Abstract

We have investigated the effect of surface roughness on the sensitivity of conventional and nanowire-based surface plasmon resonance (SPR) biosensors. The theoretical research was conducted using rigorous coupled-wave analysis with Gaussian surface profiles of gold films determined by atomic force microscopy. The results suggest that, when surface roughness ranges near 1nm, the sensitivity of a conventional SPR system is not significantly affected regardless of the correlation length. For a nanowire-based SPR biosensor, however, we have found that the sensitivity degrades substantially with decreasing correlation length. In particular, at a correlation length smaller than 100nm, a random rough surface may induce destructive coupling between excited localized surface plasmons, which can lead to prominent reduction of sensitivity enhancement.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. E. Kretschmann, "Decay of non radiative surface plasmons into light on rough silver films: comparison of experimental and theoretical results," Opt. Commun. 6, 185-187 (1972).
    [CrossRef]
  3. M. Malmqvist, "Surface plasmon resonance for detection and measurements of antibody-antigen affinity and kinetics," Curr. Opin. Immunol. 5, 282-286 (1993).
    [CrossRef] [PubMed]
  4. B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays," Anal. Chem. 73, 1-7 (2001).
    [CrossRef] [PubMed]
  5. R. J. Leatherbarrow and P. R. Edwards, "Analysis of molecular recognition using optical biosensors," Curr. Opin. Chem. Biol. 3, 544-547 (1999).
    [CrossRef] [PubMed]
  6. B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance--how it all started," Biosens. Bioelectron. 10, 1-4 (1995).
    [CrossRef]
  7. E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. (Weinheim) 16, 1685-1706 (2004).
    [CrossRef]
  8. L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
    [CrossRef]
  9. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
    [CrossRef]
  10. A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Int. Chem. Eng. 3, 1057-1062 (2003).
  11. A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
    [CrossRef] [PubMed]
  12. K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005).
    [CrossRef] [PubMed]
  13. K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sens. Actuators B 117, 401-407 (2006).
    [CrossRef]
  14. K. M. Byun, S. J. Kim, and D. Kim, "Profile effect on the feasibility of extinction-based localized surface plasmon resonance biosensors using metallic nanowires," Appl. Opt. 45, 3382-3389 (2006).
    [CrossRef] [PubMed]
  15. D. Kim, "Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors," J. Opt. Soc. Am. A 23, 2307-2314 (2006).
    [CrossRef]
  16. T. R. Michel, M. E. Knotts, and K. A. O"Donnell, "Scattering by plasmon polaritons on a rough surface with a periodic component," J. Opt. Soc. Am. A 12, 548-559 (1995).
    [CrossRef]
  17. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982).
    [CrossRef]
  18. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings," J. Opt. Soc. Am. A 3, 1780-1787 (1986).
    [CrossRef]
  19. J. Lermé, "Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters," Eur. Phys. J. D 10, 265-277 (2000).
    [CrossRef]
  20. E. Moreno, D. Erni, C. Hafner, and R. Vahldieck, "Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures," J. Opt. Soc. Am. A 19, 101-111 (2002).
    [CrossRef]
  21. K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled-wave analysis," in Plasmonics in Biology and Medicine II, T. Vo-Dinh, J. R. Lakowicz, and Z. K. Gryczynski, eds., Proc. SPIE 5703, 61-70 (2005).
  22. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, "Electromagnetic coupling between a metal nanoparticle grating and a metallic surface," Opt. Lett. 30, 3404-3406 (2005).
    [CrossRef]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  24. A. A. Maradudin and W. Zierau, "Effects of surface roughness on the surface-polariton dispersion relation," Phys. Rev. B 14, 484-499 (1976).
    [CrossRef]
  25. T. S. Rahman and A. A. Maradudin, "Surface-plasmon dispersion relation in the presence of surface roughness," Phys. Rev. B 21, 2137-2143 (1980).
    [CrossRef]
  26. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
    [CrossRef]
  27. S. Enoch, R. Quidant, and G. Badenes, "Optical sensing based on plasmon coupling in nanoparticle arrays," Opt. Express 12, 3422-3427 (2004).
    [CrossRef] [PubMed]
  28. J. P. Kottmann and O. J. F. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. 26, 1096-1098 (2001).
    [CrossRef]

2006 (3)

2005 (2)

2004 (2)

S. Enoch, R. Quidant, and G. Badenes, "Optical sensing based on plasmon coupling in nanoparticle arrays," Opt. Express 12, 3422-3427 (2004).
[CrossRef] [PubMed]

E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. (Weinheim) 16, 1685-1706 (2004).
[CrossRef]

2003 (2)

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Int. Chem. Eng. 3, 1057-1062 (2003).

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

2002 (2)

A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
[CrossRef] [PubMed]

E. Moreno, D. Erni, C. Hafner, and R. Vahldieck, "Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures," J. Opt. Soc. Am. A 19, 101-111 (2002).
[CrossRef]

2001 (2)

J. P. Kottmann and O. J. F. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. 26, 1096-1098 (2001).
[CrossRef]

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays," Anal. Chem. 73, 1-7 (2001).
[CrossRef] [PubMed]

2000 (2)

J. Lermé, "Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters," Eur. Phys. J. D 10, 265-277 (2000).
[CrossRef]

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

1999 (2)

R. J. Leatherbarrow and P. R. Edwards, "Analysis of molecular recognition using optical biosensors," Curr. Opin. Chem. Biol. 3, 544-547 (1999).
[CrossRef] [PubMed]

L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

1995 (2)

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance--how it all started," Biosens. Bioelectron. 10, 1-4 (1995).
[CrossRef]

T. R. Michel, M. E. Knotts, and K. A. O"Donnell, "Scattering by plasmon polaritons on a rough surface with a periodic component," J. Opt. Soc. Am. A 12, 548-559 (1995).
[CrossRef]

1993 (1)

M. Malmqvist, "Surface plasmon resonance for detection and measurements of antibody-antigen affinity and kinetics," Curr. Opin. Immunol. 5, 282-286 (1993).
[CrossRef] [PubMed]

1986 (1)

1982 (1)

1980 (1)

T. S. Rahman and A. A. Maradudin, "Surface-plasmon dispersion relation in the presence of surface roughness," Phys. Rev. B 21, 2137-2143 (1980).
[CrossRef]

1976 (1)

A. A. Maradudin and W. Zierau, "Effects of surface roughness on the surface-polariton dispersion relation," Phys. Rev. B 14, 484-499 (1976).
[CrossRef]

1972 (1)

E. Kretschmann, "Decay of non radiative surface plasmons into light on rough silver films: comparison of experimental and theoretical results," Opt. Commun. 6, 185-187 (1972).
[CrossRef]

Badenes, G.

Benkovic, S. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Byun, K. M.

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sens. Actuators B 117, 401-407 (2006).
[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, "Profile effect on the feasibility of extinction-based localized surface plasmon resonance biosensors using metallic nanowires," Appl. Opt. 45, 3382-3389 (2006).
[CrossRef] [PubMed]

K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005).
[CrossRef] [PubMed]

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled-wave analysis," in Plasmonics in Biology and Medicine II, T. Vo-Dinh, J. R. Lakowicz, and Z. K. Gryczynski, eds., Proc. SPIE 5703, 61-70 (2005).

Cesario, J.

Corn, R. M.

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays," Anal. Chem. 73, 1-7 (2001).
[CrossRef] [PubMed]

Edwards, P. R.

R. J. Leatherbarrow and P. R. Edwards, "Analysis of molecular recognition using optical biosensors," Curr. Opin. Chem. Biol. 3, 544-547 (1999).
[CrossRef] [PubMed]

Enoch, S.

Erni, D.

Fendler, J. H.

E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. (Weinheim) 16, 1685-1706 (2004).
[CrossRef]

Gaylord, T. K.

Goodman, R. M.

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays," Anal. Chem. 73, 1-7 (2001).
[CrossRef] [PubMed]

Grimsrud, T. E.

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays," Anal. Chem. 73, 1-7 (2001).
[CrossRef] [PubMed]

Gunnarsson, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Haes, A. J.

A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
[CrossRef] [PubMed]

Hafner, C.

Haynes, C. L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

He, L.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Hutter, E.

E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. (Weinheim) 16, 1685-1706 (2004).
[CrossRef]

Käll, M.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Kasemo, B.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Keating, C. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Kim, D.

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sens. Actuators B 117, 401-407 (2006).
[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, "Profile effect on the feasibility of extinction-based localized surface plasmon resonance biosensors using metallic nanowires," Appl. Opt. 45, 3382-3389 (2006).
[CrossRef] [PubMed]

D. Kim, "Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors," J. Opt. Soc. Am. A 23, 2307-2314 (2006).
[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005).
[CrossRef] [PubMed]

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled-wave analysis," in Plasmonics in Biology and Medicine II, T. Vo-Dinh, J. R. Lakowicz, and Z. K. Gryczynski, eds., Proc. SPIE 5703, 61-70 (2005).

Kim, S. J.

