Abstract

Simple visual-reaction times (VRT) were measured for a variety of stimuli selected along red–green (LM axis) and blue–yellow [S(L+M) axis] directions in the isoluminant plane under different adaptation stimuli. Data were plotted in terms of the RMS cone contrast in contrast-threshold units. For each opponent system, a modified Piéron function was fitted in each experimental configuration and on all adaptation stimuli. A single function did not account for all the data, confirming the existence of separate postreceptoral adaptation mechanisms in each opponent system under suprathreshold conditions. The analysis of the VRT-hazard functions suggested that both color-opponent mechanisms present a well-defined, transient-sustained structure at marked suprathreshold conditions. The influence of signal polarity and chromatic adaptation on each color axis proves the existence of asymmetries in the integrated hazard functions, suggesting separate detection mechanisms for each pole (red, green, blue, and yellow detectors).

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. A. A. Kingdom, "Color brings relief to human vision," Nat. Neurosci. 6, 641-644 (2003).
    [CrossRef] [PubMed]
  2. K. R. Gegenfurther and D. C. Kiper, "Color Vision," Annu. Rev. Neurosci. 26, 181-206 (2003).
  3. D. M. Dacey, "Parallel pathways for spectral coding in primate retina," Annu. Rev. Neurosci. 23, 743-775 (2000).
    [CrossRef] [PubMed]
  4. R. L. De Valois and K. K. De Valois, "A multistage color model," Vision Res. 33, 1053-1065 (1993).
    [CrossRef] [PubMed]
  5. S. L. Guth, "Model for color vision and light adaptation," J. Opt. Soc. Am. A 8, 976-993 (1991).
    [CrossRef] [PubMed]
  6. R. M. Boynton, "A system of photometry and colorimetry based on cone excitations," Color Res. Appl. 11, 244-252 (1986).
    [CrossRef]
  7. J. Krauskopf, "Higher order color mechanisms," in Color Vision: From Genes to Perception, K.R.Gegenfurther and L.T.Sharpe, eds. (Cambridge U. Press, 1999), pp. 303-317.
  8. M. A. Webster and J. D. Mollon, "The influence of contrast adaptation on color appearance," Vision Res. 34, 1993-2020 (1994).
    [CrossRef] [PubMed]
  9. R. L. De Valois, K. K. De Valois, and L. E. Mahon, "Contribution of S opponent cells to color appearance," Proc. Natl. Acad. Sci. U.S.A. 97, 512-517 (2000).
    [CrossRef] [PubMed]
  10. R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, "Some transformations of color information from lateral geniculate nucleus to striate cortex," Proc. Natl. Acad. Sci. U.S.A. 97, 4997-5002 (2000).
    [CrossRef] [PubMed]
  11. M. J. Sankeralli and K. T. Mullen, "Bipolar or rectified chromatic detection mechanisms?" Visual Neurosci. 18, 127-135 (2001).
    [CrossRef]
  12. P. V. McGraw, D. J. McKeefry, D. Whitaker, and Chara Vakrou, "Positional adaptation reveals multiple chromatic mechanisms in human vision," J. Vision 4, 626-636 (2003), http://journalofvision.org/4/7/8.
  13. V. C. Smith, R. C. Bowen, and J. Pokorny, "Threshold temporal integration of chromatic stimuli," Vision Res. 24, 653-660 (1984).
    [CrossRef] [PubMed]
  14. Y. Kawabata, "Temporal integration at equiluminance and chromatic adaptation," Vision Res. 34, 1007-1018 (1994).
    [CrossRef] [PubMed]
  15. A. Hughes and P. J. De Marco, "Time course of adaptation to stimuli presented along cardinal lines in color space," J. Opt. Soc. Am. A 20, 2216-2226 (2003).
    [CrossRef]
  16. A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time course of adaptation along the RG cardinal axis," Color Res. Appl. 26, s43-s47 (2000).
    [CrossRef]
  17. A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time-course of S-cone system adaptation to simple and complex fields," Vision Res. 43, 1135-1147 (2003).
    [CrossRef] [PubMed]
  18. Q. Zaidi and A. G. Shapiro, "Adaptive orthogonalization of opponent-color signals," Biol. Cybern. 69, 415-428 (1993).
    [PubMed]
  19. R. D. Luce, Response Times (Oxford U. Press, 1986), pp. 1-174.
  20. D. E. Meyer, A. M. Osman, D. E. Irvin, and S. Yantis, "Modern mental chronometry," Biol. Psychol. 26, 3-67 (1988).
    [CrossRef] [PubMed]
  21. J. A. Díaz, L. Jiménez del Barco, J. R. Jiménez, and E. Hita, "Simple reaction time to chromatic changes along L&M-constant and S-constant cone axes," Color Res. Appl. 26, 223-233 (2001).
    [CrossRef]
  22. D. J. McKeefry, N. R. A. Parry, and I. J. Murray, "Simple reaction times in color space: the influence of chromaticity, contrast, and cone opponency," Invest. Ophthalmol. Visual Sci. 44, 2267-2275 (2003).
    [CrossRef]
  23. P. Lennie, "The physiological basis of variations in visual latency," Vision Res. 21, 815-824 (1981).
    [CrossRef] [PubMed]
  24. J. D. Mollon and J. Krauskopf, "Reaction time as a measure of the temporal response properties of individual color mechanisms," Vision Res. 13, 27-40 (1973).
    [CrossRef] [PubMed]
  25. T. Ueno, "Sustained and transient properties of chromatic and luminance systems," Vision Res. 32, 1055-1065 (1992).
    [CrossRef] [PubMed]
  26. D. L. Tolhurst, "Reaction times in the detection of gratings by humans observers: a probabilistic mechanism," Vision Res. 15, 1143-1149 (1975).
    [CrossRef] [PubMed]
  27. R. S. Harwerth, R. L. Boltz, and E. L. Smith, "Psychophysical evidence for sustained and transient channels in the monkey visual system," Vision Res. 20, 15-22 (1980).
    [CrossRef] [PubMed]
  28. S. H. Schwartz and M. S. Loop, "Evidence for transient luminance and quasi-sustained color mechanisms," Vision Res. 22, 445-447 (1982).
    [CrossRef] [PubMed]
  29. S. H. Schwartz, "Reaction time distributions and their relationship to the transient/sustained nature of neural discharge," Vision Res. 32, 2087-2092 (1992).
    [CrossRef] [PubMed]
  30. H. E. Smithson and J. D. Mollon, "Is the S-opponent chromatic sub-system sluggish?" Vision Res. 44, 2919-2929 (2004).
    [CrossRef] [PubMed]
  31. P. L. Smith, "Psychophysically principled models of visual simple reaction time," Psychol. Rev. 102, 567-593 (1995).
    [CrossRef]
  32. P. L. Smith and T. Van Zandt, "Time-dependent Poisson counter models of response latency in simple judgment," Br. J. Math. Stat. Psychol. 53, 293-315 (2000).
    [CrossRef] [PubMed]
  33. B. Bloxom, "Estimating response hazard functions: an exposition and extension," J. Math. Psychol. 28, 401-420 (1984).
    [CrossRef]
  34. J. T. Townsend, "Truth and consequences of ordinal differences in statistical distributions: toward a theory of hierarchical inference," Psychol. Bull. 108, 551-567 (1990).
    [CrossRef] [PubMed]
  35. M. J. Wenger and B. S. Gibson, "Using hazard functions to asses changes in processing capacity in an attentional cuing paradigm," J. Exp. Psychol. Hum. Percept. Perform. 30, 708-719 (2004).
    [CrossRef] [PubMed]
  36. D. L. Post and C. S. Calhoun, "An evaluation of methods producing desired color on CRT monitors," Color Res. Appl. 14, 172-186 (1989).
    [CrossRef]
  37. L. Jiménez del Barco, J. A. Díaz, J. R. Jiménez, and M. Rubiño, "Considerations on the calibration of color displays assuming constant-channel chromaticity," Color Res. Appl. 20, 377-387 (1995).
    [CrossRef]
  38. M. J. Nissen and J. Pokorny, "Wavelength effects on simple reaction time," Percept. Psychophys. 22, 457-462 (1977).
    [CrossRef]
  39. T. Ueno, J. Pokorny, and V. C. Smith, "Reaction times to chromatic stimuli," Vision Res. 25, 1623-1627 (1985).
    [CrossRef] [PubMed]
  40. T. Ueno and W. H. Swanson, "Response pooling between chromatic and luminance systems," Vision Res. 29, 325-333 (1989).
    [CrossRef] [PubMed]
  41. D. H. Kelly and D. van Norren, "Two band model of heterochromatic flicker photometry," J. Opt. Soc. Am. 67, 1081-1091 (1977).
    [CrossRef] [PubMed]
  42. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982), pp. 429-451, 458-471.
  43. C. W. Eriksen, "A source of error in attempts to distinguish coactivation from separate activation in the perception of redundant targets," Percept. Psychophys. 44, 191-193 (1988).
    [CrossRef] [PubMed]
  44. J. Miller, "A warning about median reaction time," J. Exp. Psychol. Hum. Percept. Perform. 14, 539-543 (1988).
    [CrossRef] [PubMed]
  45. G. R. Cole, T. Hine, and W. McIlhaga, "Detection mechanisms in L-, M-, and S-cone contrast space," J. Opt. Soc. Am. A 10, 38-51 (1993).
    [CrossRef] [PubMed]
  46. G. A. Gescheider, Psychophysics: The Fundamentals, 3rd ed. (Erlbaum, 1997).
  47. S. Plainis and I. J. Murray, "Neurophysiological interpretation of human visual reaction times: effect of contrast, spatial frequency and luminance," Neuropsychologia 38, 1555-1664 (2000).
    [CrossRef] [PubMed]
  48. N. D. Singpurwalla and M. Y. Wong, "Estimation of the failure rate—a survey of nonparametric methods part I: non-Bayesian methods," Commun. Stat. Theory Meth. 12, 559-588 (1983).
    [CrossRef]
  49. J. T. Townsend and F. G. Ashby, "Methods of modeling capacity in simple processing systems," in Cognitive Theory Vol. III, J.Castellan and F.Restle, eds. (Erlbaum, 1978), pp. 200-239.
  50. J. T. Townsend and G. Nozawa, "Spatio-temporal properties of elementary perception: an investigation of parallel, serial, and coactive theories," J. Math. Psychol. 39, 321-359 (1995).
    [CrossRef]
  51. J. T. Townsend and W. J. Wenger, "A theory of interactive parallel processing: new capacity measures and predictions for a response time inequality series," Psychol. Rev. 111, 1003-1035 (2004).
    [CrossRef] [PubMed]
  52. M. P. Deiber, V. Ibañez, N. Sadato, and M. Hallet, "Cerebral structures participating in motor preparation in humans: a position emission tomography study," J. Neurophysiol. 75, 233-247 (1998).
  53. B. Burle, M. Bonnet, F. Vidal, C. A. Posamaï, and T. Hasbroucq, "A transcranial magnetic simulation study of information processing in the motor cortex: relationship between the silent period and the reaction time delay," Psychophysiology 39, 207-217 (2002).
    [CrossRef] [PubMed]
  54. N. Nishitani, K. Uutela, H. Shibasaki, and R. Hari, "Cortical visuomotor integration during eye pursuit and eye-finger pursuit," J. Neurosci. 19, 2647-2657 (1999).
    [PubMed]
  55. M. T. Schmolesky, Y. Yang, D. P. Hanes, K. G. Thompson, S. Leutgeb, J. D. Schall, and A. G. Leventhal, "Signal timing across macaque visual system," J. Neurophysiol. 79, 3272-3278 (1998).
    [PubMed]
  56. R. C. Reid and R. M. Shapley, "Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus," J. Neurosci. 22, 6158-6175 (2002).
    [PubMed]
  57. J. H. R. Maunsell and J. R. Gibson, "Visual response latencies in striate cortex of macaque monkey," J. Neurophysiol. 68, 1332-1344 (1992).
    [PubMed]
  58. L. G. Nowak, M. H. J. Munk, P. Girard, and J. Bullier, "Visual latencies in areas V1 and V2 of the macaque monkey," Visual Neurosci. 12, 371-384 (1995).
    [CrossRef]
  59. N. P. Cottaris and R. L. De Valois, "Temporal dynamics of chromatic tuning in macaque primary visual cortex," Nature (London) 395, 896-900 (1998).
    [CrossRef]
  60. D. J. McKeefry, I. J. Murray, and J. J. Kulikowski, "Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation," Vision Res. 41, 245-255 (2001).
    [CrossRef] [PubMed]
  61. K. R. Dobkins, K. L. Gunther, and D. H. Peterzell, "What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity?" Vision Res. 40, 613-628 (2000).
    [CrossRef] [PubMed]
  62. S. Chatterjee and E. M. Callaway, "S cone contributions to the magnocellular visual pathway in macaque monkey," Neuron 35, 1135-1146 (2002).
    [CrossRef] [PubMed]

2004 (3)

H. E. Smithson and J. D. Mollon, "Is the S-opponent chromatic sub-system sluggish?" Vision Res. 44, 2919-2929 (2004).
[CrossRef] [PubMed]

M. J. Wenger and B. S. Gibson, "Using hazard functions to asses changes in processing capacity in an attentional cuing paradigm," J. Exp. Psychol. Hum. Percept. Perform. 30, 708-719 (2004).
[CrossRef] [PubMed]

J. T. Townsend and W. J. Wenger, "A theory of interactive parallel processing: new capacity measures and predictions for a response time inequality series," Psychol. Rev. 111, 1003-1035 (2004).
[CrossRef] [PubMed]

2003 (6)

F. A. A. Kingdom, "Color brings relief to human vision," Nat. Neurosci. 6, 641-644 (2003).
[CrossRef] [PubMed]

K. R. Gegenfurther and D. C. Kiper, "Color Vision," Annu. Rev. Neurosci. 26, 181-206 (2003).

A. Hughes and P. J. De Marco, "Time course of adaptation to stimuli presented along cardinal lines in color space," J. Opt. Soc. Am. A 20, 2216-2226 (2003).
[CrossRef]

P. V. McGraw, D. J. McKeefry, D. Whitaker, and Chara Vakrou, "Positional adaptation reveals multiple chromatic mechanisms in human vision," J. Vision 4, 626-636 (2003), http://journalofvision.org/4/7/8.

A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time-course of S-cone system adaptation to simple and complex fields," Vision Res. 43, 1135-1147 (2003).
[CrossRef] [PubMed]

D. J. McKeefry, N. R. A. Parry, and I. J. Murray, "Simple reaction times in color space: the influence of chromaticity, contrast, and cone opponency," Invest. Ophthalmol. Visual Sci. 44, 2267-2275 (2003).
[CrossRef]

2002 (3)

S. Chatterjee and E. M. Callaway, "S cone contributions to the magnocellular visual pathway in macaque monkey," Neuron 35, 1135-1146 (2002).
[CrossRef] [PubMed]

B. Burle, M. Bonnet, F. Vidal, C. A. Posamaï, and T. Hasbroucq, "A transcranial magnetic simulation study of information processing in the motor cortex: relationship between the silent period and the reaction time delay," Psychophysiology 39, 207-217 (2002).
[CrossRef] [PubMed]

R. C. Reid and R. M. Shapley, "Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus," J. Neurosci. 22, 6158-6175 (2002).
[PubMed]

2001 (3)

D. J. McKeefry, I. J. Murray, and J. J. Kulikowski, "Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation," Vision Res. 41, 245-255 (2001).
[CrossRef] [PubMed]

J. A. Díaz, L. Jiménez del Barco, J. R. Jiménez, and E. Hita, "Simple reaction time to chromatic changes along L&M-constant and S-constant cone axes," Color Res. Appl. 26, 223-233 (2001).
[CrossRef]

M. J. Sankeralli and K. T. Mullen, "Bipolar or rectified chromatic detection mechanisms?" Visual Neurosci. 18, 127-135 (2001).
[CrossRef]

2000 (7)

R. L. De Valois, K. K. De Valois, and L. E. Mahon, "Contribution of S opponent cells to color appearance," Proc. Natl. Acad. Sci. U.S.A. 97, 512-517 (2000).
[CrossRef] [PubMed]

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, "Some transformations of color information from lateral geniculate nucleus to striate cortex," Proc. Natl. Acad. Sci. U.S.A. 97, 4997-5002 (2000).
[CrossRef] [PubMed]

