Abstract

There are two types of binocular cues available for perception of motion in depth. One is the binocular disparity change in time and the other is the velocity difference between the left and the right retinal images (inter-ocular velocity differences). We measured the luminance contrast threshold for seeing motion in depth while isolating either of the cues at various temporal modulations of velocity in the stimulus. To isolate disparity cues, dynamic random-dot stereograms were used (the disparity condition) while binocularly uncorrelated random-dot kinematograms were used to isolate velocity cues (the velocity condition). Results showed that sensitivity peaked at a temporal frequency (1cps) in the velocity condition while the peak in the disparity condition was at the lowest frequency (0.35cps) or at least at a frequency lower than that in the velocity condition. This suggests that the visual system has different temporal frequency properties for the velocity and disparity cues for motion in depth.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. P. Howard and B. Rogers, Binocular Vision and Stereopsis (Oxford U. Press, 1995).
  2. D. Regan, “Depth from motion and motion-in-depth,” in Binocular Vision, D.Regan, ed. (MacMillan, 1991), pp. 137-160.
  3. S. Shioiri, A. Morinaga, and H. Yaguchi, “Depth perception of moving objects, ” in 3D Television, Video and Display Technology, B.Javidi and F.Okano, eds. (Springer-Verlag, 2002).
  4. A. M. Norcia, E. E. Sutter, and C. W. Tyler, “Electrophysiological evidence for the existence of coarse and fine disparity mechanisms in human,” Vision Res. 25, 1603-1611 (1985).
    [CrossRef] [PubMed]
  5. A. M. Norcia and C. W. Tyler, “Temporal frequency limits for stereoscopic apparent motion processes,” Vision Res. 24, 395-401 (1984).
    [CrossRef] [PubMed]
  6. B. Julesz, Foundations of Cyclopean Perception (University of Chicago Press, 1971).
  7. C. V. Portfors-Yeomans and D. Regan, “Cyclopean discrimination thresholds for the direction and speed of motion in depth,” Vision Res. 36, 3265-3279 (1996).
    [CrossRef] [PubMed]
  8. K. I. Beverley and D. Regan, “Selective adaptation in stereoscopic depth perception,” J. Physiol. (London) 232, 40P-41P (1973).
  9. B. G. Cumming and A. J. Parker, “Binocular mechanisms for detecting motion-in-depth,” Vision Res. 34, 483-495 (1994).
    [CrossRef] [PubMed]
  10. M. Maeda, M. Sato, T. Ohmura, Y. Miyazaki, A. H. Wang, and S. Awaya, “Binocular depth-from-motion in infantile and late-onset esotropia patients with poor stereopsis,” Invest. Ophthalmol. Visual Sci. 40, 3031-3036 (1999).
  11. D. Regan, “Binocular correlates of the direction of motion in depth,” Vision Res. 33, 2359-2360 (1993).
    [CrossRef] [PubMed]
  12. S. Shioiri, H. Saisho, and H. Yaguchi, “Motion in depth based on inter-ocular velocity differences,” Vision Res. 40, 2565-2572 (2000).
    [CrossRef] [PubMed]
  13. J. M. Harris and S. K. Rushton, “Poor visibility of motion in depth is due to early motion averaging,” Vision Res. 43, 385-392 (2003).
    [CrossRef] [PubMed]
  14. K. R. Brooks, “Monocular motion adaptation affects the perceived trajectory of stereomotion,” J. Exp. Psychol. Hum. Percept. Perform. 28, 1470-1482 (2002).
    [CrossRef]
  15. K. R. Brooks, “Interocular velocity difference contributes to stereomotion speed perception,” J. Vision 2, 218-231 (2002).
    [CrossRef]
  16. K. Brooks, “Stereomotion speed perception is contrast dependent,” Perception 30, 725-731 (2001).
    [CrossRef] [PubMed]
  17. J. M. Harris and V. F. Drga, “Using visual direction in three-dimensional motion perception,” Nat. Neurosci. 8, 229-233 (2005).
    [CrossRef] [PubMed]
  18. J. M. Fernandez and B. Farell, “Motion in depth from interocular velocity differences revealed by differential motion aftereffect,” Vision Res. 46, 1307-1317 (2006).
    [CrossRef]
  19. J. M. Fernandez and B. Farell, “Seeing motion in depth using inter-ocular velocity differences,” Vision Res. 45, 2786-2798 (2005).
    [CrossRef] [PubMed]
  20. S. Shioiri, D. Kakehi, T. Tashiro, and H. Yaguchi, “Investigating perception of motion in depth using monocular motion aftereffect,” presented at the Vision Sciences Society, Sarasota, Fla., May 13, 2003.
  21. J. M. Harris and S. N. Watamaniuk, “Speed discrimination of motion-in-depth using binocular cues,” Vision Res. 35, 885-896 (1995).
    [CrossRef] [PubMed]
  22. K. Brooks and G. Mather, “Perceived speed of motion in depth is reduced in the periphery,” Vision Res. 40, 3507-3516 (2000).
    [CrossRef] [PubMed]
  23. E. Akase, H. Inokawa, and K. Toyama, “Neuronal responsiveness to three-dimensional motion in cat posteromedial lateral suprasylvian cortex,” Exp. Brain Res. 122, 214-226 (1998).
    [CrossRef] [PubMed]
  24. M. Cynader and D. Regan, “Neurons in cat visual cortex tuned to the direction of motion in depth: Effect of positional disparity,” Vision Res. 22, 967-982 (1982).
    [CrossRef] [PubMed]
  25. G. F. Poggio and W. H. Talbot, “Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey,” J. Physiol. (London) 315, 469-492 (1981).
  26. Y. Chen, Y. Wang, and N. Qian, “Modeling V1 disparity tuning to time-varying stimuli,” J. Neurophysiol. 86, 143-155 (2001).
    [PubMed]
  27. N. Qian, “Binocular disparity and the perception of depth,” Neuron 18, 359-368 (1997).
    [CrossRef] [PubMed]
  28. J. H. Maunsell and D. C. Van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity,” J. Neurophysiol. 49, 1148-1167 (1983).
    [PubMed]
  29. A. B. Watson and A. J. Ahumada, Jr., “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322-341 (1985).
    [CrossRef] [PubMed]
  30. E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284-299 (1985).
    [CrossRef] [PubMed]
  31. I. Ohzawa, “Mechanisms of stereoscopic vision: The disparity energy model,” Curr. Opin. Neurobiol. 8, 509-515 (1998).
    [CrossRef] [PubMed]
  32. I. Ohzawa, G. C. DeAngelis, and R. D. Freeman, “Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors,” Science 249, 1037-1041 (1990).
    [CrossRef] [PubMed]
  33. I. Ohzawa, G. C. DeAngelis, and R. D. Freeman, “Encoding of binocular disparity by complex cells in the cat's visual cortex,” J. Neurophysiol. 77, 2879-2909 (1997).
    [PubMed]
  34. K. I. Beverley and D. Regan, “Temporal integration of disparity information in stereoscopic perception,” Exp. Brain Res. 19, 228-232 (1974).
    [CrossRef] [PubMed]
  35. J. M. Foley and C. W. Tyler, “Effect of stimulus duration on stereo and vernier displacement thresholds,” Percept. Psychophys. 20, 125-128 (1976).
    [CrossRef]
  36. R. S. Harwerth and S. C. Rawlings, “Viewing time and stereoscopic threshold with random-dot stereograms,” Am. J. Optom. Physiol. Opt. 54, 452-457 (1977).
    [PubMed]
  37. S. Lee, S. Shioiri, and H. Yaguchi, “The effect of exposure duration on stereopsis and its dependency on spatial frequency,” Opt. Rev. 11, 256-264 (2004).
    [CrossRef]
  38. K. N. Ogle and M. P. Weil, “Stereoscopic vision and the duration of the stimulus,” AMA Arch. Ophthalmol. 59, 4-17 (1958).
    [CrossRef] [PubMed]
  39. R. Patterson, “Spatiotemporal properties of stereoacuity,” Optom. Vision Sci. 67, 123-128 (1990).
    [CrossRef]
  40. C. W. Tyler, “Cyclopean vision,” in Vision and Visual Dysfunction, Vol. 9, Binocular Vision, D.Regan, ed. (Macmillan, 1991), pp. 38-74.
  41. R. J. Watt, “Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulus,” J. Opt. Soc. Am. A 4, 2006-2021 (1987).
    [CrossRef] [PubMed]
  42. R. Patterson, R. Cayko, G. L. Short, R. Flanagan, L. Moe, E. Taylor, and P. Day, “Temporal integration differences between crossed and uncrossed stereoscopic mechanisms,” Percept. Psychophys. 57, 891-897 (1995).
    [CrossRef] [PubMed]
  43. C. W. Tyler, “Binocular cross-correlation in time and space,” Vision Res. 18, 101-105 (1978).
    [CrossRef] [PubMed]
  44. W. R. Uttal, N. S. Davis, and C. Welke, “Stereoscopic perception with brief exposures,” Percept. Psychophys. 56, 599-604 (1994).
    [CrossRef] [PubMed]
  45. B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, and A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813-820 (1985).
    [CrossRef] [PubMed]
  46. S. Shioiri, S. Ito, K. Sakurai, and H. Yaguchi, “Detection of relative and uniform motion,” J. Opt. Soc. Am. A 19, 2169-2179 (2002).
    [CrossRef]
  47. S. Shioiri and P. Cavanagh, “Visual persistence of figures defined by relative motion,” Vision Res. 32, 943-951 (1992).
    [CrossRef] [PubMed]
  48. K. Nakayama and C. W. Tyler, “Psychophysical isolation of movement sensitivity by removal of familiar position cues,” Vision Res. 21, 427-433 (1981).
    [CrossRef] [PubMed]
  49. S. Nagata, “New versatile stereo (NS-type) disparity system and measurement of binocular depth perception,” J. Jpn. Soc. Med. Electron. Biol. Eng. 20, 154-161 (1982).
  50. D. Regan and K. I. Beverley, “Some dynamic features of depth perception,” Vision Res. 13, 2369-2379 (1973).
    [CrossRef] [PubMed]
  51. W. Richards, “Disparity masking,” Vision Res. 12, 1113-1124 (1972).
    [CrossRef] [PubMed]
  52. C. W. Tyler, “Stereoscopic depth movement: Two eyes less sensitive than one,” Science 174, 958-961 (1971).
    [CrossRef] [PubMed]
  53. M. Lages, P. Mamassian, and E. W. Graf, “Spatial and temporal tuning of motion in depth,” Vision Res. 43, 2861-2873 (2003).
    [CrossRef] [PubMed]
  54. C. W. Tyler, “Depth perception in disparity gratings,” Nature 251, 140-142 (1974).
    [CrossRef] [PubMed]
  55. D. Regan and K. I. Beverley, “Disparity detectors in human depth perception: Evidence for directional selectivity,” Science 181, 877-879 (1973).
    [CrossRef] [PubMed]
  56. L. Liu, C. W. Tyler, and C. M. Schor, “Failure of rivalry at low contrast: Evidence of a suprathreshold binocular summation process,” Vision Res. 32, 1471-1479 (1992).
    [CrossRef] [PubMed]
  57. K. R. Brooks and L. S. Stone, “Spatial scale of stereomotion speed processing,” J. Vision 6, 1257-1266 (2006).
    [CrossRef]
  58. C. J. Erkelens and H. Collewijn, “Motion perception during dichoptic viewing of moving random-dot stereograms,” Vision Res. 25, 583-588 (1985).
    [CrossRef] [PubMed]
  59. Y. Watanabe, T. Kezuka, K. Harasawa, M. Usui, H. Yaguchi, and S. Shioiri, “A new method for assessing motion-in-depth perception in strabismic patients,” Br. J. Ophthamol. 92, 47-50 (2008).
    [CrossRef]
  60. S. Lee, S. Shioiri, and H. Yaguchi, “Effects of temporal frequency and contrast on spatial frequency characteristics for disparity threshold,” Opt. Rev. 10, 120-123 (2003).
    [CrossRef]

