Abstract

Recently, we have introduced a transillumination technique for biomedical diagnosis. The technique, pass-through photon-based transillumination, relies on interferometric measurements to recover the information of interest. In this work, we present the forward-calculated analytical interferograms that describe the behavior of the system. Stochastic modeling of radiation interacting with tissue enables determination of amplitude and phase parameters, indispensable for computation of the interferograms. Sample variability is assessed by studying tissue phantoms similar to those used in the experimental verification of the technique and that are representative of (abnormal) dental tissues. For tissue characterization, perfect recovery of the integrated attenuation ensues by employing spatially compact radiation sources. For tissue imaging, spatially extended sources with broad bandwidth are superior due to the implicit longitudinal coherence filter. For both applications, sample variability issues may be neutralized by permitting spatial divergence of scattered photons.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Diagnosis and management of dental caries throughout life,” National Institutes of Health Consensus Statement 18 (NIH, 2001), pp. 1-30.
  2. I. Pretty, “Caries detection and diagnosis: Novel technologies,” J. Dent. 34, 727-739 (2006).
    [CrossRef] [PubMed]
  3. D. Boston, “Incipient and hidden caries,” Dent. Clin. North Am. 49, xi-xii (2005).
    [CrossRef] [PubMed]
  4. J. Yang and V. Dutra, “Utility of radiology, laser fluorescence, and transillumination,” Dent. Clin. North Am. 49, 739-752 (2005).
    [CrossRef] [PubMed]
  5. A. Hall and J. Girkin, “A review of potential new diagnostic modalities for caries lesions,” J. Dent. Res. 83, C89-C94 (2004).
    [CrossRef] [PubMed]
  6. M. Huysmans, “Electrical measurements for early caries detection,” in Proceedings of the 4th Indiana Conference on Early Detection of Dental Caries, G.Stookey, ed. (Indiana U. Press, 1999), pp. 123-142.
  7. C. Longbottom and M. Huysmans, “Electrical measurements for use in caries clinical trials,” J. Dent. Res. 83, C76-C79 (2004).
    [CrossRef] [PubMed]
  8. S. White and D. Yoon, “Comparative performance of digital and conventional images for detecting proximal surface caries,” Dentomaxillofac. Radiol. 26, 32-38 (1997).
    [CrossRef] [PubMed]
  9. R. Ellwood, R. Davies, and H. Worthington, “Evaluation of a dental subtraction radiography system,” J. Periodontal Res. 21, 241-248 (1997).
    [CrossRef]
  10. F. Yanikoğlu and M. Analoui, “Ultrasonic methods for early caries detection,” in Proceedings of the 4th Indiana Conference on Early Detection of Dental Caries, G.Stookey, ed. (Indiana U. Press, 1999), pp. 101-122.
  11. F. Yanikoğlu, F. Öztürk, O. Hayran, M. Analoui, and G. Stookey, “Detection of natural white spot caries lesions by an ultrasonic system,” Caries Res. 34, 225-232 (2000).
    [CrossRef]
  12. B. Angmar-Mansson and J. ten Bosch, “Quantitative light-induced fluorescence (QLF): a method for assessment of incipient caries lesions,” Dentomaxillofac. Radiol. 30, 298-307 (2001).
    [CrossRef] [PubMed]
  13. M. van der Veen and E. de Josselin de Jong, “Application of quantitative light-induced fluorescence for assessing early caries lesions,” in Monographs in Oral Science: Assessment of Oral Health, R.Faller, ed. (Karger, 2001), pp. 144-162.
  14. B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, “Dental OCT,” Opt. Express 3, 230-238 (1998).
    [CrossRef] [PubMed]
  15. A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59-69 (2000).
    [CrossRef]
  16. R. Jones, G. Huynh, G. Jones, and D. Fried, “Near-infrared transillumination at 1310-nm for the imaging of early dental decay,” Opt. Express 11, 2259-2265 (2003).
    [CrossRef] [PubMed]
  17. C. Bühler, P. Ngaotheppitak, and D. Fried, “Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm,” Opt. Express 13, 573-582 (2005).
    [CrossRef] [PubMed]
  18. C. Pine, “Fibre-optic transillumination (FOTI) in caries diagnosis,” in Proceedings of the 1st Indiana Conference on Early Detection of Dental Caries, G.Stookey, ed. (Indiana U. Press, 1996), pp. 51-65.
  19. G. Davies, H. Worthington, J. Clarkson, P. Thomas, and R. Davies, “The use of fibre-optic transillumination in general dental practice,” Br. Dent. J. 191, 145-147 (2001).
    [CrossRef] [PubMed]
  20. P. Vacas-Jacques, G. Paez, and M. Strojnik, “Pass-through photon-based biomedical transillumination,” J. Biomed. Opt. 13, 041307 (2008).
    [CrossRef] [PubMed]
  21. G. Paez, M. Strojnik, and M. Scholl, “Interferometric tissue characterization: I. Theory,” Proc. SPIE 5883, 58830Y (2005).
    [CrossRef]
  22. M. Strojnik and G. Paez, “Interferometric tissue characterization: II. Experimental,” Proc. SPIE 5883, 58830W (2005).
    [CrossRef]
  23. M. Strojnik and G. Paez, “Interferometric tissue characterization: III. Calibration,” Proc. SPIE 5883, 58830V (2005).
    [CrossRef]
  24. G. Paez, M. Strojnik, and S. Scholl, “Interferometric tissue characterization: IV. Material coherence function,” Proc. SPIE 5883, 58830X (2005).
    [CrossRef]
  25. P. Vacas-Jacques, M. Strojnik, and G. Paez, “Monte-Carlo simulation of photon transillumination time of flight,” Proc. SPIE 6631, 663114 (2007).
    [CrossRef]
  26. R. Jones and D. Fried, “Attenuation of 1310-nm and 1550-nm laser light through sound dental enamel,” Proc. SPIE 4610, 187-190 (2002).
    [CrossRef]
  27. D. Fried, J. Featherstone, C. Darling, R. Jones, P. Ngaotheppitak, and C. Bühler, “Early caries imaging and monitoring with near-infrared light,” Dent. Clin. North Am. 49, 771-793 (2005).
    [CrossRef] [PubMed]
  28. Y. Pan, R. Birngruber, J. Rosperich, and R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564-6574 (1995).
    [CrossRef] [PubMed]
  29. L. Wang, S. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
    [CrossRef] [PubMed]
  30. M. Yip and M. Carvalho, “A Monte-Carlo maplet for the study of the optical properties of biological tissues,” Comput. Phys. Commun. 177, 965-975 (2007).
    [CrossRef]
  31. S. Flock, B. Wilson, and M. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835-841 (1987).
    [CrossRef] [PubMed]
  32. W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
    [CrossRef]
  33. J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420-4438 (2005).
    [CrossRef] [PubMed]
  34. J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10393-10405 (2005).
  35. M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12, 6530-6539 (2004).
    [CrossRef] [PubMed]
  36. G. Xiong, P. Xue, J. Wu, Q. Miao, R. Wang, and L. Ji, “Particle-fixed Monte Carlo model for optical coherence tomography,” Opt. Express 13, 2182-2195 (2005).
    [CrossRef] [PubMed]
  37. J. Zijp, J. ten Bosch, and R. Groenhuis, “HeNe-laser light scattering by human dental enamel,” J. Dent. Res. 74, 1891-1898 (1995).
    [CrossRef] [PubMed]
  38. D. Fried, R. Glena, J. Featherstone, and W. Seka, “The nature of light scattering in dental enamel and dentin at visible and near-IR wavelengths,” Appl. Opt. 34, 1278-1285 (1995).
    [CrossRef] [PubMed]
  39. B. Pogue and M. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
    [CrossRef] [PubMed]
  40. H. van Staveren, C. Moes, J. van Marle, S. Prahl, and M. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30, 4507-4514 (1991).
    [CrossRef] [PubMed]
  41. S. Flock, S. Jacques, B. Wilson, W. Star, and M. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992).
    [CrossRef] [PubMed]
  42. M. Modell, V. Ryabukho, D. Lyakin, V. Lychagov, E. Vitkin, I. Itzkan, and L. Perelman, “Autocorrelation low coherence interferometry,” Opt. Commun. 281, 1991-1996 (2008).
    [CrossRef]
  43. R Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2008).

2008

P. Vacas-Jacques, G. Paez, and M. Strojnik, “Pass-through photon-based biomedical transillumination,” J. Biomed. Opt. 13, 041307 (2008).
[CrossRef] [PubMed]

M. Modell, V. Ryabukho, D. Lyakin, V. Lychagov, E. Vitkin, I. Itzkan, and L. Perelman, “Autocorrelation low coherence interferometry,” Opt. Commun. 281, 1991-1996 (2008).
[CrossRef]

2007

M. Yip and M. Carvalho, “A Monte-Carlo maplet for the study of the optical properties of biological tissues,” Comput. Phys. Commun. 177, 965-975 (2007).
[CrossRef]

P. Vacas-Jacques, M. Strojnik, and G. Paez, “Monte-Carlo simulation of photon transillumination time of flight,” Proc. SPIE 6631, 663114 (2007).
[CrossRef]

2006

I. Pretty, “Caries detection and diagnosis: Novel technologies,” J. Dent. 34, 727-739 (2006).
[CrossRef] [PubMed]

B. Pogue and M. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef] [PubMed]

2005

G. Xiong, P. Xue, J. Wu, Q. Miao, R. Wang, and L. Ji, “Particle-fixed Monte Carlo model for optical coherence tomography,” Opt. Express 13, 2182-2195 (2005).
[CrossRef] [PubMed]

D. Fried, J. Featherstone, C. Darling, R. Jones, P. Ngaotheppitak, and C. Bühler, “Early caries imaging and monitoring with near-infrared light,” Dent. Clin. North Am. 49, 771-793 (2005).
[CrossRef] [PubMed]

J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420-4438 (2005).
[CrossRef] [PubMed]

J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10393-10405 (2005).

D. Boston, “Incipient and hidden caries,” Dent. Clin. North Am. 49, xi-xii (2005).
[CrossRef] [PubMed]

J. Yang and V. Dutra, “Utility of radiology, laser fluorescence, and transillumination,” Dent. Clin. North Am. 49, 739-752 (2005).
[CrossRef] [PubMed]

C. Bühler, P. Ngaotheppitak, and D. Fried, “Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm,” Opt. Express 13, 573-582 (2005).
[CrossRef] [PubMed]

G. Paez, M. Strojnik, and M. Scholl, “Interferometric tissue characterization: I. Theory,” Proc. SPIE 5883, 58830Y (2005).
[CrossRef]

M. Strojnik and G. Paez, “Interferometric tissue characterization: II. Experimental,” Proc. SPIE 5883, 58830W (2005).
[CrossRef]

M. Strojnik and G. Paez, “Interferometric tissue characterization: III. Calibration,” Proc. SPIE 5883, 58830V (2005).
[CrossRef]

G. Paez, M. Strojnik, and S. Scholl, “Interferometric tissue characterization: IV. Material coherence function,” Proc. SPIE 5883, 58830X (2005).
[CrossRef]

2004

A. Hall and J. Girkin, “A review of potential new diagnostic modalities for caries lesions,” J. Dent. Res. 83, C89-C94 (2004).
[CrossRef] [PubMed]

C. Longbottom and M. Huysmans, “Electrical measurements for use in caries clinical trials,” J. Dent. Res. 83, C76-C79 (2004).
[CrossRef] [PubMed]

M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12, 6530-6539 (2004).
[CrossRef] [PubMed]

2003

2002

R. Jones and D. Fried, “Attenuation of 1310-nm and 1550-nm laser light through sound dental enamel,” Proc. SPIE 4610, 187-190 (2002).
[CrossRef]

2001

G. Davies, H. Worthington, J. Clarkson, P. Thomas, and R. Davies, “The use of fibre-optic transillumination in general dental practice,” Br. Dent. J. 191, 145-147 (2001).
[CrossRef] [PubMed]

B. Angmar-Mansson and J. ten Bosch, “Quantitative light-induced fluorescence (QLF): a method for assessment of incipient caries lesions,” Dentomaxillofac. Radiol. 30, 298-307 (2001).
[CrossRef] [PubMed]

2000

F. Yanikoğlu, F. Öztürk, O. Hayran, M. Analoui, and G. Stookey, “Detection of natural white spot caries lesions by an ultrasonic system,” Caries Res. 34, 225-232 (2000).
[CrossRef]

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59-69 (2000).
[CrossRef]

1998

1997

S. White and D. Yoon, “Comparative performance of digital and conventional images for detecting proximal surface caries,” Dentomaxillofac. Radiol. 26, 32-38 (1997).
[CrossRef] [PubMed]

R. Ellwood, R. Davies, and H. Worthington, “Evaluation of a dental subtraction radiography system,” J. Periodontal Res. 21, 241-248 (1997).
[CrossRef]

1995

Y. Pan, R. Birngruber, J. Rosperich, and R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564-6574 (1995).
[CrossRef] [PubMed]

L. Wang, S. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

J. Zijp, J. ten Bosch, and R. Groenhuis, “HeNe-laser light scattering by human dental enamel,” J. Dent. Res. 74, 1891-1898 (1995).
[CrossRef] [PubMed]

D. Fried, R. Glena, J. Featherstone, and W. Seka, “The nature of light scattering in dental enamel and dentin at visible and near-IR wavelengths,” Appl. Opt. 34, 1278-1285 (1995).
[CrossRef] [PubMed]

1992

S. Flock, S. Jacques, B. Wilson, W. Star, and M. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

1991

1990

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

1987

S. Flock, B. Wilson, and M. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835-841 (1987).
[CrossRef] [PubMed]

Analoui, M.

F. Yanikoğlu, F. Öztürk, O. Hayran, M. Analoui, and G. Stookey, “Detection of natural white spot caries lesions by an ultrasonic system,” Caries Res. 34, 225-232 (2000).
[CrossRef]

F. Yanikoğlu and M. Analoui, “Ultrasonic methods for early caries detection,” in Proceedings of the 4th Indiana Conference on Early Detection of Dental Caries, G.Stookey, ed. (Indiana U. Press, 1999), pp. 101-122.

Angmar-Mansson, B.

B. Angmar-Mansson and J. ten Bosch, “Quantitative light-induced fluorescence (QLF): a method for assessment of incipient caries lesions,” Dentomaxillofac. Radiol. 30, 298-307 (2001).
[CrossRef] [PubMed]

Baumgartner, A.

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59-69 (2000).
[CrossRef]

Birngruber, R.

Boston, D.

D. Boston, “Incipient and hidden caries,” Dent. Clin. North Am. 49, xi-xii (2005).
[CrossRef] [PubMed]

Bühler, C.

C. Bühler, P. Ngaotheppitak, and D. Fried, “Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm,” Opt. Express 13, 573-582 (2005).
[CrossRef] [PubMed]

D. Fried, J. Featherstone, C. Darling, R. Jones, P. Ngaotheppitak, and C. Bühler, “Early caries imaging and monitoring with near-infrared light,” Dent. Clin. North Am. 49, 771-793 (2005).
[CrossRef] [PubMed]

Carvalho, M.

M. Yip and M. Carvalho, “A Monte-Carlo maplet for the study of the optical properties of biological tissues,” Comput. Phys. Commun. 177, 965-975 (2007).
[CrossRef]

Cheong, W.

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Clarkson, J.

