Abstract

We have investigated the effect of surface roughness on the sensitivity of conventional and nanowire-based surface plasmon resonance (SPR) biosensors. The theoretical research was conducted using rigorous coupled-wave analysis with Gaussian surface profiles of gold films determined by atomic force microscopy. The results suggest that, when surface roughness ranges near 1nm, the sensitivity of a conventional SPR system is not significantly affected regardless of the correlation length. For a nanowire-based SPR biosensor, however, we have found that the sensitivity degrades substantially with decreasing correlation length. In particular, at a correlation length smaller than 100nm, a random rough surface may induce destructive coupling between excited localized surface plasmons, which can lead to prominent reduction of sensitivity enhancement.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. E. Kretschmann, "Decay of non radiative surface plasmons into light on rough silver films: comparison of experimental and theoretical results," Opt. Commun. 6, 185-187 (1972).
    [CrossRef]
  3. M. Malmqvist, "Surface plasmon resonance for detection and measurements of antibody-antigen affinity and kinetics," Curr. Opin. Immunol. 5, 282-286 (1993).
    [CrossRef] [PubMed]
  4. B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays," Anal. Chem. 73, 1-7 (2001).
    [CrossRef] [PubMed]
  5. R. J. Leatherbarrow and P. R. Edwards, "Analysis of molecular recognition using optical biosensors," Curr. Opin. Chem. Biol. 3, 544-547 (1999).
    [CrossRef] [PubMed]
  6. B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance--how it all started," Biosens. Bioelectron. 10, 1-4 (1995).
    [CrossRef]
  7. E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. (Weinheim) 16, 1685-1706 (2004).
    [CrossRef]
  8. L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
    [CrossRef]
  9. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
    [CrossRef]
  10. A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Int. Chem. Eng. 3, 1057-1062 (2003).
  11. A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
    [CrossRef] [PubMed]
  12. K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005).
    [CrossRef] [PubMed]
  13. K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sens. Actuators B 117, 401-407 (2006).
    [CrossRef]
  14. K. M. Byun, S. J. Kim, and D. Kim, "Profile effect on the feasibility of extinction-based localized surface plasmon resonance biosensors using metallic nanowires," Appl. Opt. 45, 3382-3389 (2006).
    [CrossRef] [PubMed]
  15. D. Kim, "Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors," J. Opt. Soc. Am. A 23, 2307-2314 (2006).
    [CrossRef]
  16. T. R. Michel, M. E. Knotts, and K. A. O"Donnell, "Scattering by plasmon polaritons on a rough surface with a periodic component," J. Opt. Soc. Am. A 12, 548-559 (1995).
    [CrossRef]
  17. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982).
    [CrossRef]
  18. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings," J. Opt. Soc. Am. A 3, 1780-1787 (1986).
    [CrossRef]
  19. J. Lermé, "Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters," Eur. Phys. J. D 10, 265-277 (2000).
    [CrossRef]
  20. E. Moreno, D. Erni, C. Hafner, and R. Vahldieck, "Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures," J. Opt. Soc. Am. A 19, 101-111 (2002).
    [CrossRef]
  21. K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled-wave analysis," in Plasmonics in Biology and Medicine II, T. Vo-Dinh, J. R. Lakowicz, and Z. K. Gryczynski, eds., Proc. SPIE 5703, 61-70 (2005).
  22. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, "Electromagnetic coupling between a metal nanoparticle grating and a metallic surface," Opt. Lett. 30, 3404-3406 (2005).
    [CrossRef]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  24. A. A. Maradudin and W. Zierau, "Effects of surface roughness on the surface-polariton dispersion relation," Phys. Rev. B 14, 484-499 (1976).
    [CrossRef]
  25. T. S. Rahman and A. A. Maradudin, "Surface-plasmon dispersion relation in the presence of surface roughness," Phys. Rev. B 21, 2137-2143 (1980).
    [CrossRef]
  26. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
    [CrossRef]
  27. S. Enoch, R. Quidant, and G. Badenes, "Optical sensing based on plasmon coupling in nanoparticle arrays," Opt. Express 12, 3422-3427 (2004).
    [CrossRef] [PubMed]
  28. J. P. Kottmann and O. J. F. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. 26, 1096-1098 (2001).
    [CrossRef]

2006 (3)

2005 (2)

2004 (2)

S. Enoch, R. Quidant, and G. Badenes, "Optical sensing based on plasmon coupling in nanoparticle arrays," Opt. Express 12, 3422-3427 (2004).
[CrossRef] [PubMed]

E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. (Weinheim) 16, 1685-1706 (2004).
[CrossRef]

2003 (2)

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Int. Chem. Eng. 3, 1057-1062 (2003).

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

2002 (2)

E. Moreno, D. Erni, C. Hafner, and R. Vahldieck, "Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures," J. Opt. Soc. Am. A 19, 101-111 (2002).
[CrossRef]

A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
[CrossRef] [PubMed]

2001 (2)

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays," Anal. Chem. 73, 1-7 (2001).
[CrossRef] [PubMed]

J. P. Kottmann and O. J. F. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. 26, 1096-1098 (2001).
[CrossRef]

2000 (2)

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

J. Lermé, "Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters," Eur. Phys. J. D 10, 265-277 (2000).
[CrossRef]

1999 (2)

R. J. Leatherbarrow and P. R. Edwards, "Analysis of molecular recognition using optical biosensors," Curr. Opin. Chem. Biol. 3, 544-547 (1999).
[CrossRef] [PubMed]

L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

1995 (2)

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance--how it all started," Biosens. Bioelectron. 10, 1-4 (1995).
[CrossRef]

T. R. Michel, M. E. Knotts, and K. A. O"Donnell, "Scattering by plasmon polaritons on a rough surface with a periodic component," J. Opt. Soc. Am. A 12, 548-559 (1995).
[CrossRef]

1993 (1)

M. Malmqvist, "Surface plasmon resonance for detection and measurements of antibody-antigen affinity and kinetics," Curr. Opin. Immunol. 5, 282-286 (1993).
[CrossRef] [PubMed]

1986 (1)

1982 (1)

1980 (1)

T. S. Rahman and A. A. Maradudin, "Surface-plasmon dispersion relation in the presence of surface roughness," Phys. Rev. B 21, 2137-2143 (1980).
[CrossRef]

1976 (1)

A. A. Maradudin and W. Zierau, "Effects of surface roughness on the surface-polariton dispersion relation," Phys. Rev. B 14, 484-499 (1976).
[CrossRef]

1972 (1)

E. Kretschmann, "Decay of non radiative surface plasmons into light on rough silver films: comparison of experimental and theoretical results," Opt. Commun. 6, 185-187 (1972).
[CrossRef]

Badenes, G.

Benkovic, S. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Byun, K. M.

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sens. Actuators B 117, 401-407 (2006).
[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, "Profile effect on the feasibility of extinction-based localized surface plasmon resonance biosensors using metallic nanowires," Appl. Opt. 45, 3382-3389 (2006).
[CrossRef] [PubMed]

K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005).
[CrossRef] [PubMed]

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled-wave analysis," in Plasmonics in Biology and Medicine II, T. Vo-Dinh, J. R. Lakowicz, and Z. K. Gryczynski, eds., Proc. SPIE 5703, 61-70 (2005).

Cesario, J.

Corn, R. M.

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays," Anal. Chem. 73, 1-7 (2001).
[CrossRef] [PubMed]

Edwards, P. R.

R. J. Leatherbarrow and P. R. Edwards, "Analysis of molecular recognition using optical biosensors," Curr. Opin. Chem. Biol. 3, 544-547 (1999).
[CrossRef] [PubMed]

Enoch, S.

Erni, D.

Fendler, J. H.

E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. (Weinheim) 16, 1685-1706 (2004).
[CrossRef]

Gaylord, T. K.

Goodman, R. M.

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays," Anal. Chem. 73, 1-7 (2001).
[CrossRef] [PubMed]

Grimsrud, T. E.

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays," Anal. Chem. 73, 1-7 (2001).
[CrossRef] [PubMed]

Gunnarsson, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Haes, A. J.

A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
[CrossRef] [PubMed]

Hafner, C.

Haynes, C. L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

He, L.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Hutter, E.

E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. (Weinheim) 16, 1685-1706 (2004).
[CrossRef]

Käll, M.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Kasemo, B.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Keating, C. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Kim, D.

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sens. Actuators B 117, 401-407 (2006).
[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, "Profile effect on the feasibility of extinction-based localized surface plasmon resonance biosensors using metallic nanowires," Appl. Opt. 45, 3382-3389 (2006).
[CrossRef] [PubMed]

D. Kim, "Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors," J. Opt. Soc. Am. A 23, 2307-2314 (2006).
[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005).
[CrossRef] [PubMed]

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled-wave analysis," in Plasmonics in Biology and Medicine II, T. Vo-Dinh, J. R. Lakowicz, and Z. K. Gryczynski, eds., Proc. SPIE 5703, 61-70 (2005).

Kim, S. J.

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sens. Actuators B 117, 401-407 (2006).
[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, "Profile effect on the feasibility of extinction-based localized surface plasmon resonance biosensors using metallic nanowires," Appl. Opt. 45, 3382-3389 (2006).
[CrossRef] [PubMed]

K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005).
[CrossRef] [PubMed]

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled-wave analysis," in Plasmonics in Biology and Medicine II, T. Vo-Dinh, J. R. Lakowicz, and Z. K. Gryczynski, eds., Proc. SPIE 5703, 61-70 (2005).

Knotts, M. E.

Kottmann, J. P.

Kretschmann, E.

E. Kretschmann, "Decay of non radiative surface plasmons into light on rough silver films: comparison of experimental and theoretical results," Opt. Commun. 6, 185-187 (1972).
[CrossRef]

Leatherbarrow, R. J.

R. J. Leatherbarrow and P. R. Edwards, "Analysis of molecular recognition using optical biosensors," Curr. Opin. Chem. Biol. 3, 544-547 (1999).
[CrossRef] [PubMed]

Lermé, J.

J. Lermé, "Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters," Eur. Phys. J. D 10, 265-277 (2000).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance--how it all started," Biosens. Bioelectron. 10, 1-4 (1995).
[CrossRef]

Liles, M. R.

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays," Anal. Chem. 73, 1-7 (2001).
[CrossRef] [PubMed]

Lundstrom, I.

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance--how it all started," Biosens. Bioelectron. 10, 1-4 (1995).
[CrossRef]

Lyon, L. A.

L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

Malmqvist, M.

M. Malmqvist, "Surface plasmon resonance for detection and measurements of antibody-antigen affinity and kinetics," Curr. Opin. Immunol. 5, 282-286 (1993).
[CrossRef] [PubMed]

Maradudin, A. A.

T. S. Rahman and A. A. Maradudin, "Surface-plasmon dispersion relation in the presence of surface roughness," Phys. Rev. B 21, 2137-2143 (1980).
[CrossRef]

A. A. Maradudin and W. Zierau, "Effects of surface roughness on the surface-polariton dispersion relation," Phys. Rev. B 14, 484-499 (1976).
[CrossRef]

Martin, O. J. F.

McFarland, A. D.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Int. Chem. Eng. 3, 1057-1062 (2003).

Michel, T. R.

Moharam, M. G.

Moreno, E.

Musick, M. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Natan, M. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

Nelson, B. P.

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays," Anal. Chem. 73, 1-7 (2001).
[CrossRef] [PubMed]

Nicewarner, S. R.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance--how it all started," Biosens. Bioelectron. 10, 1-4 (1995).
[CrossRef]

O"Donnell, K. A.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pena, D. J.

L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

Prikulis, J.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Quidant, R.

Raether, H.

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Rahman, T. S.

T. S. Rahman and A. A. Maradudin, "Surface-plasmon dispersion relation in the presence of surface roughness," Phys. Rev. B 21, 2137-2143 (1980).
[CrossRef]

Salinas, F. G.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Schatz, G. C.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Vahldieck, R.

Van Duyne, R. P.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Int. Chem. Eng. 3, 1057-1062 (2003).

A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
[CrossRef] [PubMed]

Zhao, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Zierau, W.

A. A. Maradudin and W. Zierau, "Effects of surface roughness on the surface-polariton dispersion relation," Phys. Rev. B 14, 484-499 (1976).
[CrossRef]

Adv. Mater. (Weinheim) (1)

E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. (Weinheim) 16, 1685-1706 (2004).
[CrossRef]

Anal. Chem. (1)

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays," Anal. Chem. 73, 1-7 (2001).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biosens. Bioelectron. (1)

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance--how it all started," Biosens. Bioelectron. 10, 1-4 (1995).
[CrossRef]

Curr. Opin. Chem. Biol. (1)

R. J. Leatherbarrow and P. R. Edwards, "Analysis of molecular recognition using optical biosensors," Curr. Opin. Chem. Biol. 3, 544-547 (1999).
[CrossRef] [PubMed]

Curr. Opin. Immunol. (1)

M. Malmqvist, "Surface plasmon resonance for detection and measurements of antibody-antigen affinity and kinetics," Curr. Opin. Immunol. 5, 282-286 (1993).
[CrossRef] [PubMed]

Eur. Phys. J. D (1)

J. Lermé, "Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters," Eur. Phys. J. D 10, 265-277 (2000).
[CrossRef]

Int. Chem. Eng. (1)

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Int. Chem. Eng. 3, 1057-1062 (2003).

J. Am. Chem. Soc. (2)

A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
[CrossRef] [PubMed]

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

J. Phys. Chem. B (2)

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

Opt. Commun. (1)

E. Kretschmann, "Decay of non radiative surface plasmons into light on rough silver films: comparison of experimental and theoretical results," Opt. Commun. 6, 185-187 (1972).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

A. A. Maradudin and W. Zierau, "Effects of surface roughness on the surface-polariton dispersion relation," Phys. Rev. B 14, 484-499 (1976).
[CrossRef]

T. S. Rahman and A. A. Maradudin, "Surface-plasmon dispersion relation in the presence of surface roughness," Phys. Rev. B 21, 2137-2143 (1980).
[CrossRef]

Sens. Actuators B (1)

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sens. Actuators B 117, 401-407 (2006).
[CrossRef]

Other (3)

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled-wave analysis," in Plasmonics in Biology and Medicine II, T. Vo-Dinh, J. R. Lakowicz, and Z. K. Gryczynski, eds., Proc. SPIE 5703, 61-70 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Measured height probability density of sample C (squares) using the AFM. The solid curve is its optimal Gaussian fit. (b) Numerical distribution of the height correlation of sample C (squares) and its Gaussian fit (solid curve).

Fig. 2
Fig. 2

(a) Schematic diagram of a conventional SPR biosensor. A TM-polarized light with a wavelength λ = 633 nm is incident at an angle θ. Layers 1, 2, 3, and 4 indicate a BK7 glass substrate, an attachment layer of chrome, a thin gold film, and target analytes, respectively, in air environment. The thicknesses of the layers are 2 nm ( d 2 ) , 40 nm ( d 3 ) , and 3 nm ( d 4 ) . (b) Schematic diagram of a nanowire-based SPR biosensor with periodic gold nanowires on a gold film. Compared with a conventional SPR configuration in (a), the structures are identical except for an additional layer of 20 nm thick nanowire arrays.

Fig. 3
Fig. 3

Gaussian random profiles of a gold surface used in the calculation for a conventional SPR configuration. The overall surface length is 5 μ m , and the surface roughness δ = 1 nm . The solid and dotted curves represent the surface profiles of a thin gold film and 3 nm thick binding analytes on a gold film. The CLs are (a) 50, (b) 100, (c) 200, and (d) 500 nm .

Fig. 4
Fig. 4

Surface profiles of a gold film involving periodic nanowires. For a nanowire-based SPR configuration, the surface profile is modeled as a sum of rectangular gratings and Gaussian random surfaces. The nanowire arrays with a fill factor f = 0.5 and Λ = 200 nm are 20 nm thick. The overall surface length is 5 μ m , and the surface roughness δ = 1 nm . The solid and dotted curves represent the surface profiles of a gold film involving nanowires and 3 nm thick binding analytes. The CLs are (a) 50, (b) 100, (c) 200, and (d) 500 nm . For each CL, the Gaussian random profile is assumed to be identical to that of Fig. 3.

Fig. 5
Fig. 5

Calculated reflectance curves for perfectly flat and rough surfaces in a conventional SPR biosensor shown in Fig. 2a. The solid curves are for a flat surface with the resonance angles 45.65 ° (with binding analytes) and 45.13 ° (without binding analytes). The dotted curves are for a Gaussian random surface with δ = 1 nm and CL = 50 nm . The resonance angles with and without binding analytes are 45.90 ° and 45.35 ° , respectively.

Fig. 6
Fig. 6

Calculated reflectance curves for perfectly flat and rough surface’s in a nanowire-based SPR biosensor shown in Fig. 2b. The solid curves are for nanowires on a flat surface (flat nanowires) with resonance angles of 46.90 ° (with binding analytes) and 47.85 ° (without binding analytes). The dotted curves are for nanowires on a Gaussian random surface with δ = 1 nm and CL = 50 nm . The resonance angles with and without binding analytes are 47.36 ° and 47.93 ° , respectively.

Fig. 7
Fig. 7

SEF characteristics with a varying CL at Λ = 80 nm (triangles), 100 nm (circles), and 200 nm (squares). The dotted lines present the SEF values of flat nanowires for a given nanowire period.

Tables (3)

Tables Icon

Table 1 Experimentally Measured rms Roughness Values and CLs for Three Samples (A, B, C) of Thin Gold Films on Glass Substrates

Tables Icon

Table 2 Calculation Results of SPR Characteristics of Gaussian Random Surfaces for a Conventional SPR Configuration

Tables Icon

Table 3 Calculation Results of SPR Characteristics of Gaussian Random Surfaces for a Nanowire-based SPR Configuration a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SEF = Δ θ SPR Δ θ SPR _ REF ,
w ± ( ξ ) = w 0 ± 2 2 ε ( w 0 ) δ a f ( ξ ) [ 1 + 1 2 ( δ a ) 2 ξ 2 ] 1 2 ,

Metrics