2008

Y. Watanabe, T. Kezuka, K. Harasawa, M. Usui, H. Yaguchi, and S. Shioiri, “A new method for assessing motion-in-depth perception in strabismic patients,” Br. J. Ophthamol. 92, 47-50 (2008).
[CrossRef]

2006

K. R. Brooks and L. S. Stone, “Spatial scale of stereomotion speed processing,” J. Vision 6, 1257-1266 (2006).
[CrossRef]

J. M. Fernandez and B. Farell, “Motion in depth from interocular velocity differences revealed by differential motion aftereffect,” Vision Res. 46, 1307-1317 (2006).
[CrossRef]

2005

J. M. Fernandez and B. Farell, “Seeing motion in depth using inter-ocular velocity differences,” Vision Res. 45, 2786-2798 (2005).
[CrossRef] [PubMed]

J. M. Harris and V. F. Drga, “Using visual direction in three-dimensional motion perception,” Nat. Neurosci. 8, 229-233 (2005).
[CrossRef] [PubMed]

2004

S. Lee, S. Shioiri, and H. Yaguchi, “The effect of exposure duration on stereopsis and its dependency on spatial frequency,” Opt. Rev. 11, 256-264 (2004).
[CrossRef]

2003

J. M. Harris and S. K. Rushton, “Poor visibility of motion in depth is due to early motion averaging,” Vision Res. 43, 385-392 (2003).
[CrossRef] [PubMed]

S. Lee, S. Shioiri, and H. Yaguchi, “Effects of temporal frequency and contrast on spatial frequency characteristics for disparity threshold,” Opt. Rev. 10, 120-123 (2003).
[CrossRef]

M. Lages, P. Mamassian, and E. W. Graf, “Spatial and temporal tuning of motion in depth,” Vision Res. 43, 2861-2873 (2003).
[CrossRef] [PubMed]

2002

S. Shioiri, S. Ito, K. Sakurai, and H. Yaguchi, “Detection of relative and uniform motion,” J. Opt. Soc. Am. A 19, 2169-2179 (2002).
[CrossRef]

K. R. Brooks, “Monocular motion adaptation affects the perceived trajectory of stereomotion,” J. Exp. Psychol. Hum. Percept. Perform. 28, 1470-1482 (2002).
[CrossRef]

K. R. Brooks, “Interocular velocity difference contributes to stereomotion speed perception,” J. Vision 2, 218-231 (2002).
[CrossRef]

S. Shioiri, A. Morinaga, and H. Yaguchi, “Depth perception of moving objects, ” in 3D Television, Video and Display Technology, B.Javidi and F.Okano, eds. (Springer-Verlag, 2002).

2001

K. Brooks, “Stereomotion speed perception is contrast dependent,” Perception 30, 725-731 (2001).
[CrossRef] [PubMed]

Y. Chen, Y. Wang, and N. Qian, “Modeling V1 disparity tuning to time-varying stimuli,” J. Neurophysiol. 86, 143-155 (2001).
[PubMed]

2000

K. Brooks and G. Mather, “Perceived speed of motion in depth is reduced in the periphery,” Vision Res. 40, 3507-3516 (2000).
[CrossRef] [PubMed]

S. Shioiri, H. Saisho, and H. Yaguchi, “Motion in depth based on inter-ocular velocity differences,” Vision Res. 40, 2565-2572 (2000).
[CrossRef] [PubMed]

1999

M. Maeda, M. Sato, T. Ohmura, Y. Miyazaki, A. H. Wang, and S. Awaya, “Binocular depth-from-motion in infantile and late-onset esotropia patients with poor stereopsis,” Invest. Ophthalmol. Visual Sci. 40, 3031-3036 (1999).