G. Davies, H. Worthington, J. Clarkson, P. Thomas, and R. Davies, “The use of fibre-optic transillumination in general dental practice,” Br. Dent. J. 191, 145-147 (2001).
[CrossRef] [PubMed]

Colston, B.

Darling, C.

D. Fried, J. Featherstone, C. Darling, R. Jones, P. Ngaotheppitak, and C. Bühler, “Early caries imaging and monitoring with near-infrared light,” Dent. Clin. North Am. 49, 771-793 (2005).
[CrossRef] [PubMed]

DaSilva, L.

Davies, G.

G. Davies, H. Worthington, J. Clarkson, P. Thomas, and R. Davies, “The use of fibre-optic transillumination in general dental practice,” Br. Dent. J. 191, 145-147 (2001).
[CrossRef] [PubMed]

Davies, R.

G. Davies, H. Worthington, J. Clarkson, P. Thomas, and R. Davies, “The use of fibre-optic transillumination in general dental practice,” Br. Dent. J. 191, 145-147 (2001).
[CrossRef] [PubMed]

R. Ellwood, R. Davies, and H. Worthington, “Evaluation of a dental subtraction radiography system,” J. Periodontal Res. 21, 241-248 (1997).
[CrossRef]

de Josselin de Jong, E.

M. van der Veen and E. de Josselin de Jong, “Application of quantitative light-induced fluorescence for assessing early caries lesions,” in Monographs in Oral Science: Assessment of Oral Health, R.Faller, ed. (Karger, 2001), pp. 144-162.

Dichtl, S.

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59-69 (2000).
[CrossRef]

Dutra, V.

J. Yang and V. Dutra, “Utility of radiology, laser fluorescence, and transillumination,” Dent. Clin. North Am. 49, 739-752 (2005).
[CrossRef] [PubMed]

Ellwood, R.

R. Ellwood, R. Davies, and H. Worthington, “Evaluation of a dental subtraction radiography system,” J. Periodontal Res. 21, 241-248 (1997).
[CrossRef]

Engelhardt, R.

Everett, M.

Featherstone, J.

D. Fried, J. Featherstone, C. Darling, R. Jones, P. Ngaotheppitak, and C. Bühler, “Early caries imaging and monitoring with near-infrared light,” Dent. Clin. North Am. 49, 771-793 (2005).
[CrossRef] [PubMed]

D. Fried, R. Glena, J. Featherstone, and W. Seka, “The nature of light scattering in dental enamel and dentin at visible and near-IR wavelengths,” Appl. Opt. 34, 1278-1285 (1995).
[CrossRef] [PubMed]

Fercher, A.

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59-69 (2000).
[CrossRef]

Flock, S.

S. Flock, S. Jacques, B. Wilson, W. Star, and M. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

S. Flock, B. Wilson, and M. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835-841 (1987).
[CrossRef] [PubMed]

Fried, D.

Girkin, J.

A. Hall and J. Girkin, “A review of potential new diagnostic modalities for caries lesions,” J. Dent. Res. 83, C89-C94 (2004).
[CrossRef] [PubMed]

Glena, R.

Groenhuis, R.

J. Zijp, J. ten Bosch, and R. Groenhuis, “HeNe-laser light scattering by human dental enamel,” J. Dent. Res. 74, 1891-1898 (1995).
[CrossRef] [PubMed]

Hall, A.

A. Hall and J. Girkin, “A review of potential new diagnostic modalities for caries lesions,” J. Dent. Res. 83, C89-C94 (2004).
[CrossRef] [PubMed]

Hayran, O.

F. Yanikoğlu, F. Öztürk, O. Hayran, M. Analoui, and G. Stookey, “Detection of natural white spot caries lesions by an ultrasonic system,” Caries Res. 34, 225-232 (2000).
[CrossRef]

Hitzenberger, C.

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59-69 (2000).
[CrossRef]

Huynh, G.

Huysmans, M.

C. Longbottom and M. Huysmans, “Electrical measurements for use in caries clinical trials,” J. Dent. Res. 83, C76-C79 (2004).
[CrossRef] [PubMed]

M. Huysmans, “Electrical measurements for early caries detection,” in Proceedings of the 4th Indiana Conference on Early Detection of Dental Caries, G.Stookey, ed. (Indiana U. Press, 1999), pp. 123-142.

Itzkan, I.

M. Modell, V. Ryabukho, D. Lyakin, V. Lychagov, E. Vitkin, I. Itzkan, and L. Perelman, “Autocorrelation low coherence interferometry,” Opt. Commun. 281, 1991-1996 (2008).
[CrossRef]

Jacques, S.

J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10393-10405 (2005).

J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420-4438 (2005).
[CrossRef] [PubMed]

L. Wang, S. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

S. Flock, S. Jacques, B. Wilson, W. Star, and M. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

Ji, L.

Jones, G.

Jones, R.

D. Fried, J. Featherstone, C. Darling, R. Jones, P. Ngaotheppitak, and C. Bühler, “Early caries imaging and monitoring with near-infrared light,” Dent. Clin. North Am. 49, 771-793 (2005).
[CrossRef] [PubMed]

R. Jones, G. Huynh, G. Jones, and D. Fried, “Near-infrared transillumination at 1310-nm for the imaging of early dental decay,” Opt. Express 11, 2259-2265 (2003).
[CrossRef] [PubMed]

R. Jones and D. Fried, “Attenuation of 1310-nm and 1550-nm laser light through sound dental enamel,” Proc. SPIE 4610, 187-190 (2002).
[CrossRef]

Longbottom, C.