K. M. Byun, S. J. Kim, and D. Kim, "Profile effect on the feasibility of extinction-based localized surface plasmon resonance biosensors using metallic nanowires," Appl. Opt. 45, 3382-3389 (2006).
[CrossRef] [PubMed]

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sens. Actuators B 117, 401-407 (2006).
[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005).
[CrossRef] [PubMed]

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled-wave analysis," in Plasmonics in Biology and Medicine II, T. Vo-Dinh, J. R. Lakowicz, and Z. K. Gryczynski, eds., Proc. SPIE 5703, 61-70 (2005).

Knotts, M. E.

Kottmann, J. P.

Kretschmann, E.

E. Kretschmann, "Decay of non radiative surface plasmons into light on rough silver films: comparison of experimental and theoretical results," Opt. Commun. 6, 185-187 (1972).
[CrossRef]

Leatherbarrow, R. J.

R. J. Leatherbarrow and P. R. Edwards, "Analysis of molecular recognition using optical biosensors," Curr. Opin. Chem. Biol. 3, 544-547 (1999).
[CrossRef] [PubMed]

Lermé, J.

J. Lermé, "Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters," Eur. Phys. J. D 10, 265-277 (2000).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance--how it all started," Biosens. Bioelectron. 10, 1-4 (1995).
[CrossRef]

Liles, M. R.

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays," Anal. Chem. 73, 1-7 (2001).
[CrossRef] [PubMed]

Lundstrom, I.

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance--how it all started," Biosens. Bioelectron. 10, 1-4 (1995).
[CrossRef]

Lyon, L. A.

L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

Malmqvist, M.

M. Malmqvist, "Surface plasmon resonance for detection and measurements of antibody-antigen affinity and kinetics," Curr. Opin. Immunol. 5, 282-286 (1993).
[CrossRef] [PubMed]

Maradudin, A. A.

T. S. Rahman and A. A. Maradudin, "Surface-plasmon dispersion relation in the presence of surface roughness," Phys. Rev. B 21, 2137-2143 (1980).
[CrossRef]

A. A. Maradudin and W. Zierau, "Effects of surface roughness on the surface-polariton dispersion relation," Phys. Rev. B 14, 484-499 (1976).
[CrossRef]

Martin, O. J. F.

McFarland, A. D.

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Int. Chem. Eng. 3, 1057-1062 (2003).

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Michel, T. R.

Moharam, M. G.

Moreno, E.

Musick, M. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Natan, M. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

Nelson, B. P.

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays," Anal. Chem. 73, 1-7 (2001).
[CrossRef] [PubMed]

Nicewarner, S. R.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance--how it all started," Biosens. Bioelectron. 10, 1-4 (1995).
[CrossRef]

O"Donnell, K. A.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pena, D. J.

L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

Prikulis, J.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Quidant, R.

Raether, H.

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Rahman, T. S.

T. S. Rahman and A. A. Maradudin, "Surface-plasmon dispersion relation in the presence of surface roughness," Phys. Rev. B 21, 2137-2143 (1980).
[CrossRef]

Salinas, F. G.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Schatz, G. C.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Vahldieck, R.

Van Duyne, R. P.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Int. Chem. Eng. 3, 1057-1062 (2003).

A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
[CrossRef] [PubMed]

Zhao, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Zierau, W.

A. A. Maradudin and W. Zierau, "Effects of surface roughness on the surface-polariton dispersion relation," Phys. Rev. B 14, 484-499 (1976).
[CrossRef]

Adv. Mater. (Weinheim) (1)

E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. (Weinheim) 16, 1685-1706 (2004).
[CrossRef]

Anal. Chem. (1)

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays," Anal. Chem. 73, 1-7 (2001).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biosens. Bioelectron. (1)

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance--how it all started," Biosens. Bioelectron. 10, 1-4 (1995).
[CrossRef]

Curr. Opin. Chem. Biol. (1)

R. J. Leatherbarrow and P. R. Edwards, "Analysis of molecular recognition using optical biosensors," Curr. Opin. Chem. Biol. 3, 544-547 (1999).
[CrossRef] [PubMed]

Curr. Opin. Immunol. (1)

M. Malmqvist, "Surface plasmon resonance for detection and measurements of antibody-antigen affinity and kinetics," Curr. Opin. Immunol. 5, 282-286 (1993).
[CrossRef] [PubMed]

Eur. Phys. J. D (1)

J. Lermé, "Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters," Eur. Phys. J. D 10, 265-277 (2000).
[CrossRef]

Int. Chem. Eng. (1)

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Int. Chem. Eng. 3, 1057-1062 (2003).