1998

E. Akase, H. Inokawa, and K. Toyama, “Neuronal responsiveness to three-dimensional motion in cat posteromedial lateral suprasylvian cortex,” Exp. Brain Res. 122, 214-226 (1998).
[CrossRef] [PubMed]

I. Ohzawa, “Mechanisms of stereoscopic vision: The disparity energy model,” Curr. Opin. Neurobiol. 8, 509-515 (1998).
[CrossRef] [PubMed]

1997

I. Ohzawa, G. C. DeAngelis, and R. D. Freeman, “Encoding of binocular disparity by complex cells in the cat's visual cortex,” J. Neurophysiol. 77, 2879-2909 (1997).
[PubMed]

N. Qian, “Binocular disparity and the perception of depth,” Neuron 18, 359-368 (1997).
[CrossRef] [PubMed]

1996

C. V. Portfors-Yeomans and D. Regan, “Cyclopean discrimination thresholds for the direction and speed of motion in depth,” Vision Res. 36, 3265-3279 (1996).
[CrossRef] [PubMed]

1995

I. P. Howard and B. Rogers, Binocular Vision and Stereopsis (Oxford U. Press, 1995).

J. M. Harris and S. N. Watamaniuk, “Speed discrimination of motion-in-depth using binocular cues,” Vision Res. 35, 885-896 (1995).
[CrossRef] [PubMed]

R. Patterson, R. Cayko, G. L. Short, R. Flanagan, L. Moe, E. Taylor, and P. Day, “Temporal integration differences between crossed and uncrossed stereoscopic mechanisms,” Percept. Psychophys. 57, 891-897 (1995).
[CrossRef] [PubMed]

1994

W. R. Uttal, N. S. Davis, and C. Welke, “Stereoscopic perception with brief exposures,” Percept. Psychophys. 56, 599-604 (1994).
[CrossRef] [PubMed]

B. G. Cumming and A. J. Parker, “Binocular mechanisms for detecting motion-in-depth,” Vision Res. 34, 483-495 (1994).
[CrossRef] [PubMed]

1993

D. Regan, “Binocular correlates of the direction of motion in depth,” Vision Res. 33, 2359-2360 (1993).
[CrossRef] [PubMed]

1992

L. Liu, C. W. Tyler, and C. M. Schor, “Failure of rivalry at low contrast: Evidence of a suprathreshold binocular summation process,” Vision Res. 32, 1471-1479 (1992).
[CrossRef] [PubMed]

S. Shioiri and P. Cavanagh, “Visual persistence of figures defined by relative motion,” Vision Res. 32, 943-951 (1992).
[CrossRef] [PubMed]

1991

C. W. Tyler, “Cyclopean vision,” in Vision and Visual Dysfunction, Vol. 9, Binocular Vision, D.Regan, ed. (Macmillan, 1991), pp. 38-74.

D. Regan, “Depth from motion and motion-in-depth,” in Binocular Vision, D.Regan, ed. (MacMillan, 1991), pp. 137-160.

1990

I. Ohzawa, G. C. DeAngelis, and R. D. Freeman, “Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors,” Science 249, 1037-1041 (1990).
[CrossRef] [PubMed]

R. Patterson, “Spatiotemporal properties of stereoacuity,” Optom. Vision Sci. 67, 123-128 (1990).
[CrossRef]

1987

1985

C. J. Erkelens and H. Collewijn, “Motion perception during dichoptic viewing of moving random-dot stereograms,” Vision Res. 25, 583-588 (1985).
[CrossRef] [PubMed]

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, and A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813-820 (1985).
[CrossRef] [PubMed]

E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284-299 (1985).
[CrossRef] [PubMed]

A. B. Watson and A. J. Ahumada, Jr., “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322-341 (1985).
[CrossRef] [PubMed]

A. M. Norcia, E. E. Sutter, and C. W. Tyler, “Electrophysiological evidence for the existence of coarse and fine disparity mechanisms in human,” Vision Res. 25, 1603-1611 (1985).
[CrossRef] [PubMed]

1984

A. M. Norcia and C. W. Tyler, “Temporal frequency limits for stereoscopic apparent motion processes,” Vision Res. 24, 395-401 (1984).
[CrossRef] [PubMed]

1983

J. H. Maunsell and D. C. Van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity,” J. Neurophysiol. 49, 1148-1167 (1983).
[PubMed]

1982

M. Cynader and D. Regan, “Neurons in cat visual cortex tuned to the direction of motion in depth: Effect of positional disparity,” Vision Res. 22, 967-982 (1982).
[CrossRef] [PubMed]

S. Nagata, “New versatile stereo (NS-type) disparity system and measurement of binocular depth perception,” J. Jpn. Soc. Med. Electron. Biol. Eng. 20, 154-161 (1982).

1981

K. Nakayama and C. W. Tyler, “Psychophysical isolation of movement sensitivity by removal of familiar position cues,” Vision Res. 21, 427-433 (1981).
[CrossRef] [PubMed]

G. F. Poggio and W. H. Talbot, “Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey,” J. Physiol. (London) 315, 469-492 (1981).

1978

C. W. Tyler, “Binocular cross-correlation in time and space,” Vision Res. 18, 101-105 (1978).
[CrossRef] [PubMed]

1977

R. S. Harwerth and S. C. Rawlings, “Viewing time and stereoscopic threshold with random-dot stereograms,” Am. J. Optom. Physiol. Opt. 54, 452-457 (1977).
[PubMed]

1976

J. M. Foley and C. W. Tyler, “Effect of stimulus duration on stereo and vernier displacement thresholds,” Percept. Psychophys. 20, 125-128 (1976).
[CrossRef]

1974

K. I. Beverley and D. Regan, “Temporal integration of disparity information in stereoscopic perception,” Exp. Brain Res. 19, 228-232 (1974).
[CrossRef] [PubMed]

C. W. Tyler, “Depth perception in disparity gratings,” Nature 251, 140-142 (1974).
[CrossRef] [PubMed]

1973

D. Regan and K. I. Beverley, “Disparity detectors in human depth perception: Evidence for directional selectivity,” Science 181, 877-879 (1973).
[CrossRef] [PubMed]

D. Regan and K. I. Beverley, “Some dynamic features of depth perception,” Vision Res. 13, 2369-2379 (1973).
[CrossRef] [PubMed]

K. I. Beverley and D. Regan, “Selective adaptation in stereoscopic depth perception,” J. Physiol. (London) 232, 40P-41P (1973).

1972

W. Richards, “Disparity masking,” Vision Res. 12, 1113-1124 (1972).
[CrossRef] [PubMed]

1971

C. W. Tyler, “Stereoscopic depth movement: Two eyes less sensitive than one,” Science 174, 958-961 (1971).
[CrossRef] [PubMed]

B. Julesz, Foundations of Cyclopean Perception (University of Chicago Press, 1971).

1958

K. N. Ogle and M. P. Weil, “Stereoscopic vision and the duration of the stimulus,” AMA Arch. Ophthalmol. 59, 4-17 (1958).
[CrossRef] [PubMed]

Adelson, E. H.

Ahumada, A. J.

Akase, E.

E. Akase, H. Inokawa, and K. Toyama, “Neuronal responsiveness to three-dimensional motion in cat posteromedial lateral suprasylvian cortex,” Exp. Brain Res. 122, 214-226 (1998).
[CrossRef] [PubMed]

Andersen, R. A.

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, and A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813-820 (1985).
[CrossRef] [PubMed]

Awaya, S.

M. Maeda, M. Sato, T. Ohmura, Y. Miyazaki, A. H. Wang, and S. Awaya, “Binocular depth-from-motion in infantile and late-onset esotropia patients with poor stereopsis,” Invest. Ophthalmol. Visual Sci. 40, 3031-3036 (1999).

Bergen, J. R.

Beverley, K. I.

K. I. Beverley and D. Regan, “Temporal integration of disparity information in stereoscopic perception,” Exp. Brain Res. 19, 228-232 (1974).
[CrossRef] [PubMed]

K. I. Beverley and D. Regan, “Selective adaptation in stereoscopic depth perception,” J. Physiol. (London) 232, 40P-41P (1973).

D. Regan and K. I. Beverley, “Disparity detectors in human depth perception: Evidence for directional selectivity,” Science 181, 877-879 (1973).
[CrossRef] [PubMed]

D. Regan and K. I. Beverley, “Some dynamic features of depth perception,” Vision Res. 13, 2369-2379 (1973).
[CrossRef] [PubMed]

Brooks, K.