C. Longbottom and M. Huysmans, “Electrical measurements for use in caries clinical trials,” J. Dent. Res. 83, C76-C79 (2004).
[CrossRef] [PubMed]

Lyakin, D.

M. Modell, V. Ryabukho, D. Lyakin, V. Lychagov, E. Vitkin, I. Itzkan, and L. Perelman, “Autocorrelation low coherence interferometry,” Opt. Commun. 281, 1991-1996 (2008).
[CrossRef]

Lychagov, V.

M. Modell, V. Ryabukho, D. Lyakin, V. Lychagov, E. Vitkin, I. Itzkan, and L. Perelman, “Autocorrelation low coherence interferometry,” Opt. Commun. 281, 1991-1996 (2008).
[CrossRef]

Miao, Q.

Modell, M.

M. Modell, V. Ryabukho, D. Lyakin, V. Lychagov, E. Vitkin, I. Itzkan, and L. Perelman, “Autocorrelation low coherence interferometry,” Opt. Commun. 281, 1991-1996 (2008).
[CrossRef]

Moes, C.

Moritz, A.

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59-69 (2000).
[CrossRef]

Ngaotheppitak, P.

C. Bühler, P. Ngaotheppitak, and D. Fried, “Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm,” Opt. Express 13, 573-582 (2005).
[CrossRef] [PubMed]

D. Fried, J. Featherstone, C. Darling, R. Jones, P. Ngaotheppitak, and C. Bühler, “Early caries imaging and monitoring with near-infrared light,” Dent. Clin. North Am. 49, 771-793 (2005).
[CrossRef] [PubMed]

Otis, L.

Öztürk, F.

F. Yanikoğlu, F. Öztürk, O. Hayran, M. Analoui, and G. Stookey, “Detection of natural white spot caries lesions by an ultrasonic system,” Caries Res. 34, 225-232 (2000).
[CrossRef]

Paez, G.

P. Vacas-Jacques, G. Paez, and M. Strojnik, “Pass-through photon-based biomedical transillumination,” J. Biomed. Opt. 13, 041307 (2008).
[CrossRef] [PubMed]

P. Vacas-Jacques, M. Strojnik, and G. Paez, “Monte-Carlo simulation of photon transillumination time of flight,” Proc. SPIE 6631, 663114 (2007).
[CrossRef]

M. Strojnik and G. Paez, “Interferometric tissue characterization: II. Experimental,” Proc. SPIE 5883, 58830W (2005).
[CrossRef]

G. Paez, M. Strojnik, and S. Scholl, “Interferometric tissue characterization: IV. Material coherence function,” Proc. SPIE 5883, 58830X (2005).
[CrossRef]

G. Paez, M. Strojnik, and M. Scholl, “Interferometric tissue characterization: I. Theory,” Proc. SPIE 5883, 58830Y (2005).
[CrossRef]

M. Strojnik and G. Paez, “Interferometric tissue characterization: III. Calibration,” Proc. SPIE 5883, 58830V (2005).
[CrossRef]

Pan, Y.

Patterson, M.

B. Pogue and M. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef] [PubMed]

S. Flock, B. Wilson, and M. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835-841 (1987).
[CrossRef] [PubMed]

Perelman, L.

M. Modell, V. Ryabukho, D. Lyakin, V. Lychagov, E. Vitkin, I. Itzkan, and L. Perelman, “Autocorrelation low coherence interferometry,” Opt. Commun. 281, 1991-1996 (2008).
[CrossRef]

Pine, C.

C. Pine, “Fibre-optic transillumination (FOTI) in caries diagnosis,” in Proceedings of the 1st Indiana Conference on Early Detection of Dental Caries, G.Stookey, ed. (Indiana U. Press, 1996), pp. 51-65.

Pogue, B.

B. Pogue and M. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef] [PubMed]

Prahl, S.

J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420-4438 (2005).
[CrossRef] [PubMed]

J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10393-10405 (2005).

H. van Staveren, C. Moes, J. van Marle, S. Prahl, and M. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30, 4507-4514 (1991).
[CrossRef] [PubMed]

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Pretty, I.

I. Pretty, “Caries detection and diagnosis: Novel technologies,” J. Dent. 34, 727-739 (2006).
[CrossRef] [PubMed]

Ramella-Roman, J.

J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10393-10405 (2005).

J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420-4438 (2005).
[CrossRef] [PubMed]

Robl, B.

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59-69 (2000).
[CrossRef]

Rosperich, J.

Ryabukho, V.

M. Modell, V. Ryabukho, D. Lyakin, V. Lychagov, E. Vitkin, I. Itzkan, and L. Perelman, “Autocorrelation low coherence interferometry,” Opt. Commun. 281, 1991-1996 (2008).
[CrossRef]

Sathyam, U.

Sattmann, H.

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59-69 (2000).
[CrossRef]

Scholl, M.

G. Paez, M. Strojnik, and M. Scholl, “Interferometric tissue characterization: I. Theory,” Proc. SPIE 5883, 58830Y (2005).
[CrossRef]

Scholl, S.