P. L. Smith and T. Van Zandt, "Time-dependent Poisson counter models of response latency in simple judgment," Br. J. Math. Stat. Psychol. 53, 293-315 (2000).
[CrossRef] [PubMed]

A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time course of adaptation along the RG cardinal axis," Color Res. Appl. 26, s43-s47 (2000).
[CrossRef]

K. R. Dobkins, K. L. Gunther, and D. H. Peterzell, "What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity?" Vision Res. 40, 613-628 (2000).
[CrossRef] [PubMed]

D. M. Dacey, "Parallel pathways for spectral coding in primate retina," Annu. Rev. Neurosci. 23, 743-775 (2000).
[CrossRef] [PubMed]

S. Plainis and I. J. Murray, "Neurophysiological interpretation of human visual reaction times: effect of contrast, spatial frequency and luminance," Neuropsychologia 38, 1555-1664 (2000).
[CrossRef] [PubMed]

1999 (2)

N. Nishitani, K. Uutela, H. Shibasaki, and R. Hari, "Cortical visuomotor integration during eye pursuit and eye-finger pursuit," J. Neurosci. 19, 2647-2657 (1999).
[PubMed]

J. Krauskopf, "Higher order color mechanisms," in Color Vision: From Genes to Perception, K.R.Gegenfurther and L.T.Sharpe, eds. (Cambridge U. Press, 1999), pp. 303-317.

1998 (3)

M. T. Schmolesky, Y. Yang, D. P. Hanes, K. G. Thompson, S. Leutgeb, J. D. Schall, and A. G. Leventhal, "Signal timing across macaque visual system," J. Neurophysiol. 79, 3272-3278 (1998).
[PubMed]

M. P. Deiber, V. Ibañez, N. Sadato, and M. Hallet, "Cerebral structures participating in motor preparation in humans: a position emission tomography study," J. Neurophysiol. 75, 233-247 (1998).

N. P. Cottaris and R. L. De Valois, "Temporal dynamics of chromatic tuning in macaque primary visual cortex," Nature (London) 395, 896-900 (1998).
[CrossRef]

1997 (1)

G. A. Gescheider, Psychophysics: The Fundamentals, 3rd ed. (Erlbaum, 1997).

1995 (4)

J. T. Townsend and G. Nozawa, "Spatio-temporal properties of elementary perception: an investigation of parallel, serial, and coactive theories," J. Math. Psychol. 39, 321-359 (1995).
[CrossRef]

L. G. Nowak, M. H. J. Munk, P. Girard, and J. Bullier, "Visual latencies in areas V1 and V2 of the macaque monkey," Visual Neurosci. 12, 371-384 (1995).
[CrossRef]

L. Jiménez del Barco, J. A. Díaz, J. R. Jiménez, and M. Rubiño, "Considerations on the calibration of color displays assuming constant-channel chromaticity," Color Res. Appl. 20, 377-387 (1995).
[CrossRef]

P. L. Smith, "Psychophysically principled models of visual simple reaction time," Psychol. Rev. 102, 567-593 (1995).
[CrossRef]

1994 (2)

M. A. Webster and J. D. Mollon, "The influence of contrast adaptation on color appearance," Vision Res. 34, 1993-2020 (1994).
[CrossRef] [PubMed]

Y. Kawabata, "Temporal integration at equiluminance and chromatic adaptation," Vision Res. 34, 1007-1018 (1994).
[CrossRef] [PubMed]

1993 (3)

Q. Zaidi and A. G. Shapiro, "Adaptive orthogonalization of opponent-color signals," Biol. Cybern. 69, 415-428 (1993).
[PubMed]

G. R. Cole, T. Hine, and W. McIlhaga, "Detection mechanisms in L-, M-, and S-cone contrast space," J. Opt. Soc. Am. A 10, 38-51 (1993).
[CrossRef] [PubMed]

R. L. De Valois and K. K. De Valois, "A multistage color model," Vision Res. 33, 1053-1065 (1993).
[CrossRef] [PubMed]

1992 (3)

J. H. R. Maunsell and J. R. Gibson, "Visual response latencies in striate cortex of macaque monkey," J. Neurophysiol. 68, 1332-1344 (1992).
[PubMed]

T. Ueno, "Sustained and transient properties of chromatic and luminance systems," Vision Res. 32, 1055-1065 (1992).
[CrossRef] [PubMed]

S. H. Schwartz, "Reaction time distributions and their relationship to the transient/sustained nature of neural discharge," Vision Res. 32, 2087-2092 (1992).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

J. T. Townsend, "Truth and consequences of ordinal differences in statistical distributions: toward a theory of hierarchical inference," Psychol. Bull. 108, 551-567 (1990).
[CrossRef] [PubMed]

1989 (2)

T. Ueno and W. H. Swanson, "Response pooling between chromatic and luminance systems," Vision Res. 29, 325-333 (1989).
[CrossRef] [PubMed]

D. L. Post and C. S. Calhoun, "An evaluation of methods producing desired color on CRT monitors," Color Res. Appl. 14, 172-186 (1989).
[CrossRef]

1988 (3)

D. E. Meyer, A. M. Osman, D. E. Irvin, and S. Yantis, "Modern mental chronometry," Biol. Psychol. 26, 3-67 (1988).
[CrossRef] [PubMed]

C. W. Eriksen, "A source of error in attempts to distinguish coactivation from separate activation in the perception of redundant targets," Percept. Psychophys. 44, 191-193 (1988).
[CrossRef] [PubMed]

J. Miller, "A warning about median reaction time," J. Exp. Psychol. Hum. Percept. Perform. 14, 539-543 (1988).
[CrossRef] [PubMed]

1986 (2)

R. D. Luce, Response Times (Oxford U. Press, 1986), pp. 1-174.

R. M. Boynton, "A system of photometry and colorimetry based on cone excitations," Color Res. Appl. 11, 244-252 (1986).
[CrossRef]

1985 (1)

T. Ueno, J. Pokorny, and V. C. Smith, "Reaction times to chromatic stimuli," Vision Res. 25, 1623-1627 (1985).
[CrossRef] [PubMed]

1984 (2)

V. C. Smith, R. C. Bowen, and J. Pokorny, "Threshold temporal integration of chromatic stimuli," Vision Res. 24, 653-660 (1984).
[CrossRef] [PubMed]

B. Bloxom, "Estimating response hazard functions: an exposition and extension," J. Math. Psychol. 28, 401-420 (1984).
[CrossRef]

1983 (1)

N. D. Singpurwalla and M. Y. Wong, "Estimation of the failure rate—a survey of nonparametric methods part I: non-Bayesian methods," Commun. Stat. Theory Meth. 12, 559-588 (1983).
[CrossRef]

1982 (2)

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982), pp. 429-451, 458-471.

S. H. Schwartz and M. S. Loop, "Evidence for transient luminance and quasi-sustained color mechanisms," Vision Res. 22, 445-447 (1982).
[CrossRef] [PubMed]

1981 (1)

P. Lennie, "The physiological basis of variations in visual latency," Vision Res. 21, 815-824 (1981).
[CrossRef] [PubMed]

1980 (1)

R. S. Harwerth, R. L. Boltz, and E. L. Smith, "Psychophysical evidence for sustained and transient channels in the monkey visual system," Vision Res. 20, 15-22 (1980).
[CrossRef] [PubMed]

1978 (1)

J. T. Townsend and F. G. Ashby, "Methods of modeling capacity in simple processing systems," in Cognitive Theory Vol. III, J.Castellan and F.Restle, eds. (Erlbaum, 1978), pp. 200-239.

1977 (2)

D. H. Kelly and D. van Norren, "Two band model of heterochromatic flicker photometry," J. Opt. Soc. Am. 67, 1081-1091 (1977).
[CrossRef] [PubMed]

M. J. Nissen and J. Pokorny, "Wavelength effects on simple reaction time," Percept. Psychophys. 22, 457-462 (1977).
[CrossRef]

1975 (1)

D. L. Tolhurst, "Reaction times in the detection of gratings by humans observers: a probabilistic mechanism," Vision Res. 15, 1143-1149 (1975).
[CrossRef] [PubMed]

1973 (1)

J. D. Mollon and J. Krauskopf, "Reaction time as a measure of the temporal response properties of individual color mechanisms," Vision Res. 13, 27-40 (1973).
[CrossRef] [PubMed]

Ashby, F. G.

J. T. Townsend and F. G. Ashby, "Methods of modeling capacity in simple processing systems," in Cognitive Theory Vol. III, J.Castellan and F.Restle, eds. (Erlbaum, 1978), pp. 200-239.

Beere, J. L.

A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time-course of S-cone system adaptation to simple and complex fields," Vision Res. 43, 1135-1147 (2003).
[CrossRef] [PubMed]

A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time course of adaptation along the RG cardinal axis," Color Res. Appl. 26, s43-s47 (2000).
[CrossRef]

Bloxom, B.

B. Bloxom, "Estimating response hazard functions: an exposition and extension," J. Math. Psychol. 28, 401-420 (1984).
[CrossRef]

Boltz, R. L.

R. S. Harwerth, R. L. Boltz, and E. L. Smith, "Psychophysical evidence for sustained and transient channels in the monkey visual system," Vision Res. 20, 15-22 (1980).
[CrossRef] [PubMed]

Bonnet, M.

B. Burle, M. Bonnet, F. Vidal, C. A. Posamaï, and T. Hasbroucq, "A transcranial magnetic simulation study of information processing in the motor cortex: relationship between the silent period and the reaction time delay," Psychophysiology 39, 207-217 (2002).
[CrossRef] [PubMed]

Bowen, R. C.

V. C. Smith, R. C. Bowen, and J. Pokorny, "Threshold temporal integration of chromatic stimuli," Vision Res. 24, 653-660 (1984).
[CrossRef] [PubMed]

Boynton, R. M.

R. M. Boynton, "A system of photometry and colorimetry based on cone excitations," Color Res. Appl. 11, 244-252 (1986).
[CrossRef]

Bullier, J.

L. G. Nowak, M. H. J. Munk, P. Girard, and J. Bullier, "Visual latencies in areas V1 and V2 of the macaque monkey," Visual Neurosci. 12, 371-384 (1995).
[CrossRef]

Burle, B.

B. Burle, M. Bonnet, F. Vidal, C. A. Posamaï, and T. Hasbroucq, "A transcranial magnetic simulation study of information processing in the motor cortex: relationship between the silent period and the reaction time delay," Psychophysiology 39, 207-217 (2002).
[CrossRef] [PubMed]

Calhoun, C. S.

D. L. Post and C. S. Calhoun, "An evaluation of methods producing desired color on CRT monitors," Color Res. Appl. 14, 172-186 (1989).
[CrossRef]

Callaway, E. M.

S. Chatterjee and E. M. Callaway, "S cone contributions to the magnocellular visual pathway in macaque monkey," Neuron 35, 1135-1146 (2002).
[CrossRef] [PubMed]

Chatterjee, S.

S. Chatterjee and E. M. Callaway, "S cone contributions to the magnocellular visual pathway in macaque monkey," Neuron 35, 1135-1146 (2002).
[CrossRef] [PubMed]

Cole, G. R.

Cottaris, N. P.

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, "Some transformations of color information from lateral geniculate nucleus to striate cortex," Proc. Natl. Acad. Sci. U.S.A. 97, 4997-5002 (2000).
[CrossRef] [PubMed]

N. P. Cottaris and R. L. De Valois, "Temporal dynamics of chromatic tuning in macaque primary visual cortex," Nature (London) 395, 896-900 (1998).
[CrossRef]

Dacey, D. M.

D. M. Dacey, "Parallel pathways for spectral coding in primate retina," Annu. Rev. Neurosci. 23, 743-775 (2000).
[CrossRef] [PubMed]

De Marco, P. J.

De Valois, K. K.

R. L. De Valois, K. K. De Valois, and L. E. Mahon, "Contribution of S opponent cells to color appearance," Proc. Natl. Acad. Sci. U.S.A. 97, 512-517 (2000).
[CrossRef] [PubMed]

R. L. De Valois and K. K. De Valois, "A multistage color model," Vision Res. 33, 1053-1065 (1993).
[CrossRef] [PubMed]

De Valois, R. L.

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, "Some transformations of color information from lateral geniculate nucleus to striate cortex," Proc. Natl. Acad. Sci. U.S.A. 97, 4997-5002 (2000).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, and L. E. Mahon, "Contribution of S opponent cells to color appearance," Proc. Natl. Acad. Sci. U.S.A. 97, 512-517 (2000).
[CrossRef] [PubMed]

N. P. Cottaris and R. L. De Valois, "Temporal dynamics of chromatic tuning in macaque primary visual cortex," Nature (London) 395, 896-900 (1998).
[CrossRef]

R. L. De Valois and K. K. De Valois, "A multistage color model," Vision Res. 33, 1053-1065 (1993).
[CrossRef] [PubMed]

Deiber, M. P.

M. P. Deiber, V. Ibañez, N. Sadato, and M. Hallet, "Cerebral structures participating in motor preparation in humans: a position emission tomography study," J. Neurophysiol. 75, 233-247 (1998).

Díaz, J. A.

J. A. Díaz, L. Jiménez del Barco, J. R. Jiménez, and E. Hita, "Simple reaction time to chromatic changes along L&M-constant and S-constant cone axes," Color Res. Appl. 26, 223-233 (2001).
[CrossRef]

L. Jiménez del Barco, J. A. Díaz, J. R. Jiménez, and M. Rubiño, "Considerations on the calibration of color displays assuming constant-channel chromaticity," Color Res. Appl. 20, 377-387 (1995).
[CrossRef]

Dobkins, K. R.

K. R. Dobkins, K. L. Gunther, and D. H. Peterzell, "What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity?" Vision Res. 40, 613-628 (2000).
[CrossRef] [PubMed]

Elfar, S. D.

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, "Some transformations of color information from lateral geniculate nucleus to striate cortex," Proc. Natl. Acad. Sci. U.S.A. 97, 4997-5002 (2000).
[CrossRef] [PubMed]

Eriksen, C. W.

C. W. Eriksen, "A source of error in attempts to distinguish coactivation from separate activation in the perception of redundant targets," Percept. Psychophys. 44, 191-193 (1988).
[CrossRef] [PubMed]

Gegenfurther, K. R.

K. R. Gegenfurther and D. C. Kiper, "Color Vision," Annu. Rev. Neurosci. 26, 181-206 (2003).

Gescheider, G. A.

G. A. Gescheider, Psychophysics: The Fundamentals, 3rd ed. (Erlbaum, 1997).

Gibson, B. S.

M. J. Wenger and B. S. Gibson, "Using hazard functions to asses changes in processing capacity in an attentional cuing paradigm," J. Exp. Psychol. Hum. Percept. Perform. 30, 708-719 (2004).
[CrossRef] [PubMed]

Gibson, J. R.

J. H. R. Maunsell and J. R. Gibson, "Visual response latencies in striate cortex of macaque monkey," J. Neurophysiol. 68, 1332-1344 (1992).
[PubMed]

Girard, P.

L. G. Nowak, M. H. J. Munk, P. Girard, and J. Bullier, "Visual latencies in areas V1 and V2 of the macaque monkey," Visual Neurosci. 12, 371-384 (1995).
[CrossRef]

Gunther, K. L.

K. R. Dobkins, K. L. Gunther, and D. H. Peterzell, "What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity?" Vision Res. 40, 613-628 (2000).
[CrossRef] [PubMed]

Guth, S. L.

Hallet, M.

M. P. Deiber, V. Ibañez, N. Sadato, and M. Hallet, "Cerebral structures participating in motor preparation in humans: a position emission tomography study," J. Neurophysiol. 75, 233-247 (1998).

Hanes, D. P.

M. T. Schmolesky, Y. Yang, D. P. Hanes, K. G. Thompson, S. Leutgeb, J. D. Schall, and A. G. Leventhal, "Signal timing across macaque visual system," J. Neurophysiol. 79, 3272-3278 (1998).
[PubMed]

Hari, R.

N. Nishitani, K. Uutela, H. Shibasaki, and R. Hari, "Cortical visuomotor integration during eye pursuit and eye-finger pursuit," J. Neurosci. 19, 2647-2657 (1999).
[PubMed]

Harwerth, R. S.

R. S. Harwerth, R. L. Boltz, and E. L. Smith, "Psychophysical evidence for sustained and transient channels in the monkey visual system," Vision Res. 20, 15-22 (1980).
[CrossRef] [PubMed]

Hasbroucq, T.

