, “Energy, quanta and vision,” J. Gen. Physiol. 25, 819–840 (1942).
[CrossRef]

Shu, H.

C. A. Johnson, D. L. Howard, D. Marshall, and H. Shu, “A noninvasive video-based method for measuring lens transmission properties of the human eye,” Optom. Vis. Sci. 70, 944–955 (1993).
[CrossRef]

Slingsby, C.

H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Progr. Biophys. Mol. Biol. 86, 407–485 (2004).
[CrossRef]

Smith, R. C.

Smith, S. D.

D. M. Gakamsky, B. Dhillon, J. Babraj, M. Shelton, and S. D. Smith, “Exploring the possibility of early cataract diagnostics based on tryptophan fluorescence,” J. R. Soc. Interface 8, 1616–1621 (2011).
[CrossRef]

Smith, V. C.

Smollon, B.

K. O’Brien, B. Smollon, B. Wooten, and B. Hammond, “Determining heterochromatic flicker photometry frequency for macular pigment optical densitometry by critical flicker fusion frequency,” J. Vis. 11, 55–55 (2011).
[CrossRef]

Snodderly, D.

D. Snodderly, P. Brown, F. Delori, and J. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).

Snodderly, D. M.

Spekreijse, H.

T. J. T. P. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vis. Res. 37, 249–253 (1997).
[CrossRef]

Stark, W. S.

M. S. Griswold and W. S. Stark, “Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet,” Vis. Res. 32, 1739–1743 (1992).
[CrossRef]

Stockman, A.

A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vis. Res. 39, 2901–2927 (1999).
[CrossRef]

Suryakumar, R.

R. Gray, S. A. Perkins, R. Suryakumar, B. Neuman, and W. A. Maxwell, “Reduced effect of glare disability on driving performance in patients with blue light–filtering intraocular lenses,” J. Cataract Refract.Surg. 37, 38–44 (2011).
[CrossRef]

Takahashi, Y.

Takao, M.

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295, 1070–1073 (2002).
[CrossRef]

Tan, K.

T. van den Berg and K. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vis. Res. 34, 1453–1456 (1994).
[CrossRef]

Tardieu, A.

H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Progr. Biophys. Mol. Biol. 86, 407–485 (2004).
[CrossRef]

Tyler, C. W.

Van Best, J. A.

J. A. Van Best and E. V. Kuppens, “Summary of studies on the blue-green autofluorescence and light transmission of the ocular lens,” J. Biomed. Opt. 1, 243–250 (1996).
[CrossRef]

Van Boemel, G. B.

P. Chen, W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. Van Boemel, L. Wu, M. Yang, and H. K. Fong, “A photic visual cycle of rhodopsin regeneration is dependent on Rgr,” Nat. Genet. 28, 256–260 (2001).
[CrossRef]

van de Kraats, J.

D. van Norren and J. van de Kraats, “Spectral transmission of intraocular lenses expressed as a virtual age,” Br. J. Ophthalmol. 91, 1374–1375 (2007).
[CrossRef]

J. van de Kraats and D. van Norren, “Optical density of the aging human ocular media in the visible and the UV,” J. Opt. Soc. Am. A 24, 1842–1857 (2007).
[CrossRef]

A. T. Liem, J. E. Keunen, D. van Norren, and J. van de Kraats, “Rod densitometry in the aging human eye,” Invest. Ophthalmol. Vis. Sci. 32, 2676–2682 (1991).

van den Berg, T.

T. van den Berg and K. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vis. Res. 34, 1453–1456 (1994).
[CrossRef]

T. van den Berg, J. Ijspeert, and P. de Waard, “Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall,” Vis. Res. 31, 1361–1367 (1991).
[CrossRef]

van den Berg, T. J.

T. J. van den Berg, “Quantal and visual efficiency of fluorescence in the lens of the human eye,” Invest. Ophthalmol. Vis. Sci. 34, 3566–3573 (1993).

van den Berg, T. J. T. P.