K. Brooks, “Stereomotion speed perception is contrast dependent,” Perception 30, 725-731 (2001).
[CrossRef] [PubMed]

K. Brooks and G. Mather, “Perceived speed of motion in depth is reduced in the periphery,” Vision Res. 40, 3507-3516 (2000).
[CrossRef] [PubMed]

Brooks, K. R.

K. R. Brooks and L. S. Stone, “Spatial scale of stereomotion speed processing,” J. Vision 6, 1257-1266 (2006).
[CrossRef]

K. R. Brooks, “Monocular motion adaptation affects the perceived trajectory of stereomotion,” J. Exp. Psychol. Hum. Percept. Perform. 28, 1470-1482 (2002).
[CrossRef]

K. R. Brooks, “Interocular velocity difference contributes to stereomotion speed perception,” J. Vision 2, 218-231 (2002).
[CrossRef]

Cavanagh, P.

S. Shioiri and P. Cavanagh, “Visual persistence of figures defined by relative motion,” Vision Res. 32, 943-951 (1992).
[CrossRef] [PubMed]

Cayko, R.

R. Patterson, R. Cayko, G. L. Short, R. Flanagan, L. Moe, E. Taylor, and P. Day, “Temporal integration differences between crossed and uncrossed stereoscopic mechanisms,” Percept. Psychophys. 57, 891-897 (1995).
[CrossRef] [PubMed]

Chen, Y.

Y. Chen, Y. Wang, and N. Qian, “Modeling V1 disparity tuning to time-varying stimuli,” J. Neurophysiol. 86, 143-155 (2001).
[PubMed]

Collewijn, H.

C. J. Erkelens and H. Collewijn, “Motion perception during dichoptic viewing of moving random-dot stereograms,” Vision Res. 25, 583-588 (1985).
[CrossRef] [PubMed]

Cumming, B. G.

B. G. Cumming and A. J. Parker, “Binocular mechanisms for detecting motion-in-depth,” Vision Res. 34, 483-495 (1994).
[CrossRef] [PubMed]

Cynader, M.

M. Cynader and D. Regan, “Neurons in cat visual cortex tuned to the direction of motion in depth: Effect of positional disparity,” Vision Res. 22, 967-982 (1982).
[CrossRef] [PubMed]

Davis, N. S.

W. R. Uttal, N. S. Davis, and C. Welke, “Stereoscopic perception with brief exposures,” Percept. Psychophys. 56, 599-604 (1994).
[CrossRef] [PubMed]

Day, P.

R. Patterson, R. Cayko, G. L. Short, R. Flanagan, L. Moe, E. Taylor, and P. Day, “Temporal integration differences between crossed and uncrossed stereoscopic mechanisms,” Percept. Psychophys. 57, 891-897 (1995).
[CrossRef] [PubMed]

DeAngelis, G. C.

I. Ohzawa, G. C. DeAngelis, and R. D. Freeman, “Encoding of binocular disparity by complex cells in the cat's visual cortex,” J. Neurophysiol. 77, 2879-2909 (1997).
[PubMed]

I. Ohzawa, G. C. DeAngelis, and R. D. Freeman, “Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors,” Science 249, 1037-1041 (1990).
[CrossRef] [PubMed]

Drga, V. F.

J. M. Harris and V. F. Drga, “Using visual direction in three-dimensional motion perception,” Nat. Neurosci. 8, 229-233 (2005).
[CrossRef] [PubMed]

Erkelens, C. J.

C. J. Erkelens and H. Collewijn, “Motion perception during dichoptic viewing of moving random-dot stereograms,” Vision Res. 25, 583-588 (1985).
[CrossRef] [PubMed]

Farell, B.

J. M. Fernandez and B. Farell, “Motion in depth from interocular velocity differences revealed by differential motion aftereffect,” Vision Res. 46, 1307-1317 (2006).
[CrossRef]

J. M. Fernandez and B. Farell, “Seeing motion in depth using inter-ocular velocity differences,” Vision Res. 45, 2786-2798 (2005).
[CrossRef] [PubMed]

Fernandez, J. M.

J. M. Fernandez and B. Farell, “Motion in depth from interocular velocity differences revealed by differential motion aftereffect,” Vision Res. 46, 1307-1317 (2006).
[CrossRef]

J. M. Fernandez and B. Farell, “Seeing motion in depth using inter-ocular velocity differences,” Vision Res. 45, 2786-2798 (2005).
[CrossRef] [PubMed]

Flanagan, R.

R. Patterson, R. Cayko, G. L. Short, R. Flanagan, L. Moe, E. Taylor, and P. Day, “Temporal integration differences between crossed and uncrossed stereoscopic mechanisms,” Percept. Psychophys. 57, 891-897 (1995).
[CrossRef] [PubMed]

Foley, J. M.

J. M. Foley and C. W. Tyler, “Effect of stimulus duration on stereo and vernier displacement thresholds,” Percept. Psychophys. 20, 125-128 (1976).
[CrossRef]

Freeman, R. D.

I. Ohzawa, G. C. DeAngelis, and R. D. Freeman, “Encoding of binocular disparity by complex cells in the cat's visual cortex,” J. Neurophysiol. 77, 2879-2909 (1997).
[PubMed]

I. Ohzawa, G. C. DeAngelis, and R. D. Freeman, “Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors,” Science 249, 1037-1041 (1990).
[CrossRef] [PubMed]

Golomb, B.

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, and A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813-820 (1985).
[CrossRef] [PubMed]

Graf, E. W.

M. Lages, P. Mamassian, and E. W. Graf, “Spatial and temporal tuning of motion in depth,” Vision Res. 43, 2861-2873 (2003).
[CrossRef] [PubMed]

Harasawa, K.

Y. Watanabe, T. Kezuka, K. Harasawa, M. Usui, H. Yaguchi, and S. Shioiri, “A new method for assessing motion-in-depth perception in strabismic patients,” Br. J. Ophthamol. 92, 47-50 (2008).
[CrossRef]

Harris, J. M.

J. M. Harris and V. F. Drga, “Using visual direction in three-dimensional motion perception,” Nat. Neurosci. 8, 229-233 (2005).
[CrossRef] [PubMed]

J. M. Harris and S. K. Rushton, “Poor visibility of motion in depth is due to early motion averaging,” Vision Res. 43, 385-392 (2003).
[CrossRef] [PubMed]

J. M. Harris and S. N. Watamaniuk, “Speed discrimination of motion-in-depth using binocular cues,” Vision Res. 35, 885-896 (1995).
[CrossRef] [PubMed]

Harwerth, R. S.

R. S. Harwerth and S. C. Rawlings, “Viewing time and stereoscopic threshold with random-dot stereograms,” Am. J. Optom. Physiol. Opt. 54, 452-457 (1977).
[PubMed]

Howard, I. P.

I. P. Howard and B. Rogers, Binocular Vision and Stereopsis (Oxford U. Press, 1995).

Inokawa, H.

E. Akase, H. Inokawa, and K. Toyama, “Neuronal responsiveness to three-dimensional motion in cat posteromedial lateral suprasylvian cortex,” Exp. Brain Res. 122, 214-226 (1998).
[CrossRef] [PubMed]

Ito, S.

Julesz, B.

B. Julesz, Foundations of Cyclopean Perception (University of Chicago Press, 1971).

Kakehi, D.

S. Shioiri, D. Kakehi, T. Tashiro, and H. Yaguchi, “Investigating perception of motion in depth using monocular motion aftereffect,” presented at the Vision Sciences Society, Sarasota, Fla., May 13, 2003.

Kezuka, T.

Y. Watanabe, T. Kezuka, K. Harasawa, M. Usui, H. Yaguchi, and S. Shioiri, “A new method for assessing motion-in-depth perception in strabismic patients,” Br. J. Ophthamol. 92, 47-50 (2008).
[CrossRef]

Lages, M.

M. Lages, P. Mamassian, and E. W. Graf, “Spatial and temporal tuning of motion in depth,” Vision Res. 43, 2861-2873 (2003).
[CrossRef] [PubMed]

Lee, S.

