Abstract

The ability to improve the limited resolving power of optical imaging systems while approaching the theoretical diffraction limit has been an attractive discipline with growing interest over the last years due to its benefits in many applied optics systems. This paper presents a new approach to achieve transverse superresolution in far-field imaging systems, with direct application in both digital microscopy and digital holographic microscopy. Theoretical analysis and computer simulations show the validity of the presented approach.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, “Beitrage zur theorie des mikroskops und der mikroskopischen wahrnehmung” Arch. Mikrosk. Anat. 9, 413-468 (1873).
  2. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  3. D. Courjon, Near-Field Microscopy and Near-Field Optics (Imperial College Press, 2003).
  4. Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, 2002).
  5. M. Bertero, C. De Mol, “Super-resolution by data inversion,” in E.Wolf. (ed.), Progress in Optics, Vol. XXXVI (Elsevier North-Holland, 1996), Chap. III, pp. 129-178.
  6. P. Jacquinot, “Apodization,” Prog. Opt. 3, 29-186 (1964).
  7. T. Wilson and C. J. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).
  8. G. Toraldo di Francia, “Resolving power and information,” J. Opt. Soc. Am. 45, 497-501 (1955).
  9. G. Toraldo di Francia, “Degrees of freedom of an image,” J. Opt. Soc. Am. 59, 799-804 (1969).
  10. I. J. Cox and J. R. Sheppard, “Information capacity and resolution in an optical system,” J. Opt. Soc. Am. A 3, 1152-1158 (1986).
  11. A. J. den Dekker and A. van den Bos, “Resolution: a survey,” J. Opt. Soc. Am. A 14, 547-557 (1997).
  12. W. Lukosz, “Optical systems with resolving powers exceeding the classical limits,” J. Opt. Soc. Am. 56, 1463-1472 (1966).
  13. W. Lukosz, “Optical systems with resolving powers exceeding the classical limits II,” J. Opt. Soc. Am. 57, 932-941 (1967).
  14. M. Francon, “Amélioration the résolution d'optique,” Il Nuovo Cimento Suppl. 9, 283-290 (1952).
  15. A. Shemer, D. Mendlovic, Z. Zalevsky, J. García, and P. García-Martínez, “Superresolving optical system with time multiplexing and computer decoding,” Appl. Opt. 38, 7245-7251 (1999).
  16. A. W. Lohmann and D. P. Paris, “Superresolution for nonbirefringent objects,” Appl. Opt. 3, 1037-1043 (1964).
  17. A. I. Kartashev, “Optical system with enhanced resolving power,” Opt. Spectra 9, 204-206 (1960).
  18. M. A. Grimm and A. W. Lohmann, “Superresolution image for one-dimensional object,” J. Opt. Soc. Am. 56, 1151-1156 (1966).
  19. Z. Zalevsky, P. García-Martínez, and J. García, “Superresolution using gray level coding,” Opt. Express 14, 5178-5182 (2006).
    [CrossRef]
  20. D. Mendlovic and A. W. Lohman, “Space-bandwidth product adaptation and its application to super resolution: fundamentals,” J. Opt. Soc. Am. A 14, 558-562 (1997).
  21. D. Mendlovic, A. W. Lohman, and Z. Zalevsky, “Space-bandwidth product adaptation and its application for super resolution: examples,” J. Opt. Soc. Am. A 14, 563-567 (1997).
  22. E. Sabo, Z. Zalevsky, D. Mendlovic, N. Komforti, and I. Kiryushev, “Superresolution optical system with two fixed generalized Damman gratings,” Appl. Opt. 39, 5318-5325 (2000).
  23. E. Sabo, Z. Zalevsky, D. Mendlovic, N. Komforti, and I. Kiryushev, “Superresolution optical system using three fixed generalized gratings: experimental results,” J. Opt. Soc. Am. A 18, 514-520 (2001).
    [CrossRef]
  24. A. Bachl and W. Lukosz, “Experiments on superresolution imaging of a reduced object field,” J. Opt. Soc. Am. 57, 163-169 (1967).
  25. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82-87 (2000).
    [CrossRef]
  26. R. Heintzmann and P. A. Benedetti, “High-resolution image reconstruction in fluorescence microscopy with patterned excitation,” Appl. Opt. 45, 5037-5045 (2006).
    [CrossRef]
  27. J. Ryu, S. S. Hong, B. K. P. Horn, D. M. Freeman, and M. S. Mermelstein, “Multibeam interferometric illumination as the primary source of resolution in optical microscopy,” Appl. Phys. Lett. 88, 171112 (2006).
    [CrossRef]
  28. J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97, 7232-7236 (2000).
    [CrossRef]
  29. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy—a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19, 1599-1609 (2002).
    [CrossRef]
  30. M. G. L. Gustafsson, “Nonlinear structured illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102, 13081-13086 (2005).
    [CrossRef]
  31. J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13, 6073-6078 (2005).
    [CrossRef]
  32. E. Ben-Eliezer and E. Marom, “Aberration-free superresolution imaging via binary speckle pattern encoding and processing,” J. Opt. Soc. Am. A 24, 1003-1010 (2007).
  33. B. J. Guo and S. L. Zhuang, “Image superresolution by using a source-encoding technique,” Appl. Opt. 30, 5159-5162 (1991).
  34. Z. Zalevsky, J. García, P. García-Martínez, and C. Ferreira, “Spatial information transmission using orthogonal mutual coherence coding,” Opt. Lett. 30, 2837-2839 (2005).
    [CrossRef]
  35. E. N. Leith, D. Angell, and C.-P. Kuei, “Superresolution by incoherent-to-coherent conversion,” J. Opt. Soc. Am. A 4, 1050-1054 (1987).
  36. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Single step superresolution by interferometric imaging,” Opt. Express 12, 2589-2596 (2004).
    [CrossRef]
  37. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44, 1806-1812 (2005).
    [CrossRef]
  38. C. Iemmi, A. Moreno, and J. Campos, “Digital holography with a point-diffraction interferometer,” Opt. Express 13, 1885-1891 (2005).
    [CrossRef]
  39. X. Chen and S. R. J. Brueck, “Imaging interferometric lithography: approaching the resolution limits of optics,” Opt. Lett. 24, 124-126 (1999).
  40. T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27-37 (2002).
  41. H. Medecki, E. Tejnil, K. A. Goldberg, and J. Bokor, “Phase-shifting point diffraction interferometer,” Opt. Lett. 21, 1526-1528 (1996).
  42. T. Colomb, J. Kühn, F. Charrière, N. Aspert, P. Marquet, and C. Depeursinge, “Total aberration compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300-4306 (2006).
    [CrossRef]
  43. I. Tamaguchi and T. Zhong, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
  44. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, “Imaging interferometric microscopy,” Opt. Lett. 28, 1424-1426 (2003).
    [CrossRef]
  45. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822-828 (2006).
    [CrossRef]
  46. V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168-5177 (2006).
    [CrossRef]
  47. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution using multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162-3170 (2006).
    [CrossRef]
  48. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2007).
    [CrossRef]
  49. J. R. Price, P. R. Bingham, and C. E. Thomas, Jr., “Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain,” Appl. Opt. 46, 826-833 (2007).
  50. V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209-217 (2007).
  51. J. García, D. Mas, and R. G. Dorsch, “Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm,” Appl. Opt. 35, 7013-7018 (1996).