G. Paez, M. Strojnik, and S. Scholl, “Interferometric tissue characterization: IV. Material coherence function,” Proc. SPIE 5883, 58830X (2005).
[CrossRef]

Seka, W.

Sperr, W.

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59-69 (2000).
[CrossRef]

Star, W.

S. Flock, S. Jacques, B. Wilson, W. Star, and M. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

Stookey, G.

F. Yanikoğlu, F. Öztürk, O. Hayran, M. Analoui, and G. Stookey, “Detection of natural white spot caries lesions by an ultrasonic system,” Caries Res. 34, 225-232 (2000).
[CrossRef]

Stroeve, P.

Strojnik, M.

P. Vacas-Jacques, G. Paez, and M. Strojnik, “Pass-through photon-based biomedical transillumination,” J. Biomed. Opt. 13, 041307 (2008).
[CrossRef] [PubMed]

P. Vacas-Jacques, M. Strojnik, and G. Paez, “Monte-Carlo simulation of photon transillumination time of flight,” Proc. SPIE 6631, 663114 (2007).
[CrossRef]

M. Strojnik and G. Paez, “Interferometric tissue characterization: II. Experimental,” Proc. SPIE 5883, 58830W (2005).
[CrossRef]

G. Paez, M. Strojnik, and S. Scholl, “Interferometric tissue characterization: IV. Material coherence function,” Proc. SPIE 5883, 58830X (2005).
[CrossRef]

M. Strojnik and G. Paez, “Interferometric tissue characterization: III. Calibration,” Proc. SPIE 5883, 58830V (2005).
[CrossRef]

G. Paez, M. Strojnik, and M. Scholl, “Interferometric tissue characterization: I. Theory,” Proc. SPIE 5883, 58830Y (2005).
[CrossRef]

ten Bosch, J.

B. Angmar-Mansson and J. ten Bosch, “Quantitative light-induced fluorescence (QLF): a method for assessment of incipient caries lesions,” Dentomaxillofac. Radiol. 30, 298-307 (2001).
[CrossRef] [PubMed]

J. Zijp, J. ten Bosch, and R. Groenhuis, “HeNe-laser light scattering by human dental enamel,” J. Dent. Res. 74, 1891-1898 (1995).
[CrossRef] [PubMed]

Thomas, P.

G. Davies, H. Worthington, J. Clarkson, P. Thomas, and R. Davies, “The use of fibre-optic transillumination in general dental practice,” Br. Dent. J. 191, 145-147 (2001).
[CrossRef] [PubMed]

Vacas-Jacques, P.

P. Vacas-Jacques, G. Paez, and M. Strojnik, “Pass-through photon-based biomedical transillumination,” J. Biomed. Opt. 13, 041307 (2008).
[CrossRef] [PubMed]

P. Vacas-Jacques, M. Strojnik, and G. Paez, “Monte-Carlo simulation of photon transillumination time of flight,” Proc. SPIE 6631, 663114 (2007).
[CrossRef]

van der Veen, M.

M. van der Veen and E. de Josselin de Jong, “Application of quantitative light-induced fluorescence for assessing early caries lesions,” in Monographs in Oral Science: Assessment of Oral Health, R.Faller, ed. (Karger, 2001), pp. 144-162.

van Gemert, M.

S. Flock, S. Jacques, B. Wilson, W. Star, and M. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

H. van Staveren, C. Moes, J. van Marle, S. Prahl, and M. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30, 4507-4514 (1991).
[CrossRef] [PubMed]

van Marle, J.

van Staveren, H.

Vitkin, E.

M. Modell, V. Ryabukho, D. Lyakin, V. Lychagov, E. Vitkin, I. Itzkan, and L. Perelman, “Autocorrelation low coherence interferometry,” Opt. Commun. 281, 1991-1996 (2008).
[CrossRef]

Wang, L.

L. Wang, S. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Wang, R.

Welch, A.

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

White, S.

S. White and D. Yoon, “Comparative performance of digital and conventional images for detecting proximal surface caries,” Dentomaxillofac. Radiol. 26, 32-38 (1997).
[CrossRef] [PubMed]

Wilson, B.

S. Flock, S. Jacques, B. Wilson, W. Star, and M. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

S. Flock, B. Wilson, and M. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835-841 (1987).
[CrossRef] [PubMed]

Worthington, H.

G. Davies, H. Worthington, J. Clarkson, P. Thomas, and R. Davies, “The use of fibre-optic transillumination in general dental practice,” Br. Dent. J. 191, 145-147 (2001).
[CrossRef] [PubMed]

R. Ellwood, R. Davies, and H. Worthington, “Evaluation of a dental subtraction radiography system,” J. Periodontal Res. 21, 241-248 (1997).
[CrossRef]

Wu, J.

Xiong, G.

Xu, M.

Xue, P.

Yang, J.

J. Yang and V. Dutra, “Utility of radiology, laser fluorescence, and transillumination,” Dent. Clin. North Am. 49, 739-752 (2005).
[CrossRef] [PubMed]

Yanikoglu, F.