T. J. T. P. van den Berg, L. Franssen, and J. E. Coppens, “Straylight in the human eye: testing objectivity and optical character of the psychophysical measurement,” Ophthalmic Physiol. Opt. 29, 345–350 (2009).
[CrossRef]

T. J. T. P. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vis. Res. 37, 249–253 (1997).
[CrossRef]

van der Pol, B. A. E.

M. C. Gimenez, M. J. Kanis, D. G. M. Beersma, B. A. E. van der Pol, D. van Norren, and M. C. M. Gordijn, “In vivo quantification of the retinal reflectance spectral composition in elderly subjects before and after cataract surgery: implications for the non-visual effects of light,” J. Biol. Rhythms 25, 123–131 (2010).
[CrossRef]

Van Loo, J. A. J.

J. A. J. Van Loo and J. M. Enoch, “The scotopic Stiles-Crawford effect,” Vis. Res. 15, 1005–1009 (1975).
[CrossRef]

van Norren, D.

M. C. Gimenez, M. J. Kanis, D. G. M. Beersma, B. A. E. van der Pol, D. van Norren, and M. C. M. Gordijn, “In vivo quantification of the retinal reflectance spectral composition in elderly subjects before and after cataract surgery: implications for the non-visual effects of light,” J. Biol. Rhythms 25, 123–131 (2010).
[CrossRef]

D. van Norren and J. van de Kraats, “Spectral transmission of intraocular lenses expressed as a virtual age,” Br. J. Ophthalmol. 91, 1374–1375 (2007).
[CrossRef]

J. van de Kraats and D. van Norren, “Optical density of the aging human ocular media in the visible and the UV,” J. Opt. Soc. Am. A 24, 1842–1857 (2007).
[CrossRef]

N. P. A. Zagers and D. van Norren, “Absorption of the eye lens and macular pigment derived from the reflectance of cone photoreceptors,” J. Opt. Soc. Am. A 21, 2257–2268 (2004).
[CrossRef]

A. T. Liem, J. E. Keunen, D. van Norren, and J. van de Kraats, “Rod densitometry in the aging human eye,” Invest. Ophthalmol. Vis. Sci. 32, 2676–2682 (1991).

D. van Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Visual Res. 14, 1237–1244 (1974).
[CrossRef]

Vanssay, W. D.

O. Dkhissi-Benyahya, C. Gronfier, W. D. Vanssay, F. Flamant, and H. M. Cooper, “Modeling the role of mid-wavelength cones in circadian responses to light,” Neuron 53, 677–687 (2007).
[CrossRef]

von Lintig, J.

A. Wenzel, V. Oberhauser, E. N. Pugh, T. D. Lamb, C. Grimm, M. Samardzija, E. Fahl, M. W. Seeliger, C. E. Rem, and J. von Lintig, “The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light,” J. Biol. Chem. 280, 29874–29884 (2005).
[CrossRef]

Vos, J. J.

D. van Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Visual Res. 14, 1237–1244 (1974).
[CrossRef]

Wald, G.

G. Wald and P. K. Brown, “Human rhodopsin,” Science 127, 222–249 (1958).
[CrossRef]

G. Wald, “The photochemistry of vision,” Doc. Ophthalmol. 3, 94–137 (1949).
[CrossRef]

Wang, X. P.

P. Chen, W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. Van Boemel, L. Wu, M. Yang, and H. K. Fong, “A photic visual cycle of rhodopsin regeneration is dependent on Rgr,” Nat. Genet. 28, 256–260 (2001).
[CrossRef]

Warrant, E. J.

E. J. Warrant and D. Nilsson, “Absorption of white light in photoreceptors,” Vis. Res. 38, 195–207 (1998).
[CrossRef]

Weale, R. A.

R. A. Weale, “A theoretical link between lenticular absorbance and fluorescence,” Proc. Biol. Sci. 263, 1111–1116 (1996).

R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. 395, 577–587 (1988).

R. A. Weale, “Human lenticular fluorescence and transmissivity, and their effects on vision,” Exp. Eye Res. 41, 457–473 (1985).

Weinreb, R.

P. Sample, F. Esterson, R. Weinreb, and R. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).

Wenzel, A.

A. Wenzel, V. Oberhauser, E. N. Pugh, T. D. Lamb, C. Grimm, M. Samardzija, E. Fahl, M. W. Seeliger, C. E. Rem, and J. von Lintig, “The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light,” J. Biol. Chem. 280, 29874–29884 (2005).
[CrossRef]

Werner, J. S.

J. S. Werner, S. K. Donnelly, and R. Kliegl, “Aging and human macular pigment density,” Vis. Res. 27, 257–268 (1987).
[CrossRef]

Wieman, H.

R. Gortlemeyer and H. Wieman, “Retest reliability and construct validity of critical flicker fusion frequency,” Pharmacopsychiatry 15, 24–28 (1982).
[CrossRef]

Williams, R. C.

W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, and F. H. Schmidt, “The loss of light energy in retina and choroid,” Arch. Ophthalmol. 64, 606–615 (1960).
[CrossRef]

Williams, T. P.

C. Grimm, C. E. Rem, P. O. Rol, and T. P. Williams, “Blue light’s effects on rhodopsin: photoreversal of bleaching in living rat eyes,” Invest. Ophthalmol. Vis. Sci. 41, 3984–3990 (2000).

Wolter, J. R.

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. Vis. Sci. 1, 776–783 (1962).

Wooten, B.

K. O’Brien, B. Smollon, B. Wooten, and B. Hammond, “Determining heterochromatic flicker photometry frequency for macular pigment optical densitometry by critical flicker fusion frequency,” J. Vis. 11, 55–55 (2011).
[CrossRef]

Wooten, B. R.

B. R. Wooten, B. R. Hammond, and L. M. Renzi, “Using scotopic and photopic flicker to measure lens optical density,” Ophthalmic Physiol. Opt. 27, 321–328 (2007).
[CrossRef]

B. R. Hammond and B. R. Wooten, “CFF thresholds: relation to macular pigment optical density,” Ophthalmic Physiol. Opt. 25, 315–319 (2005).
[CrossRef]

J. Hammond, B. R. Wooten, and D. M. Snodderly, “Individual variations in the spatial profile of human macular pigment,” J. Opt. Soc. Am. A 14, 1187–1196 (1997).
[CrossRef]

Wu, J. C.

S. F. Chen, Y. Chang, and J. C. Wu, “The spatial distribution of macular pigment in humans,” Curr. Eye Res. 23, 422–434 (2001).

Wu, L.

P. Chen, W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. Van Boemel, L. Wu, M. Yang, and H. K. Fong, “A photic visual cycle of rhodopsin regeneration is dependent on Rgr,” Nat. Genet. 28, 256–260 (2001).
[CrossRef]

Xu, J.

Yang, M.

P. Chen, W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. Van Boemel, L. Wu, M. Yang, and H. K. Fong, “A photic visual cycle of rhodopsin regeneration is dependent on Rgr,” Nat. Genet. 28, 256–260 (2001).
[CrossRef]

Yu, N. T.

N. T. Yu, M. Bando, and J. F. Kuck, “Fluorescence/Raman intensity ratio for monitoring the pathologic state of human lens,” Invest. Ophthalmol. Vis. Sci. 26, 97–101 (1985).

Zagers, N. P. A.

Zheng, L.

J. Dillon, L. Zheng, J. C. Merriam, and E. R. Gaillard, “Transmission of light to the aging human retina: possible implications for age related macular degeneration,” Exp. Eye Res. 79, 753–759 (2004).
[CrossRef]

E. R. Gaillard, L. Zheng, J. C. Merriam, and J. Dillon, “Age-related changes in the absorption characteristics of the primate lens,” Invest. Ophthalmol. Vis. Sci. 41, 1454–1459 (2000).

Zuclich, J. A.

J. A. Zuclich, R. D. Glickman, and A. R. Menendez, “In situ measurements of lens fluorescence and its interference with visual function,” Invest. Ophthalmol. Vis. Sci. 33, 410–415 (1992).