S. Lee, S. Shioiri, and H. Yaguchi, “The effect of exposure duration on stereopsis and its dependency on spatial frequency,” Opt. Rev. 11, 256-264 (2004).
[CrossRef]

S. Lee, S. Shioiri, and H. Yaguchi, “Effects of temporal frequency and contrast on spatial frequency characteristics for disparity threshold,” Opt. Rev. 10, 120-123 (2003).
[CrossRef]

Liu, L.

L. Liu, C. W. Tyler, and C. M. Schor, “Failure of rivalry at low contrast: Evidence of a suprathreshold binocular summation process,” Vision Res. 32, 1471-1479 (1992).
[CrossRef] [PubMed]

MacLeod, D. I.

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, and A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813-820 (1985).
[CrossRef] [PubMed]

Maeda, M.

M. Maeda, M. Sato, T. Ohmura, Y. Miyazaki, A. H. Wang, and S. Awaya, “Binocular depth-from-motion in infantile and late-onset esotropia patients with poor stereopsis,” Invest. Ophthalmol. Visual Sci. 40, 3031-3036 (1999).

Mamassian, P.

M. Lages, P. Mamassian, and E. W. Graf, “Spatial and temporal tuning of motion in depth,” Vision Res. 43, 2861-2873 (2003).
[CrossRef] [PubMed]

Mather, G.

K. Brooks and G. Mather, “Perceived speed of motion in depth is reduced in the periphery,” Vision Res. 40, 3507-3516 (2000).
[CrossRef] [PubMed]

Maunsell, J. H.

J. H. Maunsell and D. C. Van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity,” J. Neurophysiol. 49, 1148-1167 (1983).
[PubMed]

Miyazaki, Y.

M. Maeda, M. Sato, T. Ohmura, Y. Miyazaki, A. H. Wang, and S. Awaya, “Binocular depth-from-motion in infantile and late-onset esotropia patients with poor stereopsis,” Invest. Ophthalmol. Visual Sci. 40, 3031-3036 (1999).

Moe, L.

R. Patterson, R. Cayko, G. L. Short, R. Flanagan, L. Moe, E. Taylor, and P. Day, “Temporal integration differences between crossed and uncrossed stereoscopic mechanisms,” Percept. Psychophys. 57, 891-897 (1995).
[CrossRef] [PubMed]

Morinaga, A.

S. Shioiri, A. Morinaga, and H. Yaguchi, “Depth perception of moving objects, ” in 3D Television, Video and Display Technology, B.Javidi and F.Okano, eds. (Springer-Verlag, 2002).

Nagata, S.

S. Nagata, “New versatile stereo (NS-type) disparity system and measurement of binocular depth perception,” J. Jpn. Soc. Med. Electron. Biol. Eng. 20, 154-161 (1982).

Nakayama, K.

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, and A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813-820 (1985).
[CrossRef] [PubMed]

K. Nakayama and C. W. Tyler, “Psychophysical isolation of movement sensitivity by removal of familiar position cues,” Vision Res. 21, 427-433 (1981).
[CrossRef] [PubMed]

Norcia, A. M.

A. M. Norcia, E. E. Sutter, and C. W. Tyler, “Electrophysiological evidence for the existence of coarse and fine disparity mechanisms in human,” Vision Res. 25, 1603-1611 (1985).
[CrossRef] [PubMed]

A. M. Norcia and C. W. Tyler, “Temporal frequency limits for stereoscopic apparent motion processes,” Vision Res. 24, 395-401 (1984).
[CrossRef] [PubMed]

Ogle, K. N.

K. N. Ogle and M. P. Weil, “Stereoscopic vision and the duration of the stimulus,” AMA Arch. Ophthalmol. 59, 4-17 (1958).
[CrossRef] [PubMed]

Ohmura, T.

M. Maeda, M. Sato, T. Ohmura, Y. Miyazaki, A. H. Wang, and S. Awaya, “Binocular depth-from-motion in infantile and late-onset esotropia patients with poor stereopsis,” Invest. Ophthalmol. Visual Sci. 40, 3031-3036 (1999).

Ohzawa, I.

I. Ohzawa, “Mechanisms of stereoscopic vision: The disparity energy model,” Curr. Opin. Neurobiol. 8, 509-515 (1998).
[CrossRef] [PubMed]

I. Ohzawa, G. C. DeAngelis, and R. D. Freeman, “Encoding of binocular disparity by complex cells in the cat's visual cortex,” J. Neurophysiol. 77, 2879-2909 (1997).
[PubMed]

I. Ohzawa, G. C. DeAngelis, and R. D. Freeman, “Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors,” Science 249, 1037-1041 (1990).
[CrossRef] [PubMed]

Parker, A. J.

B. G. Cumming and A. J. Parker, “Binocular mechanisms for detecting motion-in-depth,” Vision Res. 34, 483-495 (1994).
[CrossRef] [PubMed]

Patterson, R.

R. Patterson, R. Cayko, G. L. Short, R. Flanagan, L. Moe, E. Taylor, and P. Day, “Temporal integration differences between crossed and uncrossed stereoscopic mechanisms,” Percept. Psychophys. 57, 891-897 (1995).
[CrossRef] [PubMed]

R. Patterson, “Spatiotemporal properties of stereoacuity,” Optom. Vision Sci. 67, 123-128 (1990).
[CrossRef]

Poggio, G. F.

G. F. Poggio and W. H. Talbot, “Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey,” J. Physiol. (London) 315, 469-492 (1981).

Portfors-Yeomans, C. V.

C. V. Portfors-Yeomans and D. Regan, “Cyclopean discrimination thresholds for the direction and speed of motion in depth,” Vision Res. 36, 3265-3279 (1996).
[CrossRef] [PubMed]

Qian, N.

Y. Chen, Y. Wang, and N. Qian, “Modeling V1 disparity tuning to time-varying stimuli,” J. Neurophysiol. 86, 143-155 (2001).
[PubMed]

N. Qian, “Binocular disparity and the perception of depth,” Neuron 18, 359-368 (1997).
[CrossRef] [PubMed]

Rawlings, S. C.

R. S. Harwerth and S. C. Rawlings, “Viewing time and stereoscopic threshold with random-dot stereograms,” Am. J. Optom. Physiol. Opt. 54, 452-457 (1977).
[PubMed]

Regan, D.

C. V. Portfors-Yeomans and D. Regan, “Cyclopean discrimination thresholds for the direction and speed of motion in depth,” Vision Res. 36, 3265-3279 (1996).
[CrossRef] [PubMed]

D. Regan, “Binocular correlates of the direction of motion in depth,” Vision Res. 33, 2359-2360 (1993).
[CrossRef] [PubMed]

D. Regan, “Depth from motion and motion-in-depth,” in Binocular Vision, D.Regan, ed. (MacMillan, 1991), pp. 137-160.

M. Cynader and D. Regan, “Neurons in cat visual cortex tuned to the direction of motion in depth: Effect of positional disparity,” Vision Res. 22, 967-982 (1982).
[CrossRef] [PubMed]

K. I. Beverley and D. Regan, “Temporal integration of disparity information in stereoscopic perception,” Exp. Brain Res. 19, 228-232 (1974).
[CrossRef] [PubMed]

D. Regan and K. I. Beverley, “Some dynamic features of depth perception,” Vision Res. 13, 2369-2379 (1973).
[CrossRef] [PubMed]

K. I. Beverley and D. Regan, “Selective adaptation in stereoscopic depth perception,” J. Physiol. (London) 232, 40P-41P (1973).

D. Regan and K. I. Beverley, “Disparity detectors in human depth perception: Evidence for directional selectivity,” Science 181, 877-879 (1973).
[CrossRef] [PubMed]

Richards, W.

W. Richards, “Disparity masking,” Vision Res. 12, 1113-1124 (1972).
[CrossRef] [PubMed]

Rogers, B.

I. P. Howard and B. Rogers, Binocular Vision and Stereopsis (Oxford U. Press, 1995).

Rushton, S. K.

J. M. Harris and S. K. Rushton, “Poor visibility of motion in depth is due to early motion averaging,” Vision Res. 43, 385-392 (2003).
[CrossRef] [PubMed]

Saisho, H.