F. Yanikoğlu, F. Öztürk, O. Hayran, M. Analoui, and G. Stookey, “Detection of natural white spot caries lesions by an ultrasonic system,” Caries Res. 34, 225-232 (2000).
[CrossRef]

F. Yanikoğlu and M. Analoui, “Ultrasonic methods for early caries detection,” in Proceedings of the 4th Indiana Conference on Early Detection of Dental Caries, G.Stookey, ed. (Indiana U. Press, 1999), pp. 101-122.

Yip, M.

M. Yip and M. Carvalho, “A Monte-Carlo maplet for the study of the optical properties of biological tissues,” Comput. Phys. Commun. 177, 965-975 (2007).
[CrossRef]

Yoon, D.

S. White and D. Yoon, “Comparative performance of digital and conventional images for detecting proximal surface caries,” Dentomaxillofac. Radiol. 26, 32-38 (1997).
[CrossRef] [PubMed]

Zheng, L.

L. Wang, S. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Zijp, J.

J. Zijp, J. ten Bosch, and R. Groenhuis, “HeNe-laser light scattering by human dental enamel,” J. Dent. Res. 74, 1891-1898 (1995).
[CrossRef] [PubMed]

Appl. Opt.

Br. Dent. J.

G. Davies, H. Worthington, J. Clarkson, P. Thomas, and R. Davies, “The use of fibre-optic transillumination in general dental practice,” Br. Dent. J. 191, 145-147 (2001).
[CrossRef] [PubMed]

Caries Res.

F. Yanikoğlu, F. Öztürk, O. Hayran, M. Analoui, and G. Stookey, “Detection of natural white spot caries lesions by an ultrasonic system,” Caries Res. 34, 225-232 (2000).
[CrossRef]

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59-69 (2000).
[CrossRef]

Comput. Methods Programs Biomed.

L. Wang, S. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Comput. Phys. Commun.

M. Yip and M. Carvalho, “A Monte-Carlo maplet for the study of the optical properties of biological tissues,” Comput. Phys. Commun. 177, 965-975 (2007).
[CrossRef]

Dent. Clin. North Am.

D. Fried, J. Featherstone, C. Darling, R. Jones, P. Ngaotheppitak, and C. Bühler, “Early caries imaging and monitoring with near-infrared light,” Dent. Clin. North Am. 49, 771-793 (2005).
[CrossRef] [PubMed]

D. Boston, “Incipient and hidden caries,” Dent. Clin. North Am. 49, xi-xii (2005).
[CrossRef] [PubMed]

J. Yang and V. Dutra, “Utility of radiology, laser fluorescence, and transillumination,” Dent. Clin. North Am. 49, 739-752 (2005).
[CrossRef] [PubMed]

Dentomaxillofac. Radiol.

S. White and D. Yoon, “Comparative performance of digital and conventional images for detecting proximal surface caries,” Dentomaxillofac. Radiol. 26, 32-38 (1997).
[CrossRef] [PubMed]

B. Angmar-Mansson and J. ten Bosch, “Quantitative light-induced fluorescence (QLF): a method for assessment of incipient caries lesions,” Dentomaxillofac. Radiol. 30, 298-307 (2001).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

J. Biomed. Opt.

B. Pogue and M. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef] [PubMed]

P. Vacas-Jacques, G. Paez, and M. Strojnik, “Pass-through photon-based biomedical transillumination,” J. Biomed. Opt. 13, 041307 (2008).
[CrossRef] [PubMed]

J. Dent.

I. Pretty, “Caries detection and diagnosis: Novel technologies,” J. Dent. 34, 727-739 (2006).
[CrossRef] [PubMed]

J. Dent. Res.

A. Hall and J. Girkin, “A review of potential new diagnostic modalities for caries lesions,” J. Dent. Res. 83, C89-C94 (2004).
[CrossRef] [PubMed]

J. Zijp, J. ten Bosch, and R. Groenhuis, “HeNe-laser light scattering by human dental enamel,” J. Dent. Res. 74, 1891-1898 (1995).
[CrossRef] [PubMed]

C. Longbottom and M. Huysmans, “Electrical measurements for use in caries clinical trials,” J. Dent. Res. 83, C76-C79 (2004).
[CrossRef] [PubMed]

J. Periodontal Res.

R. Ellwood, R. Davies, and H. Worthington, “Evaluation of a dental subtraction radiography system,” J. Periodontal Res. 21, 241-248 (1997).
[CrossRef]

Lasers Surg. Med.

S. Flock, S. Jacques, B. Wilson, W. Star, and M. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

Med. Phys.

S. Flock, B. Wilson, and M. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835-841 (1987).
[CrossRef] [PubMed]

Opt. Commun.

M. Modell, V. Ryabukho, D. Lyakin, V. Lychagov, E. Vitkin, I. Itzkan, and L. Perelman, “Autocorrelation low coherence interferometry,” Opt. Commun. 281, 1991-1996 (2008).
[CrossRef]

Opt. Express

Proc. SPIE

G. Paez, M. Strojnik, and M. Scholl, “Interferometric tissue characterization: I. Theory,” Proc. SPIE 5883, 58830Y (2005).
[CrossRef]

M. Strojnik and G. Paez, “Interferometric tissue characterization: II. Experimental,” Proc. SPIE 5883, 58830W (2005).
[CrossRef]

M. Strojnik and G. Paez, “Interferometric tissue characterization: III. Calibration,” Proc. SPIE 5883, 58830V (2005).
[CrossRef]

G. Paez, M. Strojnik, and S. Scholl, “Interferometric tissue characterization: IV. Material coherence function,” Proc. SPIE 5883, 58830X (2005).
[CrossRef]

P. Vacas-Jacques, M. Strojnik, and G. Paez, “Monte-Carlo simulation of photon transillumination time of flight,” Proc. SPIE 6631, 663114 (2007).
[CrossRef]

R. Jones and D. Fried, “Attenuation of 1310-nm and 1550-nm laser light through sound dental enamel,” Proc. SPIE 4610, 187-190 (2002).
[CrossRef]

Other

F. Yanikoğlu and M. Analoui, “Ultrasonic methods for early caries detection,” in Proceedings of the 4th Indiana Conference on Early Detection of Dental Caries, G.Stookey, ed. (Indiana U. Press, 1999), pp. 101-122.

“Diagnosis and management of dental caries throughout life,” National Institutes of Health Consensus Statement 18 (NIH, 2001), pp. 1-30.

M. Huysmans, “Electrical measurements for early caries detection,” in Proceedings of the 4th Indiana Conference on Early Detection of Dental Caries, G.Stookey, ed. (Indiana U. Press, 1999), pp. 123-142.

R Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2008).

M. van der Veen and E. de Josselin de Jong, “Application of quantitative light-induced fluorescence for assessing early caries lesions,” in Monographs in Oral Science: Assessment of Oral Health, R.Faller, ed. (Karger, 2001), pp. 144-162.

C. Pine, “Fibre-optic transillumination (FOTI) in caries diagnosis,” in Proceedings of the 1st Indiana Conference on Early Detection of Dental Caries, G.Stookey, ed. (Indiana U. Press, 1996), pp. 51-65.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Tissue models utilized in the random walk program are representative of abnormal dental samples. Semicolons separate the characteristics of each model.

Fig. 2
Fig. 2

Path-length-resolved transmittances exhibit sample variability effects for characterization and imaging. Analytical interferograms for narrow and broad bandwidths are shown in each inset. The numbers in the upper left corner refer to the model under study.

Fig. 3
Fig. 3

The superposition plane is displaced to minimize the presence of diffuse radiation. Qualitative improvements in system response are easily seen.

Fig. 4
Fig. 4

Pass-through and forward-scattered contributions are comingled in 2-D scenarios. Emission bandwidths narrow (1) and broad (2) determine filtering efficacy.

Tables (3)

Tables Icon

Table 1 Summary of Tissue Models

Tables Icon

Table 2 Pass-Through Transmittance Values and Reference Random Walk Attenuation Coefficients

Tables Icon

Table 3 Attenuation Coefficients [ mm 1 ] a   Recovered from Interferometric Quantities

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P ( t , T sc ) { E r ( τ + t ) + [ E p ( τ ) + E sc ( τ + T sc ) ] } { E r ( τ + t ) + [ E p ( τ ) + E sc ( τ + T sc ) ] } * .
P ( t , T sc ) = Γ i , i ( 0 ) ( ( 1 k sp 1 ) ( 1 k sp 2 ) + k sp 1 k sp 2 γ m 2 + k sp 1 k sp 2 γ sc 2 + 2 k sp 1 k sp 2 γ m γ sc γ i , i ( T sc ) cos [ Φ i , i ( T sc ) ] + 2 k sp 1 1 k sp 1 k sp 2 1 k sp 2 { γ m γ i , i ( t ) cos [ Φ i , i ( t ) ] + γ sc γ i , i ( t + T sc ) cos [ Φ i , i ( t + T sc ) ] } ) .
P ( Δ L c ) = [ E s ( τ , L s ) d L s + E r ( τ + t ) ] [ E s ( τ , L s ) d L s + E r ( τ + t ) ] * .
P ( L r ) = P r + P s + 2 ( P r P s ) 1 2 [ T ( L s ) ] 1 2 γ i , i ( Δ L ) cos [ Φ i , i ( Δ L ) ] d L s ,
P r = E r ( τ + t ) E r * ( τ + t ) ,
P s = E s ( τ , L s ) d L s E s * ( τ , L s ) d L s ,
T ( L s ) = [ d P s ( L s ) d L s ] P s .
P ( L r ) = 2 ( P r P s ) 1 2 ( [ T ( L s ) ] 1 2 { γ i , i ( L s ) cos [ Φ i , i ( L s ) ] } ) .
P ( r , t , T sc ) = Γ i , i ( 0 ) ( 2 k sp 1 1 k sp 1 k sp 2 1 k sp 2 { γ m ( r ) γ i , i ( r , t ) cos [ Φ i , i ( r , t ) ] + γ sc ( r , T s c ) γ i , i ( r , t + T sc ) cos [ Φ i , i ( r , t + T sc ) ] } ) .
max { P ( r , t ) } = 2 Γ i , i ( 0 ) k sp 1 1 k sp 1 k sp 2 1 k sp 2 R g i exp { 1 2 [ μ a i ( r ) + μ s i ( r ) ] D i ( r ) } .
R g exp { i 1 2 [ μ a i ( r ) + μ s i ( r ) ] D i ( r ) } = max { P ( r , t ) } max { P ref ( r , t ) } .

Metrics