Am. J. Ophthalmol. (1)

J. L. Brown, “Flash blindness,” Am. J. Ophthalmol. 60, 505–520 (1965).

Appl. Opt. (2)

Arch. Biochem. Biophys. (1)

R. A. Bone and J. T. Landrum, “Heterochromatic flicker photometry,” Arch. Biochem. Biophys. 430, 137–142 (2004).
[CrossRef]

Arch. Ophthalmol. (1)

W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, and F. H. Schmidt, “The loss of light energy in retina and choroid,” Arch. Ophthalmol. 64, 606–615 (1960).
[CrossRef]

Br. J. Ophthalmol. (1)

D. van Norren and J. van de Kraats, “Spectral transmission of intraocular lenses expressed as a virtual age,” Br. J. Ophthalmol. 91, 1374–1375 (2007).
[CrossRef]

Brit. Med. Bull. (1)

H. J. A. Dartnall, “The interpretation of spectral sensitivity curves,” Brit. Med. Bull. 9, 24–30 (1953).

Curr. Eye Res. (1)

S. F. Chen, Y. Chang, and J. C. Wu, “The spatial distribution of macular pigment in humans,” Curr. Eye Res. 23, 422–434 (2001).

Doc. Ophthalmol. (2)

W. Ambach, M. Blumthaler, T. Schöpf, E. Ambach, F. Katzgraber, F. Daxecker, and A. Daxer, “Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation,” Doc. Ophthalmol. 88, 165–173 (1994).
[CrossRef]

G. Wald, “The photochemistry of vision,” Doc. Ophthalmol. 3, 94–137 (1949).
[CrossRef]

Exp. Eye Res. (2)

J. Dillon, L. Zheng, J. C. Merriam, and E. R. Gaillard, “Transmission of light to the aging human retina: possible implications for age related macular degeneration,” Exp. Eye Res. 79, 753–759 (2004).
[CrossRef]

R. A. Weale, “Human lenticular fluorescence and transmissivity, and their effects on vision,” Exp. Eye Res. 41, 457–473 (1985).

Graefes Arch. Clin. Exp. Ophthalmol. (1)

O. Howells, F. Eperjesi, and H. Bartlett, “Measuring macular pigment optical density in vivo: a review of techniques,” Graefes Arch. Clin. Exp. Ophthalmol. 249, 315–347 (2011).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (10)

P. Sample, F. Esterson, R. Weinreb, and R. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).

N. T. Yu, M. Bando, and J. F. Kuck, “Fluorescence/Raman intensity ratio for monitoring the pathologic state of human lens,” Invest. Ophthalmol. Vis. Sci. 26, 97–101 (1985).

J. A. Zuclich, R. D. Glickman, and A. R. Menendez, “In situ measurements of lens fluorescence and its interference with visual function,” Invest. Ophthalmol. Vis. Sci. 33, 410–415 (1992).

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. Vis. Sci. 1, 776–783 (1962).

L. Kolozsv, A. Ngrdi, B. Hopp, and Z. Bor, “UV absorbance of the human cornea in the 240- to 400 nm range,” Invest. Ophthalmol. Vis. Sci. 43, 2165–2168 (2002).

A. T. Liem, J. E. Keunen, D. van Norren, and J. van de Kraats, “Rod densitometry in the aging human eye,” Invest. Ophthalmol. Vis. Sci. 32, 2676–2682 (1991).

E. R. Gaillard, L. Zheng, J. C. Merriam, and J. Dillon, “Age-related changes in the absorption characteristics of the primate lens,” Invest. Ophthalmol. Vis. Sci. 41, 1454–1459 (2000).

D. Snodderly, P. Brown, F. Delori, and J. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).

T. J. van den Berg, “Quantal and visual efficiency of fluorescence in the lens of the human eye,” Invest. Ophthalmol. Vis. Sci. 34, 3566–3573 (1993).

C. Grimm, C. E. Rem, P. O. Rol, and T. P. Williams, “Blue light’s effects on rhodopsin: photoreversal of bleaching in living rat eyes,” Invest. Ophthalmol. Vis. Sci. 41, 3984–3990 (2000).