2007 (4)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2007).
[CrossRef]

J. R. Price, P. R. Bingham, and C. E. Thomas, Jr., “Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain,” Appl. Opt. 46, 826-833 (2007).

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209-217 (2007).

E. Ben-Eliezer and E. Marom, “Aberration-free superresolution imaging via binary speckle pattern encoding and processing,” J. Opt. Soc. Am. A 24, 1003-1010 (2007).

2006 (7)

2005 (5)

2004 (1)

2003 (1)

2002 (2)

2001 (1)

2000 (3)

E. Sabo, Z. Zalevsky, D. Mendlovic, N. Komforti, and I. Kiryushev, “Superresolution optical system with two fixed generalized Damman gratings,” Appl. Opt. 39, 5318-5325 (2000).

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97, 7232-7236 (2000).
[CrossRef]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82-87 (2000).
[CrossRef]

1999 (2)

1997 (4)

1996 (2)

1991 (1)

1987 (1)

1986 (1)

1969 (1)

1967 (2)

1966 (2)

1964 (2)

1960 (1)

A. I. Kartashev, “Optical system with enhanced resolving power,” Opt. Spectra 9, 204-206 (1960).

1955 (1)

1952 (1)

M. Francon, “Amélioration the résolution d'optique,” Il Nuovo Cimento Suppl. 9, 283-290 (1952).

Abbe, E.

E. Abbe, “Beitrage zur theorie des mikroskops und der mikroskopischen wahrnehmung” Arch. Mikrosk. Anat. 9, 413-468 (1873).

Alexandrov, S. A.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2007).
[CrossRef]

Angell, D.

Aspert, N.

Bachl, A.

Beghuin, D.

Benedetti, P. A.

Ben-Eliezer, E.

Bertero, M.

M. Bertero, C. De Mol, “Super-resolution by data inversion,” in E.Wolf. (ed.), Progress in Optics, Vol. XXXVI (Elsevier North-Holland, 1996), Chap. III, pp. 129-178.

Bingham, P. R.

J. R. Price, P. R. Bingham, and C. E. Thomas, Jr., “Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain,” Appl. Opt. 46, 826-833 (2007).

Bokor, J.

Brueck, S. R. J.

Campos, J.

Charrière, F.

Chen, X.

Colomb, T.

Courjon, D.

D. Courjon, Near-Field Microscopy and Near-Field Optics (Imperial College Press, 2003).

Cox, I. J.

Cremer, C.

Cuche, E.

Dahlgren, P.

De Mol, C.

M. Bertero, C. De Mol, “Super-resolution by data inversion,” in E.Wolf. (ed.), Progress in Optics, Vol. XXXVI (Elsevier North-Holland, 1996), Chap. III, pp. 129-178.

den Dekker, A. J.

Depeursinge, C.

Dorsch, R. G.

Ferreira, C.

Fixler, D.

Francon, M.

M. Francon, “Amélioration the résolution d'optique,” Il Nuovo Cimento Suppl. 9, 283-290 (1952).

Freeman, D. M.

J. Ryu, S. S. Hong, B. K. P. Horn, D. M. Freeman, and M. S. Mermelstein, “Multibeam interferometric illumination as the primary source of resolution in optical microscopy,” Appl. Phys. Lett. 88, 171112 (2006).
[CrossRef]

Frohn, J. T.

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97, 7232-7236 (2000).
[CrossRef]

García, J.

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209-217 (2007).

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822-828 (2006).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168-5177 (2006).
[CrossRef]

Z. Zalevsky, P. García-Martínez, and J. García, “Superresolution using gray level coding,” Opt. Express 14, 5178-5182 (2006).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution using multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162-3170 (2006).
[CrossRef]

Z. Zalevsky, J. García, P. García-Martínez, and C. Ferreira, “Spatial information transmission using orthogonal mutual coherence coding,” Opt. Lett. 30, 2837-2839 (2005).
[CrossRef]

J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13, 6073-6078 (2005).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Single step superresolution by interferometric imaging,” Opt. Express 12, 2589-2596 (2004).
[CrossRef]

A. Shemer, D. Mendlovic, Z. Zalevsky, J. García, and P. García-Martínez, “Superresolving optical system with time multiplexing and computer decoding,” Appl. Opt. 38, 7245-7251 (1999).

J. García, D. Mas, and R. G. Dorsch, “Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm,” Appl. Opt. 35, 7013-7018 (1996).

García-Martínez, P.

Goldberg, K. A.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Grimm, M. A.

Guo, B. J.

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102, 13081-13086 (2005).
[CrossRef]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82-87 (2000).
[CrossRef]

Gutzler, T.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2007).
[CrossRef]

Heintzmann, R.

Hillman, T. R.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2007).
[CrossRef]

Hong, S. S.

J. Ryu, S. S. Hong, B. K. P. Horn, D. M. Freeman, and M. S. Mermelstein, “Multibeam interferometric illumination as the primary source of resolution in optical microscopy,” Appl. Phys. Lett. 88, 171112 (2006).
[CrossRef]

Horn, B. K. P.

J. Ryu, S. S. Hong, B. K. P. Horn, D. M. Freeman, and M. S. Mermelstein, “Multibeam interferometric illumination as the primary source of resolution in optical microscopy,” Appl. Phys. Lett. 88, 171112 (2006).
[CrossRef]

Iemmi, C.

Jacquinot, P.

P. Jacquinot, “Apodization,” Prog. Opt. 3, 29-186 (1964).

Jovin, T. M.

Kartashev, A. I.

A. I. Kartashev, “Optical system with enhanced resolving power,” Opt. Spectra 9, 204-206 (1960).

Kiryushev, I.

Knapp, H. F.

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97, 7232-7236 (2000).
[CrossRef]

Komforti, N.

Kuei, C.-P.

Kühn, J.

Kuznetsova, Y.

Leith, E. N.

Lohman, A. W.

Lohmann, A. W.

Lukosz, W.

Marom, E.

Marquet, P.

Mas, D.

Massatsch, P.

Medecki, H.

Mendlovic, D.

Mermelstein, M. S.

J. Ryu, S. S. Hong, B. K. P. Horn, D. M. Freeman, and M. S. Mermelstein, “Multibeam interferometric illumination as the primary source of resolution in optical microscopy,” Appl. Phys. Lett. 88, 171112 (2006).
[CrossRef]

Mico, V.

Moreno, A.

Paris, D. P.

Price, J. R.

J. R. Price, P. R. Bingham, and C. E. Thomas, Jr., “Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain,” Appl. Opt. 46, 826-833 (2007).

Ryu, J.

J. Ryu, S. S. Hong, B. K. P. Horn, D. M. Freeman, and M. S. Mermelstein, “Multibeam interferometric illumination as the primary source of resolution in optical microscopy,” Appl. Phys. Lett. 88, 171112 (2006).
[CrossRef]

Sabo, E.

Sampson, D. D.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2007).
[CrossRef]

Schwarz, C. J.

Shemer, A.

Sheppard, C. J.

T. Wilson and C. J. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Sheppard, J. R.

Stemmer, A.

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97, 7232-7236 (2000).
[CrossRef]

Tamaguchi, I.

Tejnil, E.

Thomas, C. E.

J. R. Price, P. R. Bingham, and C. E. Thomas, Jr., “Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain,” Appl. Opt. 46, 826-833 (2007).

Toraldo di Francia, G.

van den Bos, A.

Wilson, T.

T. Wilson and C. J. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Zalevsky, Z.

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209-217 (2007).

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822-828 (2006).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168-5177 (2006).
[CrossRef]

Z. Zalevsky, P. García-Martínez, and J. García, “Superresolution using gray level coding,” Opt. Express 14, 5178-5182 (2006).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution using multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162-3170 (2006).
[CrossRef]

Z. Zalevsky, J. García, P. García-Martínez, and C. Ferreira, “Spatial information transmission using orthogonal mutual coherence coding,” Opt. Lett. 30, 2837-2839 (2005).
[CrossRef]

J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13, 6073-6078 (2005).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Single step superresolution by interferometric imaging,” Opt. Express 12, 2589-2596 (2004).
[CrossRef]

E. Sabo, Z. Zalevsky, D. Mendlovic, N. Komforti, and I. Kiryushev, “Superresolution optical system using three fixed generalized gratings: experimental results,” J. Opt. Soc. Am. A 18, 514-520 (2001).
[CrossRef]

E. Sabo, Z. Zalevsky, D. Mendlovic, N. Komforti, and I. Kiryushev, “Superresolution optical system with two fixed generalized Damman gratings,” Appl. Opt. 39, 5318-5325 (2000).