B. Burle, M. Bonnet, F. Vidal, C. A. Posamaï, and T. Hasbroucq, "A transcranial magnetic simulation study of information processing in the motor cortex: relationship between the silent period and the reaction time delay," Psychophysiology 39, 207-217 (2002).
[CrossRef] [PubMed]

Hine, T.

Hita, E.

J. A. Díaz, L. Jiménez del Barco, J. R. Jiménez, and E. Hita, "Simple reaction time to chromatic changes along L&M-constant and S-constant cone axes," Color Res. Appl. 26, 223-233 (2001).
[CrossRef]

Hughes, A.

Ibañez, V.

M. P. Deiber, V. Ibañez, N. Sadato, and M. Hallet, "Cerebral structures participating in motor preparation in humans: a position emission tomography study," J. Neurophysiol. 75, 233-247 (1998).

Irvin, D. E.

D. E. Meyer, A. M. Osman, D. E. Irvin, and S. Yantis, "Modern mental chronometry," Biol. Psychol. 26, 3-67 (1988).
[CrossRef] [PubMed]

Jiménez, J. R.

J. A. Díaz, L. Jiménez del Barco, J. R. Jiménez, and E. Hita, "Simple reaction time to chromatic changes along L&M-constant and S-constant cone axes," Color Res. Appl. 26, 223-233 (2001).
[CrossRef]

L. Jiménez del Barco, J. A. Díaz, J. R. Jiménez, and M. Rubiño, "Considerations on the calibration of color displays assuming constant-channel chromaticity," Color Res. Appl. 20, 377-387 (1995).
[CrossRef]

Jiménez del Barco, L.

J. A. Díaz, L. Jiménez del Barco, J. R. Jiménez, and E. Hita, "Simple reaction time to chromatic changes along L&M-constant and S-constant cone axes," Color Res. Appl. 26, 223-233 (2001).
[CrossRef]

L. Jiménez del Barco, J. A. Díaz, J. R. Jiménez, and M. Rubiño, "Considerations on the calibration of color displays assuming constant-channel chromaticity," Color Res. Appl. 20, 377-387 (1995).
[CrossRef]

Kawabata, Y.

Y. Kawabata, "Temporal integration at equiluminance and chromatic adaptation," Vision Res. 34, 1007-1018 (1994).
[CrossRef] [PubMed]

Kelly, D. H.

Kingdom, F. A. A.

F. A. A. Kingdom, "Color brings relief to human vision," Nat. Neurosci. 6, 641-644 (2003).
[CrossRef] [PubMed]

Kiper, D. C.

K. R. Gegenfurther and D. C. Kiper, "Color Vision," Annu. Rev. Neurosci. 26, 181-206 (2003).

Krauskopf, J.

J. Krauskopf, "Higher order color mechanisms," in Color Vision: From Genes to Perception, K.R.Gegenfurther and L.T.Sharpe, eds. (Cambridge U. Press, 1999), pp. 303-317.

J. D. Mollon and J. Krauskopf, "Reaction time as a measure of the temporal response properties of individual color mechanisms," Vision Res. 13, 27-40 (1973).
[CrossRef] [PubMed]

Kulikowski, J. J.

D. J. McKeefry, I. J. Murray, and J. J. Kulikowski, "Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation," Vision Res. 41, 245-255 (2001).
[CrossRef] [PubMed]

Lennie, P.

P. Lennie, "The physiological basis of variations in visual latency," Vision Res. 21, 815-824 (1981).
[CrossRef] [PubMed]

Leutgeb, S.

M. T. Schmolesky, Y. Yang, D. P. Hanes, K. G. Thompson, S. Leutgeb, J. D. Schall, and A. G. Leventhal, "Signal timing across macaque visual system," J. Neurophysiol. 79, 3272-3278 (1998).
[PubMed]

Leventhal, A. G.

M. T. Schmolesky, Y. Yang, D. P. Hanes, K. G. Thompson, S. Leutgeb, J. D. Schall, and A. G. Leventhal, "Signal timing across macaque visual system," J. Neurophysiol. 79, 3272-3278 (1998).
[PubMed]

Loop, M. S.

S. H. Schwartz and M. S. Loop, "Evidence for transient luminance and quasi-sustained color mechanisms," Vision Res. 22, 445-447 (1982).
[CrossRef] [PubMed]

Luce, R. D.

R. D. Luce, Response Times (Oxford U. Press, 1986), pp. 1-174.

Mahon, L. E.

R. L. De Valois, K. K. De Valois, and L. E. Mahon, "Contribution of S opponent cells to color appearance," Proc. Natl. Acad. Sci. U.S.A. 97, 512-517 (2000).
[CrossRef] [PubMed]

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, "Some transformations of color information from lateral geniculate nucleus to striate cortex," Proc. Natl. Acad. Sci. U.S.A. 97, 4997-5002 (2000).
[CrossRef] [PubMed]

Maunsell, J. H. R.

J. H. R. Maunsell and J. R. Gibson, "Visual response latencies in striate cortex of macaque monkey," J. Neurophysiol. 68, 1332-1344 (1992).
[PubMed]

McGraw, P. V.

P. V. McGraw, D. J. McKeefry, D. Whitaker, and Chara Vakrou, "Positional adaptation reveals multiple chromatic mechanisms in human vision," J. Vision 4, 626-636 (2003), http://journalofvision.org/4/7/8.

McIlhaga, W.

McKeefry, D. J.

D. J. McKeefry, N. R. A. Parry, and I. J. Murray, "Simple reaction times in color space: the influence of chromaticity, contrast, and cone opponency," Invest. Ophthalmol. Visual Sci. 44, 2267-2275 (2003).
[CrossRef]

P. V. McGraw, D. J. McKeefry, D. Whitaker, and Chara Vakrou, "Positional adaptation reveals multiple chromatic mechanisms in human vision," J. Vision 4, 626-636 (2003), http://journalofvision.org/4/7/8.

D. J. McKeefry, I. J. Murray, and J. J. Kulikowski, "Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation," Vision Res. 41, 245-255 (2001).
[CrossRef] [PubMed]

Meyer, D. E.

D. E. Meyer, A. M. Osman, D. E. Irvin, and S. Yantis, "Modern mental chronometry," Biol. Psychol. 26, 3-67 (1988).
[CrossRef] [PubMed]

Miller, J.

J. Miller, "A warning about median reaction time," J. Exp. Psychol. Hum. Percept. Perform. 14, 539-543 (1988).
[CrossRef] [PubMed]

Mollon, J. D.

H. E. Smithson and J. D. Mollon, "Is the S-opponent chromatic sub-system sluggish?" Vision Res. 44, 2919-2929 (2004).
[CrossRef] [PubMed]

M. A. Webster and J. D. Mollon, "The influence of contrast adaptation on color appearance," Vision Res. 34, 1993-2020 (1994).
[CrossRef] [PubMed]

J. D. Mollon and J. Krauskopf, "Reaction time as a measure of the temporal response properties of individual color mechanisms," Vision Res. 13, 27-40 (1973).
[CrossRef] [PubMed]

Mullen, K. T.

M. J. Sankeralli and K. T. Mullen, "Bipolar or rectified chromatic detection mechanisms?" Visual Neurosci. 18, 127-135 (2001).
[CrossRef]

Munk, M. H. J.

L. G. Nowak, M. H. J. Munk, P. Girard, and J. Bullier, "Visual latencies in areas V1 and V2 of the macaque monkey," Visual Neurosci. 12, 371-384 (1995).
[CrossRef]

Murray, I. J.

D. J. McKeefry, N. R. A. Parry, and I. J. Murray, "Simple reaction times in color space: the influence of chromaticity, contrast, and cone opponency," Invest. Ophthalmol. Visual Sci. 44, 2267-2275 (2003).
[CrossRef]

D. J. McKeefry, I. J. Murray, and J. J. Kulikowski, "Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation," Vision Res. 41, 245-255 (2001).
[CrossRef] [PubMed]

S. Plainis and I. J. Murray, "Neurophysiological interpretation of human visual reaction times: effect of contrast, spatial frequency and luminance," Neuropsychologia 38, 1555-1664 (2000).
[CrossRef] [PubMed]

Nishitani, N.

N. Nishitani, K. Uutela, H. Shibasaki, and R. Hari, "Cortical visuomotor integration during eye pursuit and eye-finger pursuit," J. Neurosci. 19, 2647-2657 (1999).
[PubMed]

Nissen, M. J.

M. J. Nissen and J. Pokorny, "Wavelength effects on simple reaction time," Percept. Psychophys. 22, 457-462 (1977).
[CrossRef]

Nowak, L. G.

L. G. Nowak, M. H. J. Munk, P. Girard, and J. Bullier, "Visual latencies in areas V1 and V2 of the macaque monkey," Visual Neurosci. 12, 371-384 (1995).
[CrossRef]

Nozawa, G.

J. T. Townsend and G. Nozawa, "Spatio-temporal properties of elementary perception: an investigation of parallel, serial, and coactive theories," J. Math. Psychol. 39, 321-359 (1995).
[CrossRef]

Osman, A. M.

D. E. Meyer, A. M. Osman, D. E. Irvin, and S. Yantis, "Modern mental chronometry," Biol. Psychol. 26, 3-67 (1988).
[CrossRef] [PubMed]

Parry, N. R. A.

D. J. McKeefry, N. R. A. Parry, and I. J. Murray, "Simple reaction times in color space: the influence of chromaticity, contrast, and cone opponency," Invest. Ophthalmol. Visual Sci. 44, 2267-2275 (2003).
[CrossRef]

Peterzell, D. H.

K. R. Dobkins, K. L. Gunther, and D. H. Peterzell, "What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity?" Vision Res. 40, 613-628 (2000).
[CrossRef] [PubMed]

Plainis, S.

S. Plainis and I. J. Murray, "Neurophysiological interpretation of human visual reaction times: effect of contrast, spatial frequency and luminance," Neuropsychologia 38, 1555-1664 (2000).
[CrossRef] [PubMed]

Pokorny, J.

T. Ueno, J. Pokorny, and V. C. Smith, "Reaction times to chromatic stimuli," Vision Res. 25, 1623-1627 (1985).
[CrossRef] [PubMed]

V. C. Smith, R. C. Bowen, and J. Pokorny, "Threshold temporal integration of chromatic stimuli," Vision Res. 24, 653-660 (1984).
[CrossRef] [PubMed]

M. J. Nissen and J. Pokorny, "Wavelength effects on simple reaction time," Percept. Psychophys. 22, 457-462 (1977).
[CrossRef]

Posamaï, C. A.

B. Burle, M. Bonnet, F. Vidal, C. A. Posamaï, and T. Hasbroucq, "A transcranial magnetic simulation study of information processing in the motor cortex: relationship between the silent period and the reaction time delay," Psychophysiology 39, 207-217 (2002).
[CrossRef] [PubMed]

Post, D. L.

D. L. Post and C. S. Calhoun, "An evaluation of methods producing desired color on CRT monitors," Color Res. Appl. 14, 172-186 (1989).
[CrossRef]

Reid, R. C.

R. C. Reid and R. M. Shapley, "Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus," J. Neurosci. 22, 6158-6175 (2002).
[PubMed]

Rubiño, M.

L. Jiménez del Barco, J. A. Díaz, J. R. Jiménez, and M. Rubiño, "Considerations on the calibration of color displays assuming constant-channel chromaticity," Color Res. Appl. 20, 377-387 (1995).
[CrossRef]

Sadato, N.

M. P. Deiber, V. Ibañez, N. Sadato, and M. Hallet, "Cerebral structures participating in motor preparation in humans: a position emission tomography study," J. Neurophysiol. 75, 233-247 (1998).

Sankeralli, M. J.

M. J. Sankeralli and K. T. Mullen, "Bipolar or rectified chromatic detection mechanisms?" Visual Neurosci. 18, 127-135 (2001).
[CrossRef]

Schall, J. D.

M. T. Schmolesky, Y. Yang, D. P. Hanes, K. G. Thompson, S. Leutgeb, J. D. Schall, and A. G. Leventhal, "Signal timing across macaque visual system," J. Neurophysiol. 79, 3272-3278 (1998).
[PubMed]

Schmolesky, M. T.

M. T. Schmolesky, Y. Yang, D. P. Hanes, K. G. Thompson, S. Leutgeb, J. D. Schall, and A. G. Leventhal, "Signal timing across macaque visual system," J. Neurophysiol. 79, 3272-3278 (1998).
[PubMed]

Schwartz, S. H.

S. H. Schwartz, "Reaction time distributions and their relationship to the transient/sustained nature of neural discharge," Vision Res. 32, 2087-2092 (1992).
[CrossRef] [PubMed]

S. H. Schwartz and M. S. Loop, "Evidence for transient luminance and quasi-sustained color mechanisms," Vision Res. 22, 445-447 (1982).
[CrossRef] [PubMed]

Shapiro, A. G.

A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time-course of S-cone system adaptation to simple and complex fields," Vision Res. 43, 1135-1147 (2003).
[CrossRef] [PubMed]

A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time course of adaptation along the RG cardinal axis," Color Res. Appl. 26, s43-s47 (2000).
[CrossRef]

Q. Zaidi and A. G. Shapiro, "Adaptive orthogonalization of opponent-color signals," Biol. Cybern. 69, 415-428 (1993).
[PubMed]

Shapley, R. M.

R. C. Reid and R. M. Shapley, "Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus," J. Neurosci. 22, 6158-6175 (2002).
[PubMed]

Shibasaki, H.

N. Nishitani, K. Uutela, H. Shibasaki, and R. Hari, "Cortical visuomotor integration during eye pursuit and eye-finger pursuit," J. Neurosci. 19, 2647-2657 (1999).
[PubMed]

Singpurwalla, N. D.

N. D. Singpurwalla and M. Y. Wong, "Estimation of the failure rate—a survey of nonparametric methods part I: non-Bayesian methods," Commun. Stat. Theory Meth. 12, 559-588 (1983).
[CrossRef]

Smith, E. L.

R. S. Harwerth, R. L. Boltz, and E. L. Smith, "Psychophysical evidence for sustained and transient channels in the monkey visual system," Vision Res. 20, 15-22 (1980).
[CrossRef] [PubMed]

Smith, P. L.

P. L. Smith and T. Van Zandt, "Time-dependent Poisson counter models of response latency in simple judgment," Br. J. Math. Stat. Psychol. 53, 293-315 (2000).
[CrossRef] [PubMed]

P. L. Smith, "Psychophysically principled models of visual simple reaction time," Psychol. Rev. 102, 567-593 (1995).
[CrossRef]

Smith, V. C.

T. Ueno, J. Pokorny, and V. C. Smith, "Reaction times to chromatic stimuli," Vision Res. 25, 1623-1627 (1985).
[CrossRef] [PubMed]

V. C. Smith, R. C. Bowen, and J. Pokorny, "Threshold temporal integration of chromatic stimuli," Vision Res. 24, 653-660 (1984).
[CrossRef] [PubMed]

Smithson, H. E.

H. E. Smithson and J. D. Mollon, "Is the S-opponent chromatic sub-system sluggish?" Vision Res. 44, 2919-2929 (2004).
[CrossRef] [PubMed]

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982), pp. 429-451, 458-471.

Swanson, W. H.

T. Ueno and W. H. Swanson, "Response pooling between chromatic and luminance systems," Vision Res. 29, 325-333 (1989).
[CrossRef] [PubMed]

Thompson, K. G.

M. T. Schmolesky, Y. Yang, D. P. Hanes, K. G. Thompson, S. Leutgeb, J. D. Schall, and A. G. Leventhal, "Signal timing across macaque visual system," J. Neurophysiol. 79, 3272-3278 (1998).
[PubMed]

Tolhurst, D. L.

D. L. Tolhurst, "Reaction times in the detection of gratings by humans observers: a probabilistic mechanism," Vision Res. 15, 1143-1149 (1975).
[CrossRef] [PubMed]

Townsend, J. T.

J. T. Townsend and W. J. Wenger, "A theory of interactive parallel processing: new capacity measures and predictions for a response time inequality series," Psychol. Rev. 111, 1003-1035 (2004).
[CrossRef] [PubMed]

J. T. Townsend and G. Nozawa, "Spatio-temporal properties of elementary perception: an investigation of parallel, serial, and coactive theories," J. Math. Psychol. 39, 321-359 (1995).
[CrossRef]

J. T. Townsend, "Truth and consequences of ordinal differences in statistical distributions: toward a theory of hierarchical inference," Psychol. Bull. 108, 551-567 (1990).
[CrossRef] [PubMed]

J. T. Townsend and F. G. Ashby, "Methods of modeling capacity in simple processing systems," in Cognitive Theory Vol. III, J.Castellan and F.Restle, eds. (Erlbaum, 1978), pp. 200-239.