J. Biol. Chem. (1)

A. Wenzel, V. Oberhauser, E. N. Pugh, T. D. Lamb, C. Grimm, M. Samardzija, E. Fahl, M. W. Seeliger, C. E. Rem, and J. von Lintig, “The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light,” J. Biol. Chem. 280, 29874–29884 (2005).
[CrossRef]

J. Biol. Rhythms (1)

M. C. Gimenez, M. J. Kanis, D. G. M. Beersma, B. A. E. van der Pol, D. van Norren, and M. C. M. Gordijn, “In vivo quantification of the retinal reflectance spectral composition in elderly subjects before and after cataract surgery: implications for the non-visual effects of light,” J. Biol. Rhythms 25, 123–131 (2010).
[CrossRef]

J. Biomed. Opt. (1)

J. A. Van Best and E. V. Kuppens, “Summary of studies on the blue-green autofluorescence and light transmission of the ocular lens,” J. Biomed. Opt. 1, 243–250 (1996).
[CrossRef]

J. Cataract Refract.Surg. (1)

R. Gray, S. A. Perkins, R. Suryakumar, B. Neuman, and W. A. Maxwell, “Reduced effect of glare disability on driving performance in patients with blue light–filtering intraocular lenses,” J. Cataract Refract.Surg. 37, 38–44 (2011).
[CrossRef]

J. Exp. Biol. (1)

J. Bowmaker, S. Astell, D. Hunt, and J. Mollon, “Photosensitive and photostable pigments in the retinae of old world monkeys,” J. Exp. Biol. 156, 1–19 (1991).

J. Gen. Physiol. (1)

S. Hecht, S. Shlaer, and M. H. Pirenne, “Energy, quanta and vision,” J. Gen. Physiol. 25, 819–840 (1942).
[CrossRef]

J. Gerontol. (1)

M. Potash and B. Jones, “Aging and decision criteria for the detection of tones in noise,” J. Gerontol. 14, 953–960(1997).

J. Ophthalmic Physiol. Opt. (1)

B. R. Hammond, J. E. Nanez, C. Fair, and D. M. Snodderly, “Iris color and age-related changes in lens optical density,” J. Ophthalmic Physiol. Opt. 20, 381–386 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (9)

N. P. A. Zagers and D. van Norren, “Absorption of the eye lens and macular pigment derived from the reflectance of cone photoreceptors,” J. Opt. Soc. Am. A 21, 2257–2268 (2004).
[CrossRef]

J. van de Kraats and D. van Norren, “Optical density of the aging human ocular media in the visible and the UV,” J. Opt. Soc. Am. A 24, 1842–1857 (2007).
[CrossRef]

K. Sagawa and Y. Takahashi, “Spectral luminous efficiency as a function of age,” J. Opt. Soc. Am. A 18, 2659–2667 (2001).
[CrossRef]

N. P. Cottaris, “Artifacts in spatiochromatic stimuli due to variations in preretinal absorption and axial chromatic aberration: implications for color physiology,” J. Opt. Soc. Am. A 20, 1694–1713 (2003).
[CrossRef]

F. Delori, D. G. Goger, B. R. Hammond, D. M. Snodderly, and S. A. Burns, “Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry,” J. Opt. Soc. Am. A 18, 1212–1230 (2001).
[CrossRef]

J. Hammond, B. R. Wooten, and D. M. Snodderly, “Individual variations in the spatial profile of human macular pigment,” J. Opt. Soc. Am. A 14, 1187–1196 (1997).
[CrossRef]

C. W. Tyler, “Two processes control variations in flicker sensitivity over the life span,” J. Opt. Soc. Am. A 6, 481–490 (1989).
[CrossRef]

C. B. Y. Kim and M. J. Mayer, “Foveal flicker sensitivity in healthy aging eyes. II. Cross-sectional aging trends from 18 through 77 years of age,” J. Opt. Soc. Am. A 11, 1958–1969 (1994).
[CrossRef]

J. Xu, J. Pokorny, and V. C. Smith, “Optical density of the human lens,” J. Opt. Soc. Am. A 14, 953–960 (1997).
[CrossRef]

J. Physiol. (6)

R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. 395, 577–587 (1988).

D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “The photocurrent, noise and spectral sensitivity of rods of the monkey macaca fascicularis,” J. Physiol. 357, 575–607 (1984).

G. F. Cooper and J. G. Robson, “The yellow colour of the lens of man and other primates,” J. Physiol. 203, 411–417 (1969).

T. W. Kraft, D. M. Schneeweis, and J. L. Schnapf, “Visual transduction in human rod photoreceptors,” J. Physiol. 464, 747–765 (1993).

O. A. R. Mahroo and T. D. Lamb, “Recovery of the human photopic electroretinogram after bleaching exposures: estimation of pigment regeneration kinetics,” J. Physiol. 554, 417–437 (2003).
[CrossRef]

J. D. Conner, “The temporal properties of rod vision,” J. Physiol. 332, 139–155 (1982).

J. R. Soc. Interface (1)

D. M. Gakamsky, B. Dhillon, J. Babraj, M. Shelton, and S. D. Smith, “Exploring the possibility of early cataract diagnostics based on tryptophan fluorescence,” J. R. Soc. Interface 8, 1616–1621 (2011).
[CrossRef]

J. Vis. (1)

K. O’Brien, B. Smollon, B. Wooten, and B. Hammond, “Determining heterochromatic flicker photometry frequency for macular pigment optical densitometry by critical flicker fusion frequency,” J. Vis. 11, 55–55 (2011).
[CrossRef]

Lighting Res. Technol. (1)

N. Pousset, B. Rougi, and A. Razet, “Impact of current supply on LED colour,” Lighting Res. Technol. 42, 371–383 (2010).
[CrossRef]

Nat. Genet. (1)

P. Chen, W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. Van Boemel, L. Wu, M. Yang, and H. K. Fong, “A photic visual cycle of rhodopsin regeneration is dependent on Rgr,” Nat. Genet. 28, 256–260 (2001).
[CrossRef]

Neuron (1)

O. Dkhissi-Benyahya, C. Gronfier, W. D. Vanssay, F. Flamant, and H. M. Cooper, “Modeling the role of mid-wavelength cones in circadian responses to light,” Neuron 53, 677–687 (2007).
[CrossRef]

Ophthalmic Physiol. Opt. (5)

B. R. Wooten, B. R. Hammond, and L. M. Renzi, “Using scotopic and photopic flicker to measure lens optical density,” Ophthalmic Physiol. Opt. 27, 321–328 (2007).
[CrossRef]

B. R. Hammond and B. R. Wooten, “CFF thresholds: relation to macular pigment optical density,” Ophthalmic Physiol. Opt. 25, 315–319 (2005).
[CrossRef]

J. L. Barbur, E. Konstantakopoulou, M. Rodriguez-Carmona, J. A. Harlow, A. G. Robson, and J. D. Moreland, “The macular assessment profile test—a new VDU-based technique for measuring the spatial distribution of the macular pigment, lens density and rapid flicker sensitivity,” Ophthalmic Physiol. Opt. 30, 470–483 (2010).
[CrossRef]

T. J. T. P. van den Berg, L. Franssen, and J. E. Coppens, “Straylight in the human eye: testing objectivity and optical character of the psychophysical measurement,” Ophthalmic Physiol. Opt. 29, 345–350 (2009).
[CrossRef]

W. N. Charman, “Age, lens transmittance, and the possible effects of light on melatonin suppression,” Ophthalmic Physiol. Opt. 23, 181–187 (2003).
[CrossRef]

Ophthalmol. Res. (1)

A. E. Broendsted, M. Stormly Hansen, H. Lund-Andersen, B. Sander, and L. Kessel, “Human lens transmission of blue light: a comparison of autofluorescence-based and direct spectral transmission determination,” Ophthalmol. Res. 46, 118–124 (2011).
[CrossRef]

Opt. Express (1)

Optom. Vis. Sci. (1)

C. A. Johnson, D. L. Howard, D. Marshall, and H. Shu, “A noninvasive video-based method for measuring lens transmission properties of the human eye,” Optom. Vis. Sci. 70, 944–955 (1993).
[CrossRef]

Pharmacopsychiatry (1)

R. Gortlemeyer and H. Wieman, “Retest reliability and construct validity of critical flicker fusion frequency,” Pharmacopsychiatry 15, 24–28 (1982).
[CrossRef]

Philos. Trans. R. Soc. B (1)

R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. B 366, 1278–1292 (2011).
[CrossRef]

Physiol. Behav. (1)

C. J. Bassi and M. K. Powers, “Daily fluctuations in the detectability of dim lights by humans,” Physiol. Behav. 38, 871–877 (1986).
[CrossRef]

PLoS ONE (1)

L. S. Mure, P. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

Proc. Biol. Sci. (1)

R. A. Weale, “A theoretical link between lenticular absorbance and fluorescence,” Proc. Biol. Sci. 263, 1111–1116 (1996).

Proc. Natl. Acad. Sci. USA (1)

R. Hubbard and A. Kropf, “The action of light on rhodopsin,” Proc. Natl. Acad. Sci. USA 44, 130–139 (1958).

Proc. R. Soc. Lond. Ser. B (1)

H. J. Dartnall, J. K. Bowmaker, and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. Lond. Ser. B 220, 115–130 (1983).
[CrossRef]

Progr. Biophys. Mol. Biol. (1)

H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Progr. Biophys. Mol. Biol. 86, 407–485 (2004).
[CrossRef]

Science (2)

G. Wald and P. K. Brown, “Human rhodopsin,” Science 127, 222–249 (1958).
[CrossRef]

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295, 1070–1073 (2002).
[CrossRef]

Vis. Neurosci. (1)

V. I. Govardovskii, N. Fyhrquist, T. Reuter, D. G. Kuzmin, and K. Donner, “In search of the visual pigment template,” Vis. Neurosci. 17, 509–528 (2000).
[CrossRef]

Vis. Res. (12)

T. Lamb, “Photoreceptor spectral sensitivities: common shape in the long-wavelength region,” Vis. Res. 35, 3083–3091 (1995).
[CrossRef]

M. S. Griswold and W. S. Stark, “Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet,” Vis. Res. 32, 1739–1743 (1992).
[CrossRef]

M. Alpern, A. B. Fulton, and B. N. Baker, “Self-screening of rhodopsin in rod outer segments,” Vis. Res. 27, 1459–1470 (1987).
[CrossRef]

J. S. Werner, S. K. Donnelly, and R. Kliegl, “Aging and human macular pigment density,” Vis. Res. 27, 257–268 (1987).
[CrossRef]

R. Nygaard and T. Frumkes, “Frequency dependence in scotopic flicker sensitivity,” Vis. Res. 25, 115–127 (1985).
[CrossRef]

T. J. T. P. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vis. Res. 37, 249–253 (1997).
[CrossRef]

E. J. Warrant and D. Nilsson, “Absorption of white light in photoreceptors,” Vis. Res. 38, 195–207 (1998).
[CrossRef]

G. R. Jackson, C. Owsley, and G. McGwin, “Aging and dark adaptation,” Vis. Res. 39, 3975–3982 (1999).
[CrossRef]

T. van den Berg and K. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vis. Res. 34, 1453–1456 (1994).
[CrossRef]

J. A. J. Van Loo and J. M. Enoch, “The scotopic Stiles-Crawford effect,” Vis. Res. 15, 1005–1009 (1975).
[CrossRef]

A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vis. Res. 39, 2901–2927 (1999).
[CrossRef]

T. van den Berg, J. Ijspeert, and P. de Waard, “Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall,” Vis. Res. 31, 1361–1367 (1991).
[CrossRef]

Visual Res. (1)

D. van Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Visual Res. 14, 1237–1244 (1974).
[CrossRef]

Other (3)

D. Dumortier, B. Coutelier, T. Faulcon, and F. Roy, “PHOTOLUX: a new luminance mapping system based on Nikon Coolpix digital cameras,” in Proceedings of Lux Europa (Lux Europa, 2005), pp. 308–311.

W. Rushton, “Visual pigments in man,” in Handbook of Sensory Physiology. Photochemistry of Vision, H. J. A. Dartnall, ed. (Springer, 1972), pp. 481–528.

M. Ozolinsh and P. Paulins, “LED based dual wavelength heterochromatic flicker method for separate evaluation of lutein and zeaxanthin in retina,” presented at the International Symposium on Biomedical Engineering and Medical Physics, 10–12 October 2012, Riga, Latvia.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Physical lens density setup. The view of the annulus as seen by the subject. The subject positions himself to the chinrest and sees the annulus flickering in scotopic conditions.

Fig. 2.
Fig. 2.

(A) Photo of the annulus with a long exposure time resulting in the color being a mixture of the 410 and 560 nm. The vertical reflections on the sides come from the chin rest metal frame, and one in the lower part of the annulus from the chin rest. (B) Corresponding luminance map with Photolux system [17]. The observed high homogeneity of the annulus is due to the use of multiple diffusing sheets.

Fig. 3.
Fig. 3.

Ocular media density measurement protocol. After 45 min of DA, subjects performed a threshold detection training phase with the nonpreferred eye (‘nondominating’, left for majority of the subjects) and were instructed to increase the light intensity of the 560 nm light until the detection of the annulus was flickering. Training was followed by a threshold detection procedure for 560 and 410 nm lights with the preferred eye. In a second step subject had to detect their CFF by increasing (ascending) or decreasing (descending) annulus flickering frequency. In the last step of the protocol (flicker fusion) the subject had to abolish or minimize their perception of flickering by adjusting intensity of a 410 nm light either by increasing it (UP) or decreasing it (DOWN). Flicker fusion was made using both eyes, starting with the nonpreferred eye.

Fig. 4.
Fig. 4.

Sensitivity of the method for rhodopsin parameters. Separate analysis for rhodopsin peak sensitivity λmax (left, above) and rhodopsin axial pigment density drh (right, above). Values used by us are λmax=495nm and drh=0.40. The nomogram of Govardovskii et al. [13] includes the β-band; thus the short-wavelength lobe is elevated. The lights are normalized to have the same total photon density; thus the green 560 nm has a lower peak value.

Fig. 5.
Fig. 5.

Ocular media density index as a function of age, (A) estimated using the HFP technique (age coefficient ai=0.000155 [Eq. (8)], R20.79), and (B) using the absolute scotopic threshold condition (age coefficient ai=0.000107 [Eq. (8)], R20.42). All values are given as mean±SD.

Fig. 6.
Fig. 6.

Relative spectral transmittance of the three age groups as derived using the virtual age with the model of [9]: young group (top, red curve), middle-aged group (middle, blue curve), and elderly group (bottom, green curve). Young, agevirtual=23.38(7.6+5.0); middle, agevirtual=40.32(3.8+3.6); elderly, agevirtual=88.81(1.8+2.1).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

DstdDiff=log10380780(L1(λ)×10DstdObs(λ)dλL2(λ)×10DstdObs(λ)dλ).
DocularMedia=DstdDiffΔI.
ΔR=log10380780(L1(λ)×S(λ)dλL2(λ)×S(λ)dλ).
S(λ)ss=log10{1[S(λ)·(110dRh)]dRh},
Dmedia(λ)=dRL(age)×MRL(λ)+MTP(λ)+dLY(age)×MLY(λ)+dLOUV(age)×MLOUV(λ)+dLO(age)×MLO(λ)+dneutral,
Mi,gaussian=norm×exp({[w×(λλpeak)]2}),
MRL(λ)=(400/λ)4.
di=di,0+αi×age2
Dmedia(λ)=(0.446+0.000031×age2)×(400/λ)4+14.19×10.68×exp({[0.057×(λ273)]2})+(0.9980.000063×age2)×2.13×exp({[0.029×(λ370)]2})+(0.0590.000186×age2)×11.95×exp({[0.021×(λ325)]2})+(0.0160.000132×age2)×1.43×exp({[0.008×(λ325)]2})+0.111.

Metrics