A. Shemer, D. Mendlovic, Z. Zalevsky, J. García, and P. García-Martínez, “Superresolving optical system with time multiplexing and computer decoding,” Appl. Opt. 38, 7245-7251 (1999).

D. Mendlovic, A. W. Lohman, and Z. Zalevsky, “Space-bandwidth product adaptation and its application for super resolution: examples,” J. Opt. Soc. Am. A 14, 563-567 (1997).

Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, 2002).

Zhong, T.

Zhuang, S. L.

Appl. Opt. (10)

J. R. Price, P. R. Bingham, and C. E. Thomas, Jr., “Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain,” Appl. Opt. 46, 826-833 (2007).

A. W. Lohmann and D. P. Paris, “Superresolution for nonbirefringent objects,” Appl. Opt. 3, 1037-1043 (1964).

J. García, D. Mas, and R. G. Dorsch, “Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm,” Appl. Opt. 35, 7013-7018 (1996).

B. J. Guo and S. L. Zhuang, “Image superresolution by using a source-encoding technique,” Appl. Opt. 30, 5159-5162 (1991).

A. Shemer, D. Mendlovic, Z. Zalevsky, J. García, and P. García-Martínez, “Superresolving optical system with time multiplexing and computer decoding,” Appl. Opt. 38, 7245-7251 (1999).

E. Sabo, Z. Zalevsky, D. Mendlovic, N. Komforti, and I. Kiryushev, “Superresolution optical system with two fixed generalized Damman gratings,” Appl. Opt. 39, 5318-5325 (2000).

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27-37 (2002).

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822-828 (2006).
[CrossRef]

P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44, 1806-1812 (2005).
[CrossRef]

R. Heintzmann and P. A. Benedetti, “High-resolution image reconstruction in fluorescence microscopy with patterned excitation,” Appl. Opt. 45, 5037-5045 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

J. Ryu, S. S. Hong, B. K. P. Horn, D. M. Freeman, and M. S. Mermelstein, “Multibeam interferometric illumination as the primary source of resolution in optical microscopy,” Appl. Phys. Lett. 88, 171112 (2006).
[CrossRef]

Il Nuovo Cimento Suppl. (1)

M. Francon, “Amélioration the résolution d'optique,” Il Nuovo Cimento Suppl. 9, 283-290 (1952).

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82-87 (2000).
[CrossRef]

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. A (9)

Opt. Commun. (1)

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209-217 (2007).

Opt. Express (6)

Opt. Lett. (5)

Opt. Spectra (1)

A. I. Kartashev, “Optical system with enhanced resolving power,” Opt. Spectra 9, 204-206 (1960).

Phys. Rev. Lett. (1)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97, 7232-7236 (2000).
[CrossRef]

M. G. L. Gustafsson, “Nonlinear structured illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102, 13081-13086 (2005).
[CrossRef]

Prog. Opt. (1)

P. Jacquinot, “Apodization,” Prog. Opt. 3, 29-186 (1964).

Other (6)

T. Wilson and C. J. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

E. Abbe, “Beitrage zur theorie des mikroskops und der mikroskopischen wahrnehmung” Arch. Mikrosk. Anat. 9, 413-468 (1873).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

D. Courjon, Near-Field Microscopy and Near-Field Optics (Imperial College Press, 2003).

Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, 2002).

M. Bertero, C. De Mol, “Super-resolution by data inversion,” in E.Wolf. (ed.), Progress in Optics, Vol. XXXVI (Elsevier North-Holland, 1996), Chap. III, pp. 129-178.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics