Abstract

Currently, we are developing a computational optical biopsy technology for molecular sensing. We use the diffusion equation to model photon propagation but have a concern about the accuracy of diffusion approximation when the optical sensor is close to a bioluminescent source. We derive formulas to describe photon fluence for point and ball sources and measurement formulas for an idealized optical biopsy probe. Then, we numerically compare the diffusion approximation and the radiative transport as implemented by Monte Carlo simulation in the cases of point and ball sources. Our simulation results show that the diffusion approximation can be accurately applied if μsμa even if the sensor is very close to the source (>1mm). Furthermore, an approximate formula is given to describe the measurement of a cut-end fiber probe for a ball source.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Practical reconstruction method for bioluminescence tomography

Wenxiang Cong, Ge Wang, Durairaj Kumar, Yi Liu, Ming Jiang, Lihong V. Wang, Eric A. Hoffman, Geoffrey McLennan, Paul B. McCray, Joseph Zabner, and Alexander Cong
Opt. Express 13(18) 6756-6771 (2005)

In vivo mouse studies with bioluminescence tomography

Ge Wang, Wenxiang Cong, Kumar Durairaj, Xin Qian, Haiou Shen, Patrick Sinn, Eric Hoffman, Geoffrey McLennan, and Michael Henry
Opt. Express 14(17) 7801-7809 (2006)

Temperature-modulated bioluminescence tomography

Ge Wang, Haiou Shen, Wenxiang Cong, Shan Zhao, and Guo Wei Wei
Opt. Express 14(17) 7852-7871 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription