Abstract

We report here a detailed experimental study to demonstrate the effect of source spectral characteristics such as spectral bandwidth (Δλ), peak wavelength (λ0), and shape of the spectrum on the spectral shifts and spectral switches measured due to temporal correlation in a white-light Michelson interferometer operated in the spectral domain. Behavior of the spectral switch characteristics such as the switch position, switch amplitude, and switch symmetry are discussed in detail as a function of optical path difference between the interfering beams. The experimental results are compared with numerical calculations carried out using interference law in the spectral domain with modified source spectral characteristics. On the basis of our results we feel that our study is of critical importance in the selection of source spectral characteristics to further improve the longitudinal resolution or the measurement sensitivity in spectral-domain optical coherence tomography and microscopy.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, Jr., “Optical coherence tomography and microscopy in gastrointestinal tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996).
    [CrossRef]
  3. C. Akcay, P. Parrein, and J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt. 41, 5256-5262 (2002).
    [CrossRef] [PubMed]
  4. J. Kim, C. Choi, and K. S. Soh, “Real spectral-domain optical coherence tomography using a superluminescent diode,” J. Korean Phys. Soc. 47, 375-379 (2005).
  5. T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12, 2112-2119 (2004).
    [CrossRef] [PubMed]
  6. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  7. J. Pu, H. Zhang, and S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57-63 (1999).
    [CrossRef]
  8. J. Pu and S. Nemoto, “Spectral shifts and switches in diffraction of partially coherent light by a circular aperture,” IEEE J. Quantum Electron. 36, 1407-1411 (2000).
    [CrossRef]
  9. J. T. Foley and E. Wolf, “Phenomenon of spectral switches as a new effect in singular optics with polychromatic light,” J. Opt. Soc. Am. A 19, 2510-2516 (2002).
    [CrossRef]
  10. J. Pu and S. Nemoto, “Spectral changes and 1×N spectral switches in the diffraction of partially coherent light by an aperture,” J. Opt. Soc. Am. A 19, 339-344 (2002).
    [CrossRef]
  11. G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behavior of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901-1-4 (2002).
    [CrossRef]
  12. E. Wolf, T. Shirai, H. Chen, and W. Wang, “Coherence filters and their uses I. Basic theory and examples,” J. Mod. Opt. 44, 1345-1353 (1997).
  13. T. Shirai, E. Wolf, H. Chen, and W. Wang, “Coherence filters and their uses II. One-dimensional realizations,” J. Mod. Opt. 45, 799-816 (1998).
    [CrossRef]
  14. T. E. Kiess and R. E. Berg, “Dominant color reversals and chromaticity cusps in interferometric color mixing,” Am. J. Phys. 64, 928-934 (1996).
    [CrossRef]
  15. L. E. Helseth, “Spectral density of polychromatic electromagnetic waves,” Phys. Rev. E 73, 026602 (2006).
    [CrossRef]
  16. J. Pu, C. Cai, and S. Nemoto, “Spectral anomalies in Young's double-slit interference experiment,” Opt. Express 12, 5131-5139 (2004).
    [CrossRef] [PubMed]
  17. C. J. Zapata-Rodríguez, “Spectral anomalies in super continuum focused waves,” Opt. Commun. 263, 131-134 (2006).
    [CrossRef]
  18. O. V. Angelsky, S. G. Hanson, P. P. Maksimyak, A. P. Maksimyak, and A. L. Negrych, “Experimental demonstration of singular-optical colouring of regularly scattered white light,” J. Eur. Opt. Soc. Rapid Publ. 3, 08029 (2008).
    [CrossRef]
  19. M. Dashtdar and M. T. Tavassoly, “Redshift and blueshift in the spectra of light coherently and diffusely scattered from random rough interfaces,” J. Opt. Soc. Am. A 26, 2134-2138 (2009).
    [CrossRef]
  20. C. Ding, B. Lü, and L. Pan, “Spectral shifts and spectral switches of spatially and spectrally partially coherent pulsed beams in Young's interference experiment,” Opt. Commun. 282, 413-422 (2009).
    [CrossRef]
  21. M. M. Brundavanam, N. K. Viswanathan, and N. R. Desai, “Spectral anomalies due to temporal correlation in a white light interferometer,” Opt. Lett. 32, 2279-2281 (2007).
    [CrossRef] [PubMed]
  22. M. M. Brundavanam, N. K. Viswanathan, and D. Narayana Rao, “Nano-displacement measurement using spectral shifts in a white light interferometer,” Appl. Opt. 47, 6334-6339 (2008).
    [CrossRef] [PubMed]
  23. B. Spektor, A. Normatov, and J. Shamir, “Singular beam microscopy,” Appl. Opt. 47, A78-A87 (2008).
    [CrossRef] [PubMed]
  24. V. N. Kumar and D. N. Rao, “Two-beam interference experiments in the frequency domain to measure the complex degree of spectral coherence,” J. Mod. Opt. 48, 1455-1465 (2001).
  25. Zs. Pápai and T. L. Pap, “Determination of chromatographic peak parameters by non-linear curve fitting using statistical moments,” Analyst (Cambridge, U.K.) 127, 494-498 (2002).
    [CrossRef]
  26. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase shifting interferometer: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504-2506 (1987).
    [CrossRef] [PubMed]
  27. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156-160 (1982).
    [CrossRef]

2009 (2)

C. Ding, B. Lü, and L. Pan, “Spectral shifts and spectral switches of spatially and spectrally partially coherent pulsed beams in Young's interference experiment,” Opt. Commun. 282, 413-422 (2009).
[CrossRef]

M. Dashtdar and M. T. Tavassoly, “Redshift and blueshift in the spectra of light coherently and diffusely scattered from random rough interfaces,” J. Opt. Soc. Am. A 26, 2134-2138 (2009).
[CrossRef]

2008 (3)

M. M. Brundavanam, N. K. Viswanathan, and D. Narayana Rao, “Nano-displacement measurement using spectral shifts in a white light interferometer,” Appl. Opt. 47, 6334-6339 (2008).
[CrossRef] [PubMed]

B. Spektor, A. Normatov, and J. Shamir, “Singular beam microscopy,” Appl. Opt. 47, A78-A87 (2008).
[CrossRef] [PubMed]

O. V. Angelsky, S. G. Hanson, P. P. Maksimyak, A. P. Maksimyak, and A. L. Negrych, “Experimental demonstration of singular-optical colouring of regularly scattered white light,” J. Eur. Opt. Soc. Rapid Publ. 3, 08029 (2008).
[CrossRef]

2007 (1)

2006 (2)

L. E. Helseth, “Spectral density of polychromatic electromagnetic waves,” Phys. Rev. E 73, 026602 (2006).
[CrossRef]

C. J. Zapata-Rodríguez, “Spectral anomalies in super continuum focused waves,” Opt. Commun. 263, 131-134 (2006).
[CrossRef]

2005 (1)

J. Kim, C. Choi, and K. S. Soh, “Real spectral-domain optical coherence tomography using a superluminescent diode,” J. Korean Phys. Soc. 47, 375-379 (2005).

2004 (2)

2003 (1)

2002 (5)

2001 (1)

V. N. Kumar and D. N. Rao, “Two-beam interference experiments in the frequency domain to measure the complex degree of spectral coherence,” J. Mod. Opt. 48, 1455-1465 (2001).

2000 (1)

J. Pu and S. Nemoto, “Spectral shifts and switches in diffraction of partially coherent light by a circular aperture,” IEEE J. Quantum Electron. 36, 1407-1411 (2000).
[CrossRef]

1999 (1)

J. Pu, H. Zhang, and S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57-63 (1999).
[CrossRef]

1998 (1)

T. Shirai, E. Wolf, H. Chen, and W. Wang, “Coherence filters and their uses II. One-dimensional realizations,” J. Mod. Opt. 45, 799-816 (1998).
[CrossRef]

1997 (1)

E. Wolf, T. Shirai, H. Chen, and W. Wang, “Coherence filters and their uses I. Basic theory and examples,” J. Mod. Opt. 44, 1345-1353 (1997).

1996 (2)

T. E. Kiess and R. E. Berg, “Dominant color reversals and chromaticity cusps in interferometric color mixing,” Am. J. Phys. 64, 928-934 (1996).
[CrossRef]

J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, Jr., “Optical coherence tomography and microscopy in gastrointestinal tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1987 (1)

1982 (1)

Adler, D. C.

Akcay, C.

Angelsky, O. V.

O. V. Angelsky, S. G. Hanson, P. P. Maksimyak, A. P. Maksimyak, and A. L. Negrych, “Experimental demonstration of singular-optical colouring of regularly scattered white light,” J. Eur. Opt. Soc. Rapid Publ. 3, 08029 (2008).
[CrossRef]

Berg, R. E.

T. E. Kiess and R. E. Berg, “Dominant color reversals and chromaticity cusps in interferometric color mixing,” Am. J. Phys. 64, 928-934 (1996).
[CrossRef]

Brundavanam, M. M.

Cai, C.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, H.

T. Shirai, E. Wolf, H. Chen, and W. Wang, “Coherence filters and their uses II. One-dimensional realizations,” J. Mod. Opt. 45, 799-816 (1998).
[CrossRef]

E. Wolf, T. Shirai, H. Chen, and W. Wang, “Coherence filters and their uses I. Basic theory and examples,” J. Mod. Opt. 44, 1345-1353 (1997).

Choi, C.

J. Kim, C. Choi, and K. S. Soh, “Real spectral-domain optical coherence tomography using a superluminescent diode,” J. Korean Phys. Soc. 47, 375-379 (2005).

Dashtdar, M.

Desai, N. R.

Ding, C.

C. Ding, B. Lü, and L. Pan, “Spectral shifts and spectral switches of spatially and spectrally partially coherent pulsed beams in Young's interference experiment,” Opt. Commun. 282, 413-422 (2009).
[CrossRef]

Eiju, T.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Foley, J. T.

Fujimoto, J. G.

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12, 2112-2119 (2004).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gbur, G.

G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behavior of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901-1-4 (2002).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hanson, S. G.

O. V. Angelsky, S. G. Hanson, P. P. Maksimyak, A. P. Maksimyak, and A. L. Negrych, “Experimental demonstration of singular-optical colouring of regularly scattered white light,” J. Eur. Opt. Soc. Rapid Publ. 3, 08029 (2008).
[CrossRef]

Hariharan, P.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Helseth, L. E.

L. E. Helseth, “Spectral density of polychromatic electromagnetic waves,” Phys. Rev. E 73, 026602 (2006).
[CrossRef]

Hitzenberger, C. K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ina, H.

Izatt, J. A.

J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, Jr., “Optical coherence tomography and microscopy in gastrointestinal tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

Kiess, T. E.

T. E. Kiess and R. E. Berg, “Dominant color reversals and chromaticity cusps in interferometric color mixing,” Am. J. Phys. 64, 928-934 (1996).
[CrossRef]

Kim, J.

J. Kim, C. Choi, and K. S. Soh, “Real spectral-domain optical coherence tomography using a superluminescent diode,” J. Korean Phys. Soc. 47, 375-379 (2005).

Ko, T. H.

Kobayashi, K.

J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, Jr., “Optical coherence tomography and microscopy in gastrointestinal tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

Kobayashi, S.

Kulkarni, M. D.

J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, Jr., “Optical coherence tomography and microscopy in gastrointestinal tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

Kumar, V. N.

V. N. Kumar and D. N. Rao, “Two-beam interference experiments in the frequency domain to measure the complex degree of spectral coherence,” J. Mod. Opt. 48, 1455-1465 (2001).

Leitgeb, R.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lü, B.

C. Ding, B. Lü, and L. Pan, “Spectral shifts and spectral switches of spatially and spectrally partially coherent pulsed beams in Young's interference experiment,” Opt. Commun. 282, 413-422 (2009).
[CrossRef]

Maksimyak, A. P.

O. V. Angelsky, S. G. Hanson, P. P. Maksimyak, A. P. Maksimyak, and A. L. Negrych, “Experimental demonstration of singular-optical colouring of regularly scattered white light,” J. Eur. Opt. Soc. Rapid Publ. 3, 08029 (2008).
[CrossRef]

Maksimyak, P. P.

O. V. Angelsky, S. G. Hanson, P. P. Maksimyak, A. P. Maksimyak, and A. L. Negrych, “Experimental demonstration of singular-optical colouring of regularly scattered white light,” J. Eur. Opt. Soc. Rapid Publ. 3, 08029 (2008).
[CrossRef]

Mamedov, D.

Narayana Rao, D.

Negrych, A. L.

O. V. Angelsky, S. G. Hanson, P. P. Maksimyak, A. P. Maksimyak, and A. L. Negrych, “Experimental demonstration of singular-optical colouring of regularly scattered white light,” J. Eur. Opt. Soc. Rapid Publ. 3, 08029 (2008).
[CrossRef]

Nemoto, S.

J. Pu, C. Cai, and S. Nemoto, “Spectral anomalies in Young's double-slit interference experiment,” Opt. Express 12, 5131-5139 (2004).
[CrossRef] [PubMed]

J. Pu and S. Nemoto, “Spectral changes and 1×N spectral switches in the diffraction of partially coherent light by an aperture,” J. Opt. Soc. Am. A 19, 339-344 (2002).
[CrossRef]

J. Pu and S. Nemoto, “Spectral shifts and switches in diffraction of partially coherent light by a circular aperture,” IEEE J. Quantum Electron. 36, 1407-1411 (2000).
[CrossRef]

J. Pu, H. Zhang, and S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57-63 (1999).
[CrossRef]

Normatov, A.

Oreb, B. F.

Pan, L.

C. Ding, B. Lü, and L. Pan, “Spectral shifts and spectral switches of spatially and spectrally partially coherent pulsed beams in Young's interference experiment,” Opt. Commun. 282, 413-422 (2009).
[CrossRef]

Pap, T. L.

Zs. Pápai and T. L. Pap, “Determination of chromatographic peak parameters by non-linear curve fitting using statistical moments,” Analyst (Cambridge, U.K.) 127, 494-498 (2002).
[CrossRef]

Pápai, Zs.

Zs. Pápai and T. L. Pap, “Determination of chromatographic peak parameters by non-linear curve fitting using statistical moments,” Analyst (Cambridge, U.K.) 127, 494-498 (2002).
[CrossRef]

Parrein, P.

Prokhorov, V.

Pu, J.

J. Pu, C. Cai, and S. Nemoto, “Spectral anomalies in Young's double-slit interference experiment,” Opt. Express 12, 5131-5139 (2004).
[CrossRef] [PubMed]

J. Pu and S. Nemoto, “Spectral changes and 1×N spectral switches in the diffraction of partially coherent light by an aperture,” J. Opt. Soc. Am. A 19, 339-344 (2002).
[CrossRef]

J. Pu and S. Nemoto, “Spectral shifts and switches in diffraction of partially coherent light by a circular aperture,” IEEE J. Quantum Electron. 36, 1407-1411 (2000).
[CrossRef]

J. Pu, H. Zhang, and S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57-63 (1999).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Rao, D. N.

V. N. Kumar and D. N. Rao, “Two-beam interference experiments in the frequency domain to measure the complex degree of spectral coherence,” J. Mod. Opt. 48, 1455-1465 (2001).

Rolland, J. P.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Shamir, J.

Shidlovski, V.

Shirai, T.

T. Shirai, E. Wolf, H. Chen, and W. Wang, “Coherence filters and their uses II. One-dimensional realizations,” J. Mod. Opt. 45, 799-816 (1998).
[CrossRef]

E. Wolf, T. Shirai, H. Chen, and W. Wang, “Coherence filters and their uses I. Basic theory and examples,” J. Mod. Opt. 44, 1345-1353 (1997).

Sivak, M. V.

J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, Jr., “Optical coherence tomography and microscopy in gastrointestinal tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

Soh, K. S.

J. Kim, C. Choi, and K. S. Soh, “Real spectral-domain optical coherence tomography using a superluminescent diode,” J. Korean Phys. Soc. 47, 375-379 (2005).

Spektor, B.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Takeda, M.

Tavassoly, M. T.

Visser, T. D.

G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behavior of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901-1-4 (2002).
[CrossRef]

Viswanathan, N. K.

Wang, H.

J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, Jr., “Optical coherence tomography and microscopy in gastrointestinal tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

Wang, W.

T. Shirai, E. Wolf, H. Chen, and W. Wang, “Coherence filters and their uses II. One-dimensional realizations,” J. Mod. Opt. 45, 799-816 (1998).
[CrossRef]

E. Wolf, T. Shirai, H. Chen, and W. Wang, “Coherence filters and their uses I. Basic theory and examples,” J. Mod. Opt. 44, 1345-1353 (1997).

Wolf, E.

G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behavior of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901-1-4 (2002).
[CrossRef]

J. T. Foley and E. Wolf, “Phenomenon of spectral switches as a new effect in singular optics with polychromatic light,” J. Opt. Soc. Am. A 19, 2510-2516 (2002).
[CrossRef]

T. Shirai, E. Wolf, H. Chen, and W. Wang, “Coherence filters and their uses II. One-dimensional realizations,” J. Mod. Opt. 45, 799-816 (1998).
[CrossRef]

E. Wolf, T. Shirai, H. Chen, and W. Wang, “Coherence filters and their uses I. Basic theory and examples,” J. Mod. Opt. 44, 1345-1353 (1997).

Yakubovich, S.

Zapata-Rodríguez, C. J.

C. J. Zapata-Rodríguez, “Spectral anomalies in super continuum focused waves,” Opt. Commun. 263, 131-134 (2006).
[CrossRef]

Zhang, H.

J. Pu, H. Zhang, and S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57-63 (1999).
[CrossRef]

Am. J. Phys. (1)

T. E. Kiess and R. E. Berg, “Dominant color reversals and chromaticity cusps in interferometric color mixing,” Am. J. Phys. 64, 928-934 (1996).
[CrossRef]

Analyst (Cambridge, U.K.) (1)

Zs. Pápai and T. L. Pap, “Determination of chromatographic peak parameters by non-linear curve fitting using statistical moments,” Analyst (Cambridge, U.K.) 127, 494-498 (2002).
[CrossRef]

Appl. Opt. (4)

IEEE J. Quantum Electron. (1)

J. Pu and S. Nemoto, “Spectral shifts and switches in diffraction of partially coherent light by a circular aperture,” IEEE J. Quantum Electron. 36, 1407-1411 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, Jr., “Optical coherence tomography and microscopy in gastrointestinal tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ. (1)

O. V. Angelsky, S. G. Hanson, P. P. Maksimyak, A. P. Maksimyak, and A. L. Negrych, “Experimental demonstration of singular-optical colouring of regularly scattered white light,” J. Eur. Opt. Soc. Rapid Publ. 3, 08029 (2008).
[CrossRef]

J. Korean Phys. Soc. (1)

J. Kim, C. Choi, and K. S. Soh, “Real spectral-domain optical coherence tomography using a superluminescent diode,” J. Korean Phys. Soc. 47, 375-379 (2005).

J. Mod. Opt. (3)

E. Wolf, T. Shirai, H. Chen, and W. Wang, “Coherence filters and their uses I. Basic theory and examples,” J. Mod. Opt. 44, 1345-1353 (1997).

T. Shirai, E. Wolf, H. Chen, and W. Wang, “Coherence filters and their uses II. One-dimensional realizations,” J. Mod. Opt. 45, 799-816 (1998).
[CrossRef]

V. N. Kumar and D. N. Rao, “Two-beam interference experiments in the frequency domain to measure the complex degree of spectral coherence,” J. Mod. Opt. 48, 1455-1465 (2001).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Opt. Commun. (3)

C. Ding, B. Lü, and L. Pan, “Spectral shifts and spectral switches of spatially and spectrally partially coherent pulsed beams in Young's interference experiment,” Opt. Commun. 282, 413-422 (2009).
[CrossRef]

C. J. Zapata-Rodríguez, “Spectral anomalies in super continuum focused waves,” Opt. Commun. 263, 131-134 (2006).
[CrossRef]

J. Pu, H. Zhang, and S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57-63 (1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. E (1)

L. E. Helseth, “Spectral density of polychromatic electromagnetic waves,” Phys. Rev. E 73, 026602 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behavior of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901-1-4 (2002).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of the experimental setup. WLS, white-light source; BS, 50–50 beam splitter; M1, M2, mirrors; n-PZ, Nanopositioner; Sp, Spectrometer; PC, personal computer.

Fig. 2
Fig. 2

3D plot of the variation of NSS as a function of OPD for the different input spectra with λ 0 = 600 nm and Δ λ varied from 10 to 300 nm .

Fig. 3
Fig. 3

SSA as a function of switch number. Circles with dotted line curve and triangles with dashed curve are the experimental data and values calculated using Eq. (4) for Δ λ = 50 nm , 100 nm , respectively. The continuous curve represents the calculated data for Δ λ = 150 nm .

Fig. 4
Fig. 4

Symmetry parameter β of spectral switches as a function of switch number for different Δ λ . Circles with dotted line curve and triangles with dashed curve are the experimental data and calculated data using Eq. (4) for the spectral bandwidths 50 nm , 100 nm , respectively. The continuous curve represents the calculated data using the Eq. (4) for spectral bandwidth 150 nm .

Fig. 5
Fig. 5

3D plot of the variation of NSS as a function of OPD for different input spectra with Δ λ = 50 nm and λ 0 varied from 400 to 700 nm .

Fig. 6
Fig. 6

SSA as a function of switch number for different values of λ 0 of the input spectrum. Circles with continuous curve, triangles with dashed curve, squares with dotted curve are experimental and calculated data using Eq. (4) for λ 0 = 550 nm , 600 nm , 650 nm , respectively.

Fig. 7
Fig. 7

Symmetry parameter β as a function of switch number for different values of λ 0 . Circles with continuous curve, triangles with dashed curve, squares with dotted curve are experimental and calculated data using Eq. (4) for λ 0 = 550 nm , 600 nm , 650 nm , respectively.

Fig. 8
Fig. 8

Input spectra with different spectral shapes. Circles are the experimental data using the bandpass filter and dotted curve is corresponding numerical fit using Eq. (3); + symbols are the original lamp spectrum, and dashed curve is corresponding numerical fit using Eq. (3); continuous curve is the computer-generated Gaussian spectrum using Eq. (3).

Fig. 9
Fig. 9

NSS as a function of OPD. (a) Gaussian spectrum (b) original lamp spectrum, (c) using a bandpass filter. Circles are the experimental data; the continuous curve represents the calculated data using Eq. (4).

Fig. 10
Fig. 10

SSA as a function of switch number for different shapes of the input spectrum. Circles and triangles are the experimental data with the spectrum using a filter and the original lamp spectrum. Continuous curve, dashed curve, and dotted curve are the calculated data using Eq. (4) for Gaussian spectrum, original lamp spectrum, and the spectrum due to filter, respectively.

Fig. 11
Fig. 11

Symmetry parameter β as a function of switch number for different shapes of the input spectrum. Circles and triangles are the experimental data with the spectrum using a filter and original lamp spectrum. Continuous curve, dashed curve, and dotted curve are the calculated data using Eq. (4) for Gaussian spectrum, original lamp spectrum, and the spectrum using a filter, respectively.

Fig. 12
Fig. 12

SSA as a function of fractional bandwidth ( f bw ) . Circles are the experimental data and the continuous curve is an exponential fit using the function SSA = a + b [ 1 exp ( f bw c ) ] , where a = 0.08 , b = 0.6 , c = 0.22

Fig. 13
Fig. 13

Symmetry parameter β variation as a function of fractional bandwidth f bw .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S ( λ ) = 1 2 S 0 ( λ ) { 1 + Re [ μ 12 ( λ ) ] cos [ κ Δ l ] } ,
S ( λ ) = 1 2 S 0 ( λ ) { 1 + cos [ κ Δ l ] } .
S 0 ( λ ) = H exp [ ( λ λ 0 ) 2 2 ( Δ λ ) 2 ] g ( λ ) ,
where g ( λ ) = 1 + A 6 [ ( λ λ 0 Δ λ ) 2 3 ( λ λ 0 Δ λ ) ] C 24 [ ( λ λ 0 Δ λ ) 4 6 ( λ λ 0 Δ λ ) 2 + 3 ] ,
S ( λ ) = 1 2 H exp [ ( λ λ 0 ) 2 2 ( Δ λ ) 2 ] g ( λ ) { 1 + cos [ κ Δ l ] } .
SSA = { [ ( λ 0 λ bluepeak ) λ 0 ] [ ( λ 0 λ redpeak ) λ 0 ] } = ( λ redpeak λ bluepeak ) λ 0 ,
β = ( λ red λ 0 ) | ( λ blue λ 0 ) | ,

Metrics