J. Am. Chem. Soc. (2)

A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
[CrossRef] [PubMed]

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

J. Phys. Chem. B (2)

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

Opt. Commun. (1)

E. Kretschmann, "Decay of non radiative surface plasmons into light on rough silver films: comparison of experimental and theoretical results," Opt. Commun. 6, 185-187 (1972).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

A. A. Maradudin and W. Zierau, "Effects of surface roughness on the surface-polariton dispersion relation," Phys. Rev. B 14, 484-499 (1976).
[CrossRef]

T. S. Rahman and A. A. Maradudin, "Surface-plasmon dispersion relation in the presence of surface roughness," Phys. Rev. B 21, 2137-2143 (1980).
[CrossRef]

Sens. Actuators B (1)

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sens. Actuators B 117, 401-407 (2006).
[CrossRef]

Other (3)

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled-wave analysis," in Plasmonics in Biology and Medicine II, T. Vo-Dinh, J. R. Lakowicz, and Z. K. Gryczynski, eds., Proc. SPIE 5703, 61-70 (2005).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Measured height probability density of sample C (squares) using the AFM. The solid curve is its optimal Gaussian fit. (b) Numerical distribution of the height correlation of sample C (squares) and its Gaussian fit (solid curve).

Fig. 2
Fig. 2

(a) Schematic diagram of a conventional SPR biosensor. A TM-polarized light with a wavelength λ = 633 nm is incident at an angle θ. Layers 1, 2, 3, and 4 indicate a BK7 glass substrate, an attachment layer of chrome, a thin gold film, and target analytes, respectively, in air environment. The thicknesses of the layers are 2 nm ( d 2 ) , 40 nm ( d 3 ) , and 3 nm ( d 4 ) . (b) Schematic diagram of a nanowire-based SPR biosensor with periodic gold nanowires on a gold film. Compared with a conventional SPR configuration in (a), the structures are identical except for an additional layer of 20 nm thick nanowire arrays.

Fig. 3
Fig. 3

Gaussian random profiles of a gold surface used in the calculation for a conventional SPR configuration. The overall surface length is 5 μ m , and the surface roughness δ = 1 nm . The solid and dotted curves represent the surface profiles of a thin gold film and 3 nm thick binding analytes on a gold film. The CLs are (a) 50, (b) 100, (c) 200, and (d) 500 nm .

Fig. 4
Fig. 4

Surface profiles of a gold film involving periodic nanowires. For a nanowire-based SPR configuration, the surface profile is modeled as a sum of rectangular gratings and Gaussian random surfaces. The nanowire arrays with a fill factor f = 0.5 and Λ = 200 nm are 20 nm thick. The overall surface length is 5 μ m , and the surface roughness δ = 1 nm . The solid and dotted curves represent the surface profiles of a gold film involving nanowires and 3 nm thick binding analytes. The CLs are (a) 50, (b) 100, (c) 200, and (d) 500 nm . For each CL, the Gaussian random profile is assumed to be identical to that of Fig. 3.

Fig. 5
Fig. 5

Calculated reflectance curves for perfectly flat and rough surfaces in a conventional SPR biosensor shown in Fig. 2a. The solid curves are for a flat surface with the resonance angles 45.65 ° (with binding analytes) and 45.13 ° (without binding analytes). The dotted curves are for a Gaussian random surface with δ = 1 nm and CL = 50 nm . The resonance angles with and without binding analytes are 45.90 ° and 45.35 ° , respectively.

Fig. 6
Fig. 6

Calculated reflectance curves for perfectly flat and rough surface’s in a nanowire-based SPR biosensor shown in Fig. 2b. The solid curves are for nanowires on a flat surface (flat nanowires) with resonance angles of 46.90 ° (with binding analytes) and 47.85 ° (without binding analytes). The dotted curves are for nanowires on a Gaussian random surface with δ = 1 nm and CL = 50 nm . The resonance angles with and without binding analytes are 47.36 ° and 47.93 ° , respectively.

Fig. 7
Fig. 7

SEF characteristics with a varying CL at Λ = 80 nm (triangles), 100 nm (circles), and 200 nm (squares). The dotted lines present the SEF values of flat nanowires for a given nanowire period.

Tables (3)

Tables Icon

Table 1 Experimentally Measured rms Roughness Values and CLs for Three Samples (A, B, C) of Thin Gold Films on Glass Substrates

Tables Icon

Table 2 Calculation Results of SPR Characteristics of Gaussian Random Surfaces for a Conventional SPR Configuration

Tables Icon

Table 3 Calculation Results of SPR Characteristics of Gaussian Random Surfaces for a Nanowire-based SPR Configuration a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SEF = Δ θ SPR Δ θ SPR _ REF ,
w ± ( ξ ) = w 0 ± 2 2 ε ( w 0 ) δ a f ( ξ ) [ 1 + 1 2 ( δ a ) 2 ξ 2 ] 1 2 ,

Metrics