S. Shioiri, H. Saisho, and H. Yaguchi, “Motion in depth based on inter-ocular velocity differences,” Vision Res. 40, 2565-2572 (2000).
[CrossRef] [PubMed]

Sakurai, K.

Sato, M.

M. Maeda, M. Sato, T. Ohmura, Y. Miyazaki, A. H. Wang, and S. Awaya, “Binocular depth-from-motion in infantile and late-onset esotropia patients with poor stereopsis,” Invest. Ophthalmol. Visual Sci. 40, 3031-3036 (1999).

Schor, C. M.

L. Liu, C. W. Tyler, and C. M. Schor, “Failure of rivalry at low contrast: Evidence of a suprathreshold binocular summation process,” Vision Res. 32, 1471-1479 (1992).
[CrossRef] [PubMed]

Shioiri, S.

S. Shioiri, D. Kakehi, T. Tashiro, and H. Yaguchi, “Investigating perception of motion in depth using monocular motion aftereffect,” presented at the Vision Sciences Society, Sarasota, Fla., May 13, 2003.

Y. Watanabe, T. Kezuka, K. Harasawa, M. Usui, H. Yaguchi, and S. Shioiri, “A new method for assessing motion-in-depth perception in strabismic patients,” Br. J. Ophthamol. 92, 47-50 (2008).
[CrossRef]

S. Lee, S. Shioiri, and H. Yaguchi, “The effect of exposure duration on stereopsis and its dependency on spatial frequency,” Opt. Rev. 11, 256-264 (2004).
[CrossRef]

S. Lee, S. Shioiri, and H. Yaguchi, “Effects of temporal frequency and contrast on spatial frequency characteristics for disparity threshold,” Opt. Rev. 10, 120-123 (2003).
[CrossRef]

S. Shioiri, A. Morinaga, and H. Yaguchi, “Depth perception of moving objects, ” in 3D Television, Video and Display Technology, B.Javidi and F.Okano, eds. (Springer-Verlag, 2002).

S. Shioiri, S. Ito, K. Sakurai, and H. Yaguchi, “Detection of relative and uniform motion,” J. Opt. Soc. Am. A 19, 2169-2179 (2002).
[CrossRef]

S. Shioiri, H. Saisho, and H. Yaguchi, “Motion in depth based on inter-ocular velocity differences,” Vision Res. 40, 2565-2572 (2000).
[CrossRef] [PubMed]

S. Shioiri and P. Cavanagh, “Visual persistence of figures defined by relative motion,” Vision Res. 32, 943-951 (1992).
[CrossRef] [PubMed]

Short, G. L.

R. Patterson, R. Cayko, G. L. Short, R. Flanagan, L. Moe, E. Taylor, and P. Day, “Temporal integration differences between crossed and uncrossed stereoscopic mechanisms,” Percept. Psychophys. 57, 891-897 (1995).
[CrossRef] [PubMed]

Stone, L. S.

K. R. Brooks and L. S. Stone, “Spatial scale of stereomotion speed processing,” J. Vision 6, 1257-1266 (2006).
[CrossRef]

Sutter, E. E.

A. M. Norcia, E. E. Sutter, and C. W. Tyler, “Electrophysiological evidence for the existence of coarse and fine disparity mechanisms in human,” Vision Res. 25, 1603-1611 (1985).
[CrossRef] [PubMed]

Talbot, W. H.

G. F. Poggio and W. H. Talbot, “Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey,” J. Physiol. (London) 315, 469-492 (1981).

Tashiro, T.

S. Shioiri, D. Kakehi, T. Tashiro, and H. Yaguchi, “Investigating perception of motion in depth using monocular motion aftereffect,” presented at the Vision Sciences Society, Sarasota, Fla., May 13, 2003.

Taylor, E.

R. Patterson, R. Cayko, G. L. Short, R. Flanagan, L. Moe, E. Taylor, and P. Day, “Temporal integration differences between crossed and uncrossed stereoscopic mechanisms,” Percept. Psychophys. 57, 891-897 (1995).
[CrossRef] [PubMed]

Toyama, K.

E. Akase, H. Inokawa, and K. Toyama, “Neuronal responsiveness to three-dimensional motion in cat posteromedial lateral suprasylvian cortex,” Exp. Brain Res. 122, 214-226 (1998).
[CrossRef] [PubMed]

Tyler, C. W.

L. Liu, C. W. Tyler, and C. M. Schor, “Failure of rivalry at low contrast: Evidence of a suprathreshold binocular summation process,” Vision Res. 32, 1471-1479 (1992).
[CrossRef] [PubMed]

C. W. Tyler, “Cyclopean vision,” in Vision and Visual Dysfunction, Vol. 9, Binocular Vision, D.Regan, ed. (Macmillan, 1991), pp. 38-74.

A. M. Norcia, E. E. Sutter, and C. W. Tyler, “Electrophysiological evidence for the existence of coarse and fine disparity mechanisms in human,” Vision Res. 25, 1603-1611 (1985).
[CrossRef] [PubMed]

A. M. Norcia and C. W. Tyler, “Temporal frequency limits for stereoscopic apparent motion processes,” Vision Res. 24, 395-401 (1984).
[CrossRef] [PubMed]

K. Nakayama and C. W. Tyler, “Psychophysical isolation of movement sensitivity by removal of familiar position cues,” Vision Res. 21, 427-433 (1981).
[CrossRef] [PubMed]

C. W. Tyler, “Binocular cross-correlation in time and space,” Vision Res. 18, 101-105 (1978).
[CrossRef] [PubMed]

J. M. Foley and C. W. Tyler, “Effect of stimulus duration on stereo and vernier displacement thresholds,” Percept. Psychophys. 20, 125-128 (1976).
[CrossRef]

C. W. Tyler, “Depth perception in disparity gratings,” Nature 251, 140-142 (1974).
[CrossRef] [PubMed]

C. W. Tyler, “Stereoscopic depth movement: Two eyes less sensitive than one,” Science 174, 958-961 (1971).
[CrossRef] [PubMed]

Usui, M.

Y. Watanabe, T. Kezuka, K. Harasawa, M. Usui, H. Yaguchi, and S. Shioiri, “A new method for assessing motion-in-depth perception in strabismic patients,” Br. J. Ophthamol. 92, 47-50 (2008).
[CrossRef]

Uttal, W. R.

W. R. Uttal, N. S. Davis, and C. Welke, “Stereoscopic perception with brief exposures,” Percept. Psychophys. 56, 599-604 (1994).
[CrossRef] [PubMed]

Van Essen, D. C.

J. H. Maunsell and D. C. Van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity,” J. Neurophysiol. 49, 1148-1167 (1983).
[PubMed]

Wang, A. H.

M. Maeda, M. Sato, T. Ohmura, Y. Miyazaki, A. H. Wang, and S. Awaya, “Binocular depth-from-motion in infantile and late-onset esotropia patients with poor stereopsis,” Invest. Ophthalmol. Visual Sci. 40, 3031-3036 (1999).

Wang, Y.

Y. Chen, Y. Wang, and N. Qian, “Modeling V1 disparity tuning to time-varying stimuli,” J. Neurophysiol. 86, 143-155 (2001).
[PubMed]

Watamaniuk, S. N.

J. M. Harris and S. N. Watamaniuk, “Speed discrimination of motion-in-depth using binocular cues,” Vision Res. 35, 885-896 (1995).
[CrossRef] [PubMed]

Watanabe, Y.

Y. Watanabe, T. Kezuka, K. Harasawa, M. Usui, H. Yaguchi, and S. Shioiri, “A new method for assessing motion-in-depth perception in strabismic patients,” Br. J. Ophthamol. 92, 47-50 (2008).
[CrossRef]

Watson, A. B.

Watt, R. J.

Weil, M. P.

K. N. Ogle and M. P. Weil, “Stereoscopic vision and the duration of the stimulus,” AMA Arch. Ophthalmol. 59, 4-17 (1958).
[CrossRef] [PubMed]

Welke, C.

