Abstract

Telecentric architecture is proposed for circumventing, by the pure-optical method, the residual parabolic phase distortion inherent to standard configuration of digital holographic microscopy. This optical circumvention produces several important advantages. One is that there is no need for computer compensation of the parabolic phase during the phase map recovering procedure. The other is that in off-axis configuration, the spatial frequency useful domain is enlarged. The validity of the method is demonstrated by performing quantitative measurement of depth differences with high axial resolution.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef] [PubMed]
  2. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994).
    [CrossRef]
  3. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [CrossRef]
  4. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express 9, 294–302 (2001).
    [CrossRef] [PubMed]
  5. D. Gabor, “A new microscopic principle,” Nature 161, 777–778(1948).
    [CrossRef] [PubMed]
  6. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a non-invasive contrast imaging technique allowing quantitative visualization of living cells with subwavelenght axial accuracy,” Opt. Lett. 30, 468–471 (2005).
    [CrossRef] [PubMed]
  7. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [CrossRef]
  8. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34, 767–770 (2009).
    [CrossRef] [PubMed]
  9. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503–2506 (2004).
    [CrossRef] [PubMed]
  10. L. Miccio, A. Finizio, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Dynamic DIC by digital holography microscopy for enhancing phase-contrast visualization,” Biomed. Opt. Express 2, 331–344 (2011).
    [CrossRef] [PubMed]
  11. P. Ferraro, S. De Nicola, A. Finizio, C. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946(2003).
    [CrossRef] [PubMed]
  12. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete compensation in digital microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006).
    [CrossRef]
  13. P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31, 1405–1407 (2006).
    [CrossRef] [PubMed]
  14. F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23, 2944–2953 (2006).
    [CrossRef]
  15. Z. W. Zhou, Y. Yingjie, and A. Asundi, “Study on aberration suppresing methods in digital micro-holography,” Opt. Lasers Eng. 47, 264–270 (2009).
    [CrossRef]
  16. C. J. Mann, L. Yu, C. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
    [CrossRef] [PubMed]
  17. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for inversting fast dynamics in trnsparent systems,” Opt. Lett. 30, 1165–1167 (2005).
    [CrossRef] [PubMed]
  18. T. Colomb, J. Kühn, F. Charière, and C. Depeursinge, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).
    [CrossRef] [PubMed]
  19. G. Coppola, G. Di Caprio, M. Gioffré, R. Puglisi, D. Balduzzi, A. Galli, L. Miccio, M. Paturzo, S. Grilli, A. Finizio, and P. Ferraro, “Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction,” Opt. Lett. 35, 3390–3392 (2010).
    [CrossRef] [PubMed]
  20. J. Jang, C. Y. Bae, J.-K. Park, and J. C. Ye, “Self-reference quantitative phase microscopy for microfluidic devices,” Opt. Lett. 35, 514–516 (2010).
    [CrossRef] [PubMed]
  21. Q. Weijan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett. 34, 1276–1279 (2009).
    [CrossRef]
  22. T. Kozacki, M. Józwik, and R. Józwicki, “Determination of optical field generated by using digital holography,” Opto-Electron. Rev. 17, 211–216 (2009).
    [CrossRef]
  23. R. Juskaitis, “Characterizing high-NA microscope objective lenses,” in Optical Imaging and Microscopy: Techniques and Advanced Systems, P.Török and F.J.Kao, eds. (Springer, 2003), pp. 21–43.
  24. M. Martínez-Corral and G. Saavedra, “The resolution challenge in 3D optical microscopy,” Prog. Opt. 53, 1–67 (2009).
    [CrossRef]
  25. R. M. Goldstein, H. A. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
    [CrossRef]
  26. L. Aiello, D. Riccio, P. Ferraro, S. Grillo, L. Sansone, G. Coppola, S. De Nicola, and A. Finizio, “Green’s formulation for robust phase unwrapping in digital holography,” Opt. Lasers Eng. 45, 750–755 (2007).
    [CrossRef]
  27. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
    [CrossRef]
  28. J. Kühn, E. Cuche, Y. Emery, T. Coulomb, F. Charrière, F. Monfort, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804(2006).
    [CrossRef]
  29. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. 25, 1744–1761 (2008).
    [CrossRef]

2011 (1)

2010 (2)

2009 (5)

