Abstract

We previously demonstrated, with both theoretical and experimental studies, the dynamic range limitation with spectral domain optical coherence tomography (OCT) relative to time domain OCT. A significant portion of this limitation was due to the difference of analog/digital conversion. In this paper, a new method of true logarithmic amplification is discussed theoretically and tested experimentally to increase the dynamic range of a swept source OCT. With the current experimental setup, an increase of the dynamic range by about 6dB was obtained.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Brezinski, Optical Coherence Tomography: Principle and Practice (Academic, 2006).
  2. M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy—Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
    [PubMed]
  3. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  4. M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185-1192 (1999).
    [CrossRef]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  6. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  7. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997).
    [CrossRef] [PubMed]
  8. H. Gerd and L. Michael Walter, “Coherence radar and spectral radar—New tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  9. E. Gotzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583-594 (2005).
    [CrossRef] [PubMed]
  10. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159-3161 (2005).
    [CrossRef] [PubMed]
  11. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000lines/s,” Opt. Lett. 31, 2975-2977 (2006).
    [CrossRef] [PubMed]
  12. T. Mitsui, “Dynamic range of optical reflectometry with spectral interferometry,” Jpn. J. Appl. Phys., Part 1 38, 6133-6137 (1999).
    [CrossRef]
  13. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003).
    [CrossRef] [PubMed]
  14. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  15. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  16. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367-376 (2004).
    [CrossRef] [PubMed]
  17. B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12, 044007 (2007).
    [CrossRef] [PubMed]
  18. K. Zheng, B. Liu, C. Y. Huang, and M. E. Brezinski, “Experimental confirmation of potential swept source optical coherence tomography performance limitations,” Appl. Opt. 47, 6151-6158 (2008).
    [CrossRef] [PubMed]
  19. E. Azimi, B. Liu, and M. E. Brezinski, “Real-time and high performance calibration method for high-speed SS-OCT,” J. Biomed. Opt. (accepted).
  20. M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, 2002).
  21. M. E. Brezinski and B. Liu, “Nonlocal quantum macroscopic superposition in a high-thermal low-purity state,” Phys. Rev. A 78, 063824 (2008).
    [CrossRef]
  22. C. T. Chen, Signals and Systems (Oxford Univ. Press, 2004).
  23. E. O. Brigham, The Fast Fourier Transform and its Applications (Prentice Hall, 1988).
  24. S. A. Boppart, “Surgical diagnostics, guidance, and intervention using optical coherence tomography,” Ph.D. thesis (Massachusetts Institute of Technology, Cambridge, 1998).
  25. G. J. Tearney, “Optical biopsy of in vivo tissue using optical coherence tomography,” Ph.D. thesis (Massachusetts Institute of Technology, 1996).
  26. G. Acciari, F. Giannini, and E. Limiti, “Theory and performance of parabolic true logarithmic amplifier,” IEE Proc.: Circuits Devices Syst. 144, 223-228 (1997).
    [CrossRef]
  27. B. Loesch, “UHF True Logarithmic IF Amplifier,” IEEE Trans. Aerosp. Electron. Syst. AES9, 660-664 (1973).
    [CrossRef]
  28. A. Woroncow and J. Croney, “A true IF logarithmic amplifier using twin-gain stages,” Radio Electron. Eng. 32, 149-155 (1966).
    [CrossRef]
  29. C. H. Chen, “Signal-to-noise ratios in logarithmic amplifiers,” Proc. IEEE 57, 1167-1168 (1969).

2008 (2)

2007 (1)

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12, 044007 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

2004 (1)

2003 (3)

1999 (2)

T. Mitsui, “Dynamic range of optical reflectometry with spectral interferometry,” Jpn. J. Appl. Phys., Part 1 38, 6133-6137 (1999).
[CrossRef]

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185-1192 (1999).
[CrossRef]

1998 (1)

H. Gerd and L. Michael Walter, “Coherence radar and spectral radar—New tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

1997 (3)

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

G. Acciari, F. Giannini, and E. Limiti, “Theory and performance of parabolic true logarithmic amplifier,” IEE Proc.: Circuits Devices Syst. 144, 223-228 (1997).
[CrossRef]

1996 (1)

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy—Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1973 (1)

B. Loesch, “UHF True Logarithmic IF Amplifier,” IEEE Trans. Aerosp. Electron. Syst. AES9, 660-664 (1973).
[CrossRef]

1969 (1)

C. H. Chen, “Signal-to-noise ratios in logarithmic amplifiers,” Proc. IEEE 57, 1167-1168 (1969).

1966 (1)

A. Woroncow and J. Croney, “A true IF logarithmic amplifier using twin-gain stages,” Radio Electron. Eng. 32, 149-155 (1966).
[CrossRef]

Acciari, G.

G. Acciari, F. Giannini, and E. Limiti, “Theory and performance of parabolic true logarithmic amplifier,” IEE Proc.: Circuits Devices Syst. 144, 223-228 (1997).
[CrossRef]

Adler, D. C.

Azimi, E.

E. Azimi, B. Liu, and M. E. Brezinski, “Real-time and high performance calibration method for high-speed SS-OCT,” J. Biomed. Opt. (accepted).

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

S. A. Boppart, “Surgical diagnostics, guidance, and intervention using optical coherence tomography,” Ph.D. thesis (Massachusetts Institute of Technology, Cambridge, 1998).

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, 2002).

Bouma, B. E.

Brezinski, M. E.

M. E. Brezinski and B. Liu, “Nonlocal quantum macroscopic superposition in a high-thermal low-purity state,” Phys. Rev. A 78, 063824 (2008).
[CrossRef]

K. Zheng, B. Liu, C. Y. Huang, and M. E. Brezinski, “Experimental confirmation of potential swept source optical coherence tomography performance limitations,” Appl. Opt. 47, 6151-6158 (2008).
[CrossRef] [PubMed]

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12, 044007 (2007).
[CrossRef] [PubMed]

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185-1192 (1999).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy—Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

M. E. Brezinski, Optical Coherence Tomography: Principle and Practice (Academic, 2006).

E. Azimi, B. Liu, and M. E. Brezinski, “Real-time and high performance calibration method for high-speed SS-OCT,” J. Biomed. Opt. (accepted).

Brigham, E. O.

E. O. Brigham, The Fast Fourier Transform and its Applications (Prentice Hall, 1988).

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, C. H.

C. H. Chen, “Signal-to-noise ratios in logarithmic amplifiers,” Proc. IEEE 57, 1167-1168 (1969).

Chen, C. T.

C. T. Chen, Signals and Systems (Oxford Univ. Press, 2004).

Chen, T. C.

Chinn, S. R.

Choma, M. A.

Croney, J.

A. Woroncow and J. Croney, “A true IF logarithmic amplifier using twin-gain stages,” Radio Electron. Eng. 32, 149-155 (1966).
[CrossRef]

de Boer, J. F.

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fercher, A. F.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000lines/s,” Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185-1192 (1999).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy—Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gerd, H.

H. Gerd and L. Michael Walter, “Coherence radar and spectral radar—New tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Giannini, F.

G. Acciari, F. Giannini, and E. Limiti, “Theory and performance of parabolic true logarithmic amplifier,” IEE Proc.: Circuits Devices Syst. 144, 223-228 (1997).
[CrossRef]

Gotzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy—Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Huang, C. Y.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Izatt, J. A.

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy—Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Leitgeb, R.

Leitgeb, R. A.

Limiti, E.

G. Acciari, F. Giannini, and E. Limiti, “Theory and performance of parabolic true logarithmic amplifier,” IEE Proc.: Circuits Devices Syst. 144, 223-228 (1997).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Liu, B.

M. E. Brezinski and B. Liu, “Nonlocal quantum macroscopic superposition in a high-thermal low-purity state,” Phys. Rev. A 78, 063824 (2008).
[CrossRef]

K. Zheng, B. Liu, C. Y. Huang, and M. E. Brezinski, “Experimental confirmation of potential swept source optical coherence tomography performance limitations,” Appl. Opt. 47, 6151-6158 (2008).
[CrossRef] [PubMed]

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12, 044007 (2007).
[CrossRef] [PubMed]

E. Azimi, B. Liu, and M. E. Brezinski, “Real-time and high performance calibration method for high-speed SS-OCT,” J. Biomed. Opt. (accepted).

Loesch, B.

B. Loesch, “UHF True Logarithmic IF Amplifier,” IEEE Trans. Aerosp. Electron. Syst. AES9, 660-664 (1973).
[CrossRef]

Michael Walter, L.

H. Gerd and L. Michael Walter, “Coherence radar and spectral radar—New tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Mitsui, T.

T. Mitsui, “Dynamic range of optical reflectometry with spectral interferometry,” Jpn. J. Appl. Phys., Part 1 38, 6133-6137 (1999).
[CrossRef]

Nassif, N. A.

Oh, W. Y.

Park, B. H.

Pierce, M. C.

Pircher, M.

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Sarunic, M. V.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy—Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy—Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159-3161 (2005).
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367-376 (2004).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy—Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

G. J. Tearney, “Optical biopsy of in vivo tissue using optical coherence tomography,” Ph.D. thesis (Massachusetts Institute of Technology, 1996).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, 2002).

Woroncow, A.

A. Woroncow and J. Croney, “A true IF logarithmic amplifier using twin-gain stages,” Radio Electron. Eng. 32, 149-155 (1966).
[CrossRef]

Yang, C. H.

Yun, S. H.

Zheng, K.

Appl. Opt. (1)

Circulation (1)

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy—Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

IEE Proc.: Circuits Devices Syst. (1)

G. Acciari, F. Giannini, and E. Limiti, “Theory and performance of parabolic true logarithmic amplifier,” IEE Proc.: Circuits Devices Syst. 144, 223-228 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185-1192 (1999).
[CrossRef]

IEEE Trans. Aerosp. Electron. Syst. (1)

B. Loesch, “UHF True Logarithmic IF Amplifier,” IEEE Trans. Aerosp. Electron. Syst. AES9, 660-664 (1973).
[CrossRef]

J. Biomed. Opt. (2)

H. Gerd and L. Michael Walter, “Coherence radar and spectral radar—New tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12, 044007 (2007).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys., Part 1 (1)

T. Mitsui, “Dynamic range of optical reflectometry with spectral interferometry,” Jpn. J. Appl. Phys., Part 1 38, 6133-6137 (1999).
[CrossRef]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. A (1)

M. E. Brezinski and B. Liu, “Nonlocal quantum macroscopic superposition in a high-thermal low-purity state,” Phys. Rev. A 78, 063824 (2008).
[CrossRef]

Proc. IEEE (1)

C. H. Chen, “Signal-to-noise ratios in logarithmic amplifiers,” Proc. IEEE 57, 1167-1168 (1969).

Radio Electron. Eng. (1)

A. Woroncow and J. Croney, “A true IF logarithmic amplifier using twin-gain stages,” Radio Electron. Eng. 32, 149-155 (1966).
[CrossRef]

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Other (7)

M. E. Brezinski, Optical Coherence Tomography: Principle and Practice (Academic, 2006).

E. Azimi, B. Liu, and M. E. Brezinski, “Real-time and high performance calibration method for high-speed SS-OCT,” J. Biomed. Opt. (accepted).

M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, 2002).

C. T. Chen, Signals and Systems (Oxford Univ. Press, 2004).

E. O. Brigham, The Fast Fourier Transform and its Applications (Prentice Hall, 1988).

S. A. Boppart, “Surgical diagnostics, guidance, and intervention using optical coherence tomography,” Ph.D. thesis (Massachusetts Institute of Technology, Cambridge, 1998).

G. J. Tearney, “Optical biopsy of in vivo tissue using optical coherence tomography,” Ph.D. thesis (Massachusetts Institute of Technology, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of a generic OCT based on a free-space Michelson interferometer.

Fig. 2
Fig. 2

Flow charts of signal and noises evolving in different OCT embodiments: (a) TD-OCT, (b) SS-OCT, (c) FD-OCT.

Fig. 3
Fig. 3

(a) Flow chart of a modified SS-OCT with TLA. (b) Illustrated TLA output with a low-level input OCT signal. (c) Illustrated TLA output with a high-level input OCT signal.

Fig. 4
Fig. 4

Characteristic relations between the output of the preamplifier ( V in ) and the input of the ADC ( V out ) in the condition of with or without TLA.

Fig. 5
Fig. 5

Schematic of the experimental setup.

Fig. 6
Fig. 6

Signals in the SS-OCT system without a TLA: (a) a spectral interferogram close to the saturation level of the ADC; (b) retrieved A-scan corresponding to (a); (c) a spectral interferogram saturates the ADC.

Fig. 7
Fig. 7

Signals in the SS-OCT system with a TLA: (a) a log-amplified spectral interferogram with a level higher than the saturation level in the system without TLA, (b) recovered (a) in linear scale after ADC, (c) corresponding A-scan of (b).

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

E 0 ( t ) = 0 a 0 ( ν ) exp { i [ ϕ 0 ( ν ) 2 π ν t ] } d ν .
I 0 = 1 2 E 0 ( t ) E 0 * ( t ) = S ( ν ) d ν = 2 0 S ( ν ) d ν ,
Γ 0 ( τ ) = S ( ν ) exp ( i 2 π ν τ ) d ν .
E R ( t ) = 1 2 0 r R a 0 ( ν ) exp { j [ ϕ 0 ( ν ) 2 π k z R + 2 π ν t ] } d ν .
I R = 1 2 E R ( t ) E R * ( t ) = r R 2 4 S ( ν ) d ν = r R 2 I 0 4 .
E S ( t ) = 1 2 0 r S ( z ) a 0 ( ν ) exp { j [ ϕ 0 ( ν ) 2 π k z + 2 π ν t ] } d ν d z ,
I S = 1 2 E S ( t ) E S * ( t ) = r S 2 ( z ) 4 S ( ν ) d ν d z = I 0 4 r S 2 ( z ) d z .
I D ( z ) = 1 2 ( E R + E S ) ( E R + E S ) * = I R + I S + 0 S ( ν ) r R r S ( z ) cos [ 2 π k ( z z R ) ] d k d z .
I D ( z ) = I R + I S + 1 2 r R r S ( z ) d z S ( k ) exp [ j 2 π k ( z z R ) ] d k .
Γ 0 ( z ) = S ( k ) exp [ j 2 π k z ] d k .
I D ( z ) = I R + I S + 1 2 r R r S ( z ) Γ 0 ( z z R ) d z = I R + I S + 1 2 r R r S ( z ) Γ 0 ( z ) .
E R ( t , k ) = 1 2 r R a 0 ( k ) exp [ j ϕ 0 ( k ) ] exp ( j 2 π ν t ) exp ( j 2 π k z R ) d z ,
E S ( t , k ) = 1 2 a 0 ( k ) exp [ j ϕ 0 ( k ) ] exp ( j 2 π ν t ) r S ( z ) exp ( j 2 π k z ) d z .
I D ( k ) = 1 4 S ( k ) { r R 2 + r R FT [ r S ( z z R ) ] + r R FT { [ r S ( z R z ) ] } + | FT [ r S ( z ) ] | 2 } .
FT 1 [ I D ( k ) ] = 1 4 FT 1 [ S ( k ) ] { r R 2 δ ( z ) + r R r S ( z z R ) + r R r S ( z R z ) + FT 1 { | FT [ r S ( z ) ] | 2 } } .
I ( t ) = I R + I S + ( r S r R 2 ) Γ 0 [ V c ( t ) ] .
I ( k ) = S ( k ) { r R 2 4 + r S 2 4 + r S r R 2 Re [ exp ( i 2 π k z 0 ) ] } ,
D R = i max i min = i max ( 0 ) σ n = r R r S _ max I 0 2 σ n .
D R ADC limited = r R r S _ max 2 l Δ 2 Δ = r R r S _ max 2 l 1 .
D R Array limited = r R r S _ max Q w 2 σ n ,

Metrics