W. R. Uttal, N. S. Davis, and C. Welke, “Stereoscopic perception with brief exposures,” Percept. Psychophys. 56, 599-604 (1994).
[CrossRef] [PubMed]

Wong, A.

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, and A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813-820 (1985).
[CrossRef] [PubMed]

Yaguchi, H.

S. Shioiri, D. Kakehi, T. Tashiro, and H. Yaguchi, “Investigating perception of motion in depth using monocular motion aftereffect,” presented at the Vision Sciences Society, Sarasota, Fla., May 13, 2003.

Y. Watanabe, T. Kezuka, K. Harasawa, M. Usui, H. Yaguchi, and S. Shioiri, “A new method for assessing motion-in-depth perception in strabismic patients,” Br. J. Ophthamol. 92, 47-50 (2008).
[CrossRef]

S. Lee, S. Shioiri, and H. Yaguchi, “The effect of exposure duration on stereopsis and its dependency on spatial frequency,” Opt. Rev. 11, 256-264 (2004).
[CrossRef]

S. Lee, S. Shioiri, and H. Yaguchi, “Effects of temporal frequency and contrast on spatial frequency characteristics for disparity threshold,” Opt. Rev. 10, 120-123 (2003).
[CrossRef]

S. Shioiri, A. Morinaga, and H. Yaguchi, “Depth perception of moving objects, ” in 3D Television, Video and Display Technology, B.Javidi and F.Okano, eds. (Springer-Verlag, 2002).

S. Shioiri, S. Ito, K. Sakurai, and H. Yaguchi, “Detection of relative and uniform motion,” J. Opt. Soc. Am. A 19, 2169-2179 (2002).
[CrossRef]

S. Shioiri, H. Saisho, and H. Yaguchi, “Motion in depth based on inter-ocular velocity differences,” Vision Res. 40, 2565-2572 (2000).
[CrossRef] [PubMed]

Am. J. Optom. Physiol. Opt.

R. S. Harwerth and S. C. Rawlings, “Viewing time and stereoscopic threshold with random-dot stereograms,” Am. J. Optom. Physiol. Opt. 54, 452-457 (1977).
[PubMed]

AMA Arch. Ophthalmol.

K. N. Ogle and M. P. Weil, “Stereoscopic vision and the duration of the stimulus,” AMA Arch. Ophthalmol. 59, 4-17 (1958).
[CrossRef] [PubMed]

Br. J. Ophthamol.

Y. Watanabe, T. Kezuka, K. Harasawa, M. Usui, H. Yaguchi, and S. Shioiri, “A new method for assessing motion-in-depth perception in strabismic patients,” Br. J. Ophthamol. 92, 47-50 (2008).
[CrossRef]

Curr. Opin. Neurobiol.

I. Ohzawa, “Mechanisms of stereoscopic vision: The disparity energy model,” Curr. Opin. Neurobiol. 8, 509-515 (1998).
[CrossRef] [PubMed]

Exp. Brain Res.

K. I. Beverley and D. Regan, “Temporal integration of disparity information in stereoscopic perception,” Exp. Brain Res. 19, 228-232 (1974).
[CrossRef] [PubMed]

E. Akase, H. Inokawa, and K. Toyama, “Neuronal responsiveness to three-dimensional motion in cat posteromedial lateral suprasylvian cortex,” Exp. Brain Res. 122, 214-226 (1998).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci.

M. Maeda, M. Sato, T. Ohmura, Y. Miyazaki, A. H. Wang, and S. Awaya, “Binocular depth-from-motion in infantile and late-onset esotropia patients with poor stereopsis,” Invest. Ophthalmol. Visual Sci. 40, 3031-3036 (1999).

J. Exp. Psychol. Hum. Percept. Perform.

K. R. Brooks, “Monocular motion adaptation affects the perceived trajectory of stereomotion,” J. Exp. Psychol. Hum. Percept. Perform. 28, 1470-1482 (2002).
[CrossRef]

J. Jpn. Soc. Med. Electron. Biol. Eng.

S. Nagata, “New versatile stereo (NS-type) disparity system and measurement of binocular depth perception,” J. Jpn. Soc. Med. Electron. Biol. Eng. 20, 154-161 (1982).

J. Neurophysiol.

Y. Chen, Y. Wang, and N. Qian, “Modeling V1 disparity tuning to time-varying stimuli,” J. Neurophysiol. 86, 143-155 (2001).
[PubMed]

J. H. Maunsell and D. C. Van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity,” J. Neurophysiol. 49, 1148-1167 (1983).
[PubMed]

I. Ohzawa, G. C. DeAngelis, and R. D. Freeman, “Encoding of binocular disparity by complex cells in the cat's visual cortex,” J. Neurophysiol. 77, 2879-2909 (1997).
[PubMed]

J. Opt. Soc. Am. A

J. Physiol. (London)

G. F. Poggio and W. H. Talbot, “Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey,” J. Physiol. (London) 315, 469-492 (1981).

K. I. Beverley and D. Regan, “Selective adaptation in stereoscopic depth perception,” J. Physiol. (London) 232, 40P-41P (1973).

J. Vision

K. R. Brooks, “Interocular velocity difference contributes to stereomotion speed perception,” J. Vision 2, 218-231 (2002).
[CrossRef]

K. R. Brooks and L. S. Stone, “Spatial scale of stereomotion speed processing,” J. Vision 6, 1257-1266 (2006).
[CrossRef]

Nat. Neurosci.

J. M. Harris and V. F. Drga, “Using visual direction in three-dimensional motion perception,” Nat. Neurosci. 8, 229-233 (2005).
[CrossRef] [PubMed]

Nature

C. W. Tyler, “Depth perception in disparity gratings,” Nature 251, 140-142 (1974).
[CrossRef] [PubMed]

Neuron

N. Qian, “Binocular disparity and the perception of depth,” Neuron 18, 359-368 (1997).
[CrossRef] [PubMed]

Opt. Rev.

S. Lee, S. Shioiri, and H. Yaguchi, “The effect of exposure duration on stereopsis and its dependency on spatial frequency,” Opt. Rev. 11, 256-264 (2004).
[CrossRef]

S. Lee, S. Shioiri, and H. Yaguchi, “Effects of temporal frequency and contrast on spatial frequency characteristics for disparity threshold,” Opt. Rev. 10, 120-123 (2003).
[CrossRef]

Optom. Vision Sci.

R. Patterson, “Spatiotemporal properties of stereoacuity,” Optom. Vision Sci. 67, 123-128 (1990).
[CrossRef]

Percept. Psychophys.

R. Patterson, R. Cayko, G. L. Short, R. Flanagan, L. Moe, E. Taylor, and P. Day, “Temporal integration differences between crossed and uncrossed stereoscopic mechanisms,” Percept. Psychophys. 57, 891-897 (1995).
[CrossRef] [PubMed]

W. R. Uttal, N. S. Davis, and C. Welke, “Stereoscopic perception with brief exposures,” Percept. Psychophys. 56, 599-604 (1994).
[CrossRef] [PubMed]

J. M. Foley and C. W. Tyler, “Effect of stimulus duration on stereo and vernier displacement thresholds,” Percept. Psychophys. 20, 125-128 (1976).
[CrossRef]

Perception

K. Brooks, “Stereomotion speed perception is contrast dependent,” Perception 30, 725-731 (2001).
[CrossRef] [PubMed]

Science

I. Ohzawa, G. C. DeAngelis, and R. D. Freeman, “Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors,” Science 249, 1037-1041 (1990).
[CrossRef] [PubMed]

D. Regan and K. I. Beverley, “Disparity detectors in human depth perception: Evidence for directional selectivity,” Science 181, 877-879 (1973).
[CrossRef] [PubMed]

C. W. Tyler, “Stereoscopic depth movement: Two eyes less sensitive than one,” Science 174, 958-961 (1971).
[CrossRef] [PubMed]

Vision Res.