Q. Weijan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett. 34, 1276–1279 (2009).
[CrossRef]

T. Kozacki, M. Józwik, and R. Józwicki, “Determination of optical field generated by using digital holography,” Opto-Electron. Rev. 17, 211–216 (2009).
[CrossRef]

M. Martínez-Corral and G. Saavedra, “The resolution challenge in 3D optical microscopy,” Prog. Opt. 53, 1–67 (2009).
[CrossRef]

Z. W. Zhou, Y. Yingjie, and A. Asundi, “Study on aberration suppresing methods in digital micro-holography,” Opt. Lasers Eng. 47, 264–270 (2009).
[CrossRef]

N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34, 767–770 (2009).
[CrossRef] [PubMed]

2008 (1)

P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. 25, 1744–1761 (2008).
[CrossRef]

2007 (1)

L. Aiello, D. Riccio, P. Ferraro, S. Grillo, L. Sansone, G. Coppola, S. De Nicola, and A. Finizio, “Green’s formulation for robust phase unwrapping in digital holography,” Opt. Lasers Eng. 45, 750–755 (2007).
[CrossRef]

2006 (5)

2005 (3)

2004 (1)

2003 (1)

2001 (1)

2000 (1)

1999 (2)

1994 (2)

1988 (1)

R. M. Goldstein, H. A. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
[CrossRef]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778(1948).
[CrossRef] [PubMed]

Aiello, L.

L. Aiello, D. Riccio, P. Ferraro, S. Grillo, L. Sansone, G. Coppola, S. De Nicola, and A. Finizio, “Green’s formulation for robust phase unwrapping in digital holography,” Opt. Lasers Eng. 45, 750–755 (2007).
[CrossRef]

Alferi, D.

Aspert, N.

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete compensation in digital microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006).
[CrossRef]

J. Kühn, E. Cuche, Y. Emery, T. Coulomb, F. Charrière, F. Monfort, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804(2006).
[CrossRef]

Asundi, A.

Z. W. Zhou, Y. Yingjie, and A. Asundi, “Study on aberration suppresing methods in digital micro-holography,” Opt. Lasers Eng. 47, 264–270 (2009).
[CrossRef]

Q. Weijan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett. 34, 1276–1279 (2009).
[CrossRef]

Badizadegan, K.

Bae, C. Y.

Balduzzi, D.

Bevilacqua, F.

Botkine, M.

J. Kühn, E. Cuche, Y. Emery, T. Coulomb, F. Charrière, F. Monfort, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804(2006).
[CrossRef]

Bourquin, S.

Charière, F.

Charrière, F.

Choo, C. O.

Colomb, T.

Coppola, C.

Coppola, G.

G. Coppola, G. Di Caprio, M. Gioffré, R. Puglisi, D. Balduzzi, A. Galli, L. Miccio, M. Paturzo, S. Grilli, A. Finizio, and P. Ferraro, “Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction,” Opt. Lett. 35, 3390–3392 (2010).
[CrossRef] [PubMed]

L. Aiello, D. Riccio, P. Ferraro, S. Grillo, L. Sansone, G. Coppola, S. De Nicola, and A. Finizio, “Green’s formulation for robust phase unwrapping in digital holography,” Opt. Lasers Eng. 45, 750–755 (2007).
[CrossRef]

Coulomb, T.

J. Kühn, E. Cuche, Y. Emery, T. Coulomb, F. Charrière, F. Monfort, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804(2006).
[CrossRef]

Cuche, E.

J. Kühn, E. Cuche, Y. Emery, T. Coulomb, F. Charrière, F. Monfort, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804(2006).
[CrossRef]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete compensation in digital microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006).
[CrossRef]

F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23, 2944–2953 (2006).
[CrossRef]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a non-invasive contrast imaging technique allowing quantitative visualization of living cells with subwavelenght axial accuracy,” Opt. Lett. 30, 468–471 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[CrossRef]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
[CrossRef]

Dasari, R. R.

De Nicola, S.

De Petrocellis, L.

Deflores, L. P.

Depeursinge, C.

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete compensation in digital microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006).
[CrossRef]

F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23, 2944–2953 (2006).
[CrossRef]

J. Kühn, E. Cuche, Y. Emery, T. Coulomb, F. Charrière, F. Monfort, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804(2006).
[CrossRef]

T. Colomb, J. Kühn, F. Charière, and C. Depeursinge, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a non-invasive contrast imaging technique allowing quantitative visualization of living cells with subwavelenght axial accuracy,” Opt. Lett. 30, 468–471 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
[CrossRef]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[CrossRef]

Di Caprio, G.

Emery, Y.

J. Kühn, E. Cuche, Y. Emery, T. Coulomb, F. Charrière, F. Monfort, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804(2006).
[CrossRef]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a non-invasive contrast imaging technique allowing quantitative visualization of living cells with subwavelenght axial accuracy,” Opt. Lett. 30, 468–471 (2005).
[CrossRef] [PubMed]

Feld, M. S.

Ferraro, P.

L. Miccio, A. Finizio, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Dynamic DIC by digital holography microscopy for enhancing phase-contrast visualization,” Biomed. Opt. Express 2, 331–344 (2011).
[CrossRef] [PubMed]

G. Coppola, G. Di Caprio, M. Gioffré, R. Puglisi, D. Balduzzi, A. Galli, L. Miccio, M. Paturzo, S. Grilli, A. Finizio, and P. Ferraro, “Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction,” Opt. Lett. 35, 3390–3392 (2010).
[CrossRef] [PubMed]

L. Aiello, D. Riccio, P. Ferraro, S. Grillo, L. Sansone, G. Coppola, S. De Nicola, and A. Finizio, “Green’s formulation for robust phase unwrapping in digital holography,” Opt. Lasers Eng. 45, 750–755 (2007).
[CrossRef]

P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31, 1405–1407 (2006).
[CrossRef] [PubMed]

P. Ferraro, S. De Nicola, A. Finizio, C. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946(2003).
[CrossRef] [PubMed]

S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express 9, 294–302 (2001).
[CrossRef] [PubMed]

Finizio, A.

L. Miccio, A. Finizio, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Dynamic DIC by digital holography microscopy for enhancing phase-contrast visualization,” Biomed. Opt. Express 2, 331–344 (2011).
[CrossRef] [PubMed]

G. Coppola, G. Di Caprio, M. Gioffré, R. Puglisi, D. Balduzzi, A. Galli, L. Miccio, M. Paturzo, S. Grilli, A. Finizio, and P. Ferraro, “Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction,” Opt. Lett. 35, 3390–3392 (2010).
[CrossRef] [PubMed]

L. Aiello, D. Riccio, P. Ferraro, S. Grillo, L. Sansone, G. Coppola, S. De Nicola, and A. Finizio, “Green’s formulation for robust phase unwrapping in digital holography,” Opt. Lasers Eng. 45, 750–755 (2007).
[CrossRef]

P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31, 1405–1407 (2006).
[CrossRef] [PubMed]

P. Ferraro, S. De Nicola, A. Finizio, C. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946(2003).
[CrossRef] [PubMed]

S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express 9, 294–302 (2001).
[CrossRef] [PubMed]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778(1948).
[CrossRef] [PubMed]

Galli, A.

Gioffré, M.

Goldstein, R. M.

R. M. Goldstein, H. A. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
[CrossRef]

Grilli, S.

Grillo, S.

L. Aiello, D. Riccio, P. Ferraro, S. Grillo, L. Sansone, G. Coppola, S. De Nicola, and A. Finizio, “Green’s formulation for robust phase unwrapping in digital holography,” Opt. Lasers Eng. 45, 750–755 (2007).
[CrossRef]

Ikeda, T.

Iwai, H.

Jang, J.

Józwicki, R.

T. Kozacki, M. Józwik, and R. Józwicki, “Determination of optical field generated by using digital holography,” Opto-Electron. Rev. 17, 211–216 (2009).
[CrossRef]

Józwik, M.

T. Kozacki, M. Józwik, and R. Józwicki, “Determination of optical field generated by using digital holography,” Opto-Electron. Rev. 17, 211–216 (2009).
[CrossRef]

Jüptner, W.

Juskaitis, R.

R. Juskaitis, “Characterizing high-NA microscope objective lenses,” in Optical Imaging and Microscopy: Techniques and Advanced Systems, P.Török and F.J.Kao, eds. (Springer, 2003), pp. 21–43.

Kim, M. K.

Kozacki, T.

T. Kozacki, M. Józwik, and R. Józwicki, “Determination of optical field generated by using digital holography,” Opto-Electron. Rev. 17, 211–216 (2009).
[CrossRef]

Kühn, J.

Leval, J.

P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. 25, 1744–1761 (2008).
[CrossRef]

Lo, C.

Magistretti, P. J.

Magro, C.

Mann, C. J.

Marian, A.

Marquet, P.

Martínez-Corral, M.

M. Martínez-Corral and G. Saavedra, “The resolution challenge in 3D optical microscopy,” Prog. Opt. 53, 1–67 (2009).
[CrossRef]

Meucci, R.

Miccio, L.

Monfort, F.

J. Kühn, E. Cuche, Y. Emery, T. Coulomb, F. Charrière, F. Monfort, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804(2006).
[CrossRef]

Montfort, F.

Park, J.-K.

Paturzo, M.

Picart, P.

P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. 25, 1744–1761 (2008).
[CrossRef]

Pierattini, G.

Popescu, G.

Puglisi, R.

Rappaz, B.

Riccio, D.

L. Aiello, D. Riccio, P. Ferraro, S. Grillo, L. Sansone, G. Coppola, S. De Nicola, and A. Finizio, “Green’s formulation for robust phase unwrapping in digital holography,” Opt. Lasers Eng. 45, 750–755 (2007).
[CrossRef]

Rinehart, M. T.

Saavedra, G.

M. Martínez-Corral and G. Saavedra, “The resolution challenge in 3D optical microscopy,” Prog. Opt. 53, 1–67 (2009).
[CrossRef]

Sansone, L.

L. Aiello, D. Riccio, P. Ferraro, S. Grillo, L. Sansone, G. Coppola, S. De Nicola, and A. Finizio, “Green’s formulation for robust phase unwrapping in digital holography,” Opt. Lasers Eng. 45, 750–755 (2007).
[CrossRef]

Schnars, U.

Shaked, N. T.

Vaughan, J. C.

Wax, A.

Weijan, Q.

Werner, C.

R. M. Goldstein, H. A. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
[CrossRef]

Ye, J. C.

Yingjie, Y.

Q. Weijan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett. 34, 1276–1279 (2009).
[CrossRef]

Z. W. Zhou, Y. Yingjie, and A. Asundi, “Study on aberration suppresing methods in digital micro-holography,” Opt. Lasers Eng. 47, 264–270 (2009).
[CrossRef]

Yu, L.

Zebker, H. A.

R. M. Goldstein, H. A. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
[CrossRef]

Zhou, Z. W.

Z. W. Zhou, Y. Yingjie, and A. Asundi, “Study on aberration suppresing methods in digital micro-holography,” Opt. Lasers Eng. 47, 264–270 (2009).
[CrossRef]

Appl. Opt. (4)

Biomed. Opt. Express (1)

J. Opt. Soc. Am. (1)

P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. 25, 1744–1761 (2008).
[CrossRef]

J. Opt. Soc. Am. A (3)

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778(1948).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lasers Eng. (2)

L. Aiello, D. Riccio, P. Ferraro, S. Grillo, L. Sansone, G. Coppola, S. De Nicola, and A. Finizio, “Green’s formulation for robust phase unwrapping in digital holography,” Opt. Lasers Eng. 45, 750–755 (2007).
[CrossRef]

Z. W. Zhou, Y. Yingjie, and A. Asundi, “Study on aberration suppresing methods in digital micro-holography,” Opt. Lasers Eng. 47, 264–270 (2009).
[CrossRef]

Opt. Lett. (9)

P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31, 1405–1407 (2006).
[CrossRef] [PubMed]

G. Coppola, G. Di Caprio, M. Gioffré, R. Puglisi, D. Balduzzi, A. Galli, L. Miccio, M. Paturzo, S. Grilli, A. Finizio, and P. Ferraro, “Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction,” Opt. Lett. 35, 3390–3392 (2010).
[CrossRef] [PubMed]

J. Jang, C. Y. Bae, J.-K. Park, and J. C. Ye, “Self-reference quantitative phase microscopy for microfluidic devices,” Opt. Lett. 35, 514–516 (2010).
[CrossRef] [PubMed]

Q. Weijan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett. 34, 1276–1279 (2009).
[CrossRef]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a non-invasive contrast imaging technique allowing quantitative visualization of living cells with subwavelenght axial accuracy,” Opt. Lett. 30, 468–471 (2005).
[CrossRef] [PubMed]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
[CrossRef]

N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34, 767–770 (2009).
[CrossRef] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503–2506 (2004).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for inversting fast dynamics in trnsparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[CrossRef] [PubMed]

Opto-Electron. Rev. (1)

T. Kozacki, M. Józwik, and R. Józwicki, “Determination of optical field generated by using digital holography,” Opto-Electron. Rev. 17, 211–216 (2009).
[CrossRef]

Proc. SPIE (1)

J. Kühn, E. Cuche, Y. Emery, T. Coulomb, F. Charrière, F. Monfort, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804(2006).
[CrossRef]

Prog. Opt. (1)

M. Martínez-Corral and G. Saavedra, “The resolution challenge in 3D optical microscopy,” Prog. Opt. 53, 1–67 (2009).
[CrossRef]

Radio Sci. (1)

R. M. Goldstein, H. A. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
[CrossRef]

Other (1)

R. Juskaitis, “Characterizing high-NA microscope objective lenses,” in Optical Imaging and Microscopy: Techniques and Advanced Systems, P.Török and F.J.Kao, eds. (Springer, 2003), pp. 21–43.

Supplementary Material (1)

» Media 1: MOV (1214 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Typical scheme based on Mach–Zehnder interferometer for off-axis DHM in (a) transmission mode and (b) reflection mode.

Fig. 2
Fig. 2

Hologram obtained with a standard, nontelecentric, DHM architecture in absence of an object with (a) in-line configuration and (b) off-axis configuration. (c) Retrieved phase map for the hologram in (b), showing wrapped-spherical phase-factor.

Fig. 3
Fig. 3

Schematic of a telecentric microscope.

Fig. 4
Fig. 4

Telecentric configuration for off-axis DHM in (a) transmission mode and (b) reflection mode.

Fig. 5
Fig. 5

Hologram obtained with an off-axis, telecentric DHM in the absence of an object.

Fig. 6
Fig. 6

Fourier transform of the recorded hologram in absence of an object for the case in which the arrangement is (a) telecentric and (b) nontelecentric. The effect of the variation of the TL position in the spectrum can be appreciated in Media 1.

Fig. 7
Fig. 7

(a) Direct phase of the reconstructed hologram. (b) Roughness parameters of the center zone of the quantitative phase extracted from the red line profile in (a).

Fig. 8
Fig. 8

(a) Recorded hologram. (b) Reconstruction of the object intensity distribution.

Fig. 9
Fig. 9

Phase reconstruction of a test USAF 1951 in an off-axis reflection mode. (a) Phase map. (b) Quantitative phase.

Fig. 10
Fig. 10

Profile of the reconstruction in Fig. 9. The structure corresponds to a 4-3 group.

Fig. 11
Fig. 11

Measured phase reconstruction of a bivaluated Fresnel lens obtained by DHM in off-axis transmission mode. (a) Phase map. (b) Quantitative phase.

Fig. 12
Fig. 12

Measured profile of the Fresnel lens.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = | O ( x , y ) + R ( x , y ) | 2 = | O ( x , y ) | 2 + | R ( x , y ) | 2 + O * ( x , y ) R ( x , y ) + R * ( x , y ) O ( x , y ) .
I H ( r , l ) = r = 1 N x l = 1 N y I ( r Δ x 0 , l Δ y 0 ) ,
Γ d ( m , n ) = 1 i λ d exp ( i π λ d [ ( m N x Δ x 0 ) 2 + ( n N y Δ y 0 ) 2 ] ) × DFT { I F ( r Δ x 0 , l Δ y 0 ) R D ( r Δ x 0 , l Δ y 0 ) exp ( i k 2 d [ ( r Δ x 0 ) 2 + ( l Δ y 0 ) 2 ] ) } .
I d ( m , n ) = | Γ d ( m , n ) | 2 ,
Φ d ( m , n ) = tan 1 Im [ Γ d ( m , n ) ] Re [ Γ d ( m , n ) ] .
Φ ( x , y ) = i k 2 μ ( x 2 + y 2 ) + Φ ob d ( x , y ) .
U o ( x , y , z ) = 1 M 2 U o ( x M , y M , z M 2 ) 3 h ( x , y , z ) ,
Φ ¯ ( x , y ) = 2 π n λ t I ( x , y ) ,
t o ( x , y ) = t I ( x , y ) M 2 ,

Metrics