M. Lages, P. Mamassian, and E. W. Graf, “Spatial and temporal tuning of motion in depth,” Vision Res. 43, 2861-2873 (2003).
[CrossRef] [PubMed]

D. Regan and K. I. Beverley, “Some dynamic features of depth perception,” Vision Res. 13, 2369-2379 (1973).
[CrossRef] [PubMed]

W. Richards, “Disparity masking,” Vision Res. 12, 1113-1124 (1972).
[CrossRef] [PubMed]

S. Shioiri and P. Cavanagh, “Visual persistence of figures defined by relative motion,” Vision Res. 32, 943-951 (1992).
[CrossRef] [PubMed]

K. Nakayama and C. W. Tyler, “Psychophysical isolation of movement sensitivity by removal of familiar position cues,” Vision Res. 21, 427-433 (1981).
[CrossRef] [PubMed]

L. Liu, C. W. Tyler, and C. M. Schor, “Failure of rivalry at low contrast: Evidence of a suprathreshold binocular summation process,” Vision Res. 32, 1471-1479 (1992).
[CrossRef] [PubMed]

C. J. Erkelens and H. Collewijn, “Motion perception during dichoptic viewing of moving random-dot stereograms,” Vision Res. 25, 583-588 (1985).
[CrossRef] [PubMed]

C. W. Tyler, “Binocular cross-correlation in time and space,” Vision Res. 18, 101-105 (1978).
[CrossRef] [PubMed]

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, and A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813-820 (1985).
[CrossRef] [PubMed]

C. V. Portfors-Yeomans and D. Regan, “Cyclopean discrimination thresholds for the direction and speed of motion in depth,” Vision Res. 36, 3265-3279 (1996).
[CrossRef] [PubMed]

M. Cynader and D. Regan, “Neurons in cat visual cortex tuned to the direction of motion in depth: Effect of positional disparity,” Vision Res. 22, 967-982 (1982).
[CrossRef] [PubMed]

J. M. Harris and S. N. Watamaniuk, “Speed discrimination of motion-in-depth using binocular cues,” Vision Res. 35, 885-896 (1995).
[CrossRef] [PubMed]

K. Brooks and G. Mather, “Perceived speed of motion in depth is reduced in the periphery,” Vision Res. 40, 3507-3516 (2000).
[CrossRef] [PubMed]

B. G. Cumming and A. J. Parker, “Binocular mechanisms for detecting motion-in-depth,” Vision Res. 34, 483-495 (1994).
[CrossRef] [PubMed]

J. M. Fernandez and B. Farell, “Motion in depth from interocular velocity differences revealed by differential motion aftereffect,” Vision Res. 46, 1307-1317 (2006).
[CrossRef]

J. M. Fernandez and B. Farell, “Seeing motion in depth using inter-ocular velocity differences,” Vision Res. 45, 2786-2798 (2005).
[CrossRef] [PubMed]

D. Regan, “Binocular correlates of the direction of motion in depth,” Vision Res. 33, 2359-2360 (1993).
[CrossRef] [PubMed]

S. Shioiri, H. Saisho, and H. Yaguchi, “Motion in depth based on inter-ocular velocity differences,” Vision Res. 40, 2565-2572 (2000).
[CrossRef] [PubMed]

J. M. Harris and S. K. Rushton, “Poor visibility of motion in depth is due to early motion averaging,” Vision Res. 43, 385-392 (2003).
[CrossRef] [PubMed]

A. M. Norcia, E. E. Sutter, and C. W. Tyler, “Electrophysiological evidence for the existence of coarse and fine disparity mechanisms in human,” Vision Res. 25, 1603-1611 (1985).
[CrossRef] [PubMed]

A. M. Norcia and C. W. Tyler, “Temporal frequency limits for stereoscopic apparent motion processes,” Vision Res. 24, 395-401 (1984).
[CrossRef] [PubMed]

Other

B. Julesz, Foundations of Cyclopean Perception (University of Chicago Press, 1971).

I. P. Howard and B. Rogers, Binocular Vision and Stereopsis (Oxford U. Press, 1995).

D. Regan, “Depth from motion and motion-in-depth,” in Binocular Vision, D.Regan, ed. (MacMillan, 1991), pp. 137-160.

S. Shioiri, A. Morinaga, and H. Yaguchi, “Depth perception of moving objects, ” in 3D Television, Video and Display Technology, B.Javidi and F.Okano, eds. (Springer-Verlag, 2002).

S. Shioiri, D. Kakehi, T. Tashiro, and H. Yaguchi, “Investigating perception of motion in depth using monocular motion aftereffect,” presented at the Vision Sciences Society, Sarasota, Fla., May 13, 2003.

C. W. Tyler, “Cyclopean vision,” in Vision and Visual Dysfunction, Vol. 9, Binocular Vision, D.Regan, ed. (Macmillan, 1991), pp. 38-74.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Models of two types of motion-in-depth processes based on (a) motion energy and (b) disparity energy models at the first stage. The energies are calculated with odd and even symmetric filters (mimicking the RF properties of cortical cells), and no phase signal within the region covered by the filters is available at the stage where either the IOVDs or the DCT is calculated to obtain motion-in-depth signals.

Fig. 2
Fig. 2

(a) Analysis to show IOVD cues in a temporally uncorrelated random-dot stereogram that disparity changes in time (stimulus in the disparity condition). The correlation image between two frames sequentially presented for each eye (top left and right) and correlation of the correlation images (bottom). The correlation can be demonstrated by free fusing the two top images. Correlation between the left and the right images for each frame pair shows similar results as the top figures in the binocularly uncorrelated kinematograms. Correlation of the two correlation images for two frames shows a similar result as the bottom figure. (b) Simulated responses of IOVD (left) and DCT (right) models depicted in Fig. 1 for the stimuli of the velocity (uncorrelated between the left and the right images) and disparity conditions (uncorrelated between the first and the second images).

Fig. 3
Fig. 3

(a) Schematic of the stimulus for motion in depth at the lowest spatial frequency condition (used in experiments 1 and 3). Left, random-dot planes rotated about the vertical axis without changing the surface direction (always front parallel). The upper and lower halves rotated in the same direction but the phase was opposite. The task in the velocity and combined cue conditions was to discriminate the direction of rotation in depth. Center, random-dot planes oscillated in depth. The phase of the oscillation between the upper and the lower halves was opposite. Right, the random motion noise. Dots distributed within a range of depth moved in random directions. The task in the disparity condition was to discriminate oscillation in depth from the random 3D motion noise. (b) Schematic of the stimuli with different spatial frequencies of velocity modulation (used in experiment 2). A square wave controlled the velocity variation along the vertical axis, creating a horizontal grating, or a horizontal stack of bands, defined by relative motion. The stimulus field was a square of 4.2 ° × 4.2 ° . Dots were always in the square field, wrapping around from one side to the other when dots moved out from the square.

Fig. 4
Fig. 4

Percentages of correct responses as a function of contrast for three motion-in-depth stimulus conditions at 0.7 cps of observer DK. The curves indicate the cumulative Gaussian functions fitted to the data through a probit analysis.

Fig. 5
Fig. 5

Contrast sensitivity as a function of temporal frequency. Different symbols represent different stimulus conditions. Error bars for the average data represent the standard error of means across the observers. Arrows indicate conditions where threshold was not measurable.

Fig. 6
Fig. 6

Contrast sensitivity as functions of temporal frequency for different spatial frequency separately, for three stimulus conditions. The left panels are for TN and the right ones are for KY. The top panels show the results in the velocity condition, the middle in the disparity condition, and the bottom in the combined cue condition. Error bars indicate the standard error of means obtained through a probit analysis. Error bars are not shown when standard error is smaller than the symbol.

Fig. 7
Fig. 7

Contrast sensitivity as a function of temporal frequency for each stimulus condition in experiment 3, where the same task of detection of motion in depth was used in all stimulus conditions. Error bars indicate standard error of means (not shown when it is smaller than the symbol). The data points with arrows indicate the condition where sensitivity was too low to measure. Open symbols are for pattern detection and filled symbols are for motion in depth. The arrows directed to the left indicate the contrast sensitivity to static display, and the arrows at the horizontal axis indicate that the sensitivity was too low to measure.

Fig. 8
Fig. 8

Sensitivity ratio between the velocity and the disparity conditions as a function of temporal frequency for all the observers in experiments 1 and 3.

Metrics