Ueno, T.

T. Ueno, "Sustained and transient properties of chromatic and luminance systems," Vision Res. 32, 1055-1065 (1992).
[CrossRef] [PubMed]

T. Ueno and W. H. Swanson, "Response pooling between chromatic and luminance systems," Vision Res. 29, 325-333 (1989).
[CrossRef] [PubMed]

T. Ueno, J. Pokorny, and V. C. Smith, "Reaction times to chromatic stimuli," Vision Res. 25, 1623-1627 (1985).
[CrossRef] [PubMed]

Uutela, K.

N. Nishitani, K. Uutela, H. Shibasaki, and R. Hari, "Cortical visuomotor integration during eye pursuit and eye-finger pursuit," J. Neurosci. 19, 2647-2657 (1999).
[PubMed]

Vakrou, Chara

P. V. McGraw, D. J. McKeefry, D. Whitaker, and Chara Vakrou, "Positional adaptation reveals multiple chromatic mechanisms in human vision," J. Vision 4, 626-636 (2003), http://journalofvision.org/4/7/8.

van Norren, D.

Van Zandt, T.

P. L. Smith and T. Van Zandt, "Time-dependent Poisson counter models of response latency in simple judgment," Br. J. Math. Stat. Psychol. 53, 293-315 (2000).
[CrossRef] [PubMed]

Vidal, F.

B. Burle, M. Bonnet, F. Vidal, C. A. Posamaï, and T. Hasbroucq, "A transcranial magnetic simulation study of information processing in the motor cortex: relationship between the silent period and the reaction time delay," Psychophysiology 39, 207-217 (2002).
[CrossRef] [PubMed]

Webster, M. A.

M. A. Webster and J. D. Mollon, "The influence of contrast adaptation on color appearance," Vision Res. 34, 1993-2020 (1994).
[CrossRef] [PubMed]

Wenger, M. J.

M. J. Wenger and B. S. Gibson, "Using hazard functions to asses changes in processing capacity in an attentional cuing paradigm," J. Exp. Psychol. Hum. Percept. Perform. 30, 708-719 (2004).
[CrossRef] [PubMed]

Wenger, W. J.

J. T. Townsend and W. J. Wenger, "A theory of interactive parallel processing: new capacity measures and predictions for a response time inequality series," Psychol. Rev. 111, 1003-1035 (2004).
[CrossRef] [PubMed]

Whitaker, D.

P. V. McGraw, D. J. McKeefry, D. Whitaker, and Chara Vakrou, "Positional adaptation reveals multiple chromatic mechanisms in human vision," J. Vision 4, 626-636 (2003), http://journalofvision.org/4/7/8.

Wilson, J. A.

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, "Some transformations of color information from lateral geniculate nucleus to striate cortex," Proc. Natl. Acad. Sci. U.S.A. 97, 4997-5002 (2000).
[CrossRef] [PubMed]

Wong, M. Y.

N. D. Singpurwalla and M. Y. Wong, "Estimation of the failure rate—a survey of nonparametric methods part I: non-Bayesian methods," Commun. Stat. Theory Meth. 12, 559-588 (1983).
[CrossRef]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982), pp. 429-451, 458-471.

Yang, Y.

M. T. Schmolesky, Y. Yang, D. P. Hanes, K. G. Thompson, S. Leutgeb, J. D. Schall, and A. G. Leventhal, "Signal timing across macaque visual system," J. Neurophysiol. 79, 3272-3278 (1998).
[PubMed]

Yantis, S.

D. E. Meyer, A. M. Osman, D. E. Irvin, and S. Yantis, "Modern mental chronometry," Biol. Psychol. 26, 3-67 (1988).
[CrossRef] [PubMed]

Zaidi, Q.

A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time-course of S-cone system adaptation to simple and complex fields," Vision Res. 43, 1135-1147 (2003).
[CrossRef] [PubMed]

A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time course of adaptation along the RG cardinal axis," Color Res. Appl. 26, s43-s47 (2000).
[CrossRef]

Q. Zaidi and A. G. Shapiro, "Adaptive orthogonalization of opponent-color signals," Biol. Cybern. 69, 415-428 (1993).
[PubMed]

Annu. Rev. Neurosci. (2)

K. R. Gegenfurther and D. C. Kiper, "Color Vision," Annu. Rev. Neurosci. 26, 181-206 (2003).

D. M. Dacey, "Parallel pathways for spectral coding in primate retina," Annu. Rev. Neurosci. 23, 743-775 (2000).
[CrossRef] [PubMed]

Biol. Cybern. (1)

Q. Zaidi and A. G. Shapiro, "Adaptive orthogonalization of opponent-color signals," Biol. Cybern. 69, 415-428 (1993).
[PubMed]

Biol. Psychol. (1)

D. E. Meyer, A. M. Osman, D. E. Irvin, and S. Yantis, "Modern mental chronometry," Biol. Psychol. 26, 3-67 (1988).
[CrossRef] [PubMed]

Br. J. Math. Stat. Psychol. (1)

P. L. Smith and T. Van Zandt, "Time-dependent Poisson counter models of response latency in simple judgment," Br. J. Math. Stat. Psychol. 53, 293-315 (2000).
[CrossRef] [PubMed]

Color Res. Appl. (5)

A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time course of adaptation along the RG cardinal axis," Color Res. Appl. 26, s43-s47 (2000).
[CrossRef]

J. A. Díaz, L. Jiménez del Barco, J. R. Jiménez, and E. Hita, "Simple reaction time to chromatic changes along L&M-constant and S-constant cone axes," Color Res. Appl. 26, 223-233 (2001).
[CrossRef]

D. L. Post and C. S. Calhoun, "An evaluation of methods producing desired color on CRT monitors," Color Res. Appl. 14, 172-186 (1989).
[CrossRef]

L. Jiménez del Barco, J. A. Díaz, J. R. Jiménez, and M. Rubiño, "Considerations on the calibration of color displays assuming constant-channel chromaticity," Color Res. Appl. 20, 377-387 (1995).
[CrossRef]

R. M. Boynton, "A system of photometry and colorimetry based on cone excitations," Color Res. Appl. 11, 244-252 (1986).
[CrossRef]

Commun. Stat. Theory Meth. (1)

N. D. Singpurwalla and M. Y. Wong, "Estimation of the failure rate—a survey of nonparametric methods part I: non-Bayesian methods," Commun. Stat. Theory Meth. 12, 559-588 (1983).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (1)

D. J. McKeefry, N. R. A. Parry, and I. J. Murray, "Simple reaction times in color space: the influence of chromaticity, contrast, and cone opponency," Invest. Ophthalmol. Visual Sci. 44, 2267-2275 (2003).
[CrossRef]

J. Exp. Psychol. Hum. Percept. Perform. (2)

M. J. Wenger and B. S. Gibson, "Using hazard functions to asses changes in processing capacity in an attentional cuing paradigm," J. Exp. Psychol. Hum. Percept. Perform. 30, 708-719 (2004).
[CrossRef] [PubMed]

J. Miller, "A warning about median reaction time," J. Exp. Psychol. Hum. Percept. Perform. 14, 539-543 (1988).
[CrossRef] [PubMed]

J. Math. Psychol. (2)

J. T. Townsend and G. Nozawa, "Spatio-temporal properties of elementary perception: an investigation of parallel, serial, and coactive theories," J. Math. Psychol. 39, 321-359 (1995).
[CrossRef]

B. Bloxom, "Estimating response hazard functions: an exposition and extension," J. Math. Psychol. 28, 401-420 (1984).
[CrossRef]

J. Neurophysiol. (3)

M. P. Deiber, V. Ibañez, N. Sadato, and M. Hallet, "Cerebral structures participating in motor preparation in humans: a position emission tomography study," J. Neurophysiol. 75, 233-247 (1998).

M. T. Schmolesky, Y. Yang, D. P. Hanes, K. G. Thompson, S. Leutgeb, J. D. Schall, and A. G. Leventhal, "Signal timing across macaque visual system," J. Neurophysiol. 79, 3272-3278 (1998).
[PubMed]

J. H. R. Maunsell and J. R. Gibson, "Visual response latencies in striate cortex of macaque monkey," J. Neurophysiol. 68, 1332-1344 (1992).
[PubMed]

J. Neurosci. (2)

R. C. Reid and R. M. Shapley, "Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus," J. Neurosci. 22, 6158-6175 (2002).
[PubMed]

N. Nishitani, K. Uutela, H. Shibasaki, and R. Hari, "Cortical visuomotor integration during eye pursuit and eye-finger pursuit," J. Neurosci. 19, 2647-2657 (1999).
[PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Vision (1)

P. V. McGraw, D. J. McKeefry, D. Whitaker, and Chara Vakrou, "Positional adaptation reveals multiple chromatic mechanisms in human vision," J. Vision 4, 626-636 (2003), http://journalofvision.org/4/7/8.

Nat. Neurosci. (1)

F. A. A. Kingdom, "Color brings relief to human vision," Nat. Neurosci. 6, 641-644 (2003).
[CrossRef] [PubMed]

Nature (London) (1)

N. P. Cottaris and R. L. De Valois, "Temporal dynamics of chromatic tuning in macaque primary visual cortex," Nature (London) 395, 896-900 (1998).
[CrossRef]

Neuron (1)

S. Chatterjee and E. M. Callaway, "S cone contributions to the magnocellular visual pathway in macaque monkey," Neuron 35, 1135-1146 (2002).
[CrossRef] [PubMed]

Neuropsychologia (1)

S. Plainis and I. J. Murray, "Neurophysiological interpretation of human visual reaction times: effect of contrast, spatial frequency and luminance," Neuropsychologia 38, 1555-1664 (2000).
[CrossRef] [PubMed]

Percept. Psychophys. (2)

C. W. Eriksen, "A source of error in attempts to distinguish coactivation from separate activation in the perception of redundant targets," Percept. Psychophys. 44, 191-193 (1988).
[CrossRef] [PubMed]

M. J. Nissen and J. Pokorny, "Wavelength effects on simple reaction time," Percept. Psychophys. 22, 457-462 (1977).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

R. L. De Valois, K. K. De Valois, and L. E. Mahon, "Contribution of S opponent cells to color appearance," Proc. Natl. Acad. Sci. U.S.A. 97, 512-517 (2000).
[CrossRef] [PubMed]

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, "Some transformations of color information from lateral geniculate nucleus to striate cortex," Proc. Natl. Acad. Sci. U.S.A. 97, 4997-5002 (2000).
[CrossRef] [PubMed]

Psychol. Bull. (1)

J. T. Townsend, "Truth and consequences of ordinal differences in statistical distributions: toward a theory of hierarchical inference," Psychol. Bull. 108, 551-567 (1990).
[CrossRef] [PubMed]

Psychol. Rev. (2)

P. L. Smith, "Psychophysically principled models of visual simple reaction time," Psychol. Rev. 102, 567-593 (1995).
[CrossRef]

J. T. Townsend and W. J. Wenger, "A theory of interactive parallel processing: new capacity measures and predictions for a response time inequality series," Psychol. Rev. 111, 1003-1035 (2004).
[CrossRef] [PubMed]

Psychophysiology (1)

B. Burle, M. Bonnet, F. Vidal, C. A. Posamaï, and T. Hasbroucq, "A transcranial magnetic simulation study of information processing in the motor cortex: relationship between the silent period and the reaction time delay," Psychophysiology 39, 207-217 (2002).
[CrossRef] [PubMed]

Vision Res. (17)

D. J. McKeefry, I. J. Murray, and J. J. Kulikowski, "Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation," Vision Res. 41, 245-255 (2001).
[CrossRef] [PubMed]

K. R. Dobkins, K. L. Gunther, and D. H. Peterzell, "What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity?" Vision Res. 40, 613-628 (2000).
[CrossRef] [PubMed]

A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time-course of S-cone system adaptation to simple and complex fields," Vision Res. 43, 1135-1147 (2003).
[CrossRef] [PubMed]

P. Lennie, "The physiological basis of variations in visual latency," Vision Res. 21, 815-824 (1981).
[CrossRef] [PubMed]

J. D. Mollon and J. Krauskopf, "Reaction time as a measure of the temporal response properties of individual color mechanisms," Vision Res. 13, 27-40 (1973).
[CrossRef] [PubMed]

T. Ueno, "Sustained and transient properties of chromatic and luminance systems," Vision Res. 32, 1055-1065 (1992).
[CrossRef] [PubMed]

D. L. Tolhurst, "Reaction times in the detection of gratings by humans observers: a probabilistic mechanism," Vision Res. 15, 1143-1149 (1975).
[CrossRef] [PubMed]

R. S. Harwerth, R. L. Boltz, and E. L. Smith, "Psychophysical evidence for sustained and transient channels in the monkey visual system," Vision Res. 20, 15-22 (1980).
[CrossRef] [PubMed]

S. H. Schwartz and M. S. Loop, "Evidence for transient luminance and quasi-sustained color mechanisms," Vision Res. 22, 445-447 (1982).
[CrossRef] [PubMed]

S. H. Schwartz, "Reaction time distributions and their relationship to the transient/sustained nature of neural discharge," Vision Res. 32, 2087-2092 (1992).
[CrossRef] [PubMed]

H. E. Smithson and J. D. Mollon, "Is the S-opponent chromatic sub-system sluggish?" Vision Res. 44, 2919-2929 (2004).
[CrossRef] [PubMed]

T. Ueno, J. Pokorny, and V. C. Smith, "Reaction times to chromatic stimuli," Vision Res. 25, 1623-1627 (1985).
[CrossRef] [PubMed]

T. Ueno and W. H. Swanson, "Response pooling between chromatic and luminance systems," Vision Res. 29, 325-333 (1989).
[CrossRef] [PubMed]

M. A. Webster and J. D. Mollon, "The influence of contrast adaptation on color appearance," Vision Res. 34, 1993-2020 (1994).
[CrossRef] [PubMed]

V. C. Smith, R. C. Bowen, and J. Pokorny, "Threshold temporal integration of chromatic stimuli," Vision Res. 24, 653-660 (1984).
[CrossRef] [PubMed]

Y. Kawabata, "Temporal integration at equiluminance and chromatic adaptation," Vision Res. 34, 1007-1018 (1994).
[CrossRef] [PubMed]

R. L. De Valois and K. K. De Valois, "A multistage color model," Vision Res. 33, 1053-1065 (1993).
[CrossRef] [PubMed]

Visual Neurosci. (2)

M. J. Sankeralli and K. T. Mullen, "Bipolar or rectified chromatic detection mechanisms?" Visual Neurosci. 18, 127-135 (2001).
[CrossRef]

L. G. Nowak, M. H. J. Munk, P. Girard, and J. Bullier, "Visual latencies in areas V1 and V2 of the macaque monkey," Visual Neurosci. 12, 371-384 (1995).
[CrossRef]

Other (5)

J. T. Townsend and F. G. Ashby, "Methods of modeling capacity in simple processing systems," in Cognitive Theory Vol. III, J.Castellan and F.Restle, eds. (Erlbaum, 1978), pp. 200-239.

G. A. Gescheider, Psychophysics: The Fundamentals, 3rd ed. (Erlbaum, 1997).

J. Krauskopf, "Higher order color mechanisms," in Color Vision: From Genes to Perception, K.R.Gegenfurther and L.T.Sharpe, eds. (Cambridge U. Press, 1999), pp. 303-317.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982), pp. 429-451, 458-471.

R. D. Luce, Response Times (Oxford U. Press, 1986), pp. 1-174.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Representation in the CIE-1931 chromatic diagram of the stimuli at isoluminance used in the experiments. The triangle defined by the red, green, and blue CRT primaries represents the color gamut of the CRT monitor. Solid squares represent the chromaticity coordinates of the red–green (RG1, RG2, and RG3) and blue–yellow (BY1, BY2 and BY3) stimuli, while open squares indicate the reference stimuli selected. Level of reference luminance, 12 cd m 2 . For a fixed reference stimulus, the inset shows the corresponding L M - and S-cone axes.

Fig. 2
Fig. 2

Mean visual-reaction times (ms) plotted as a function of the reciprocal RMS cone contrast (normalized in contrast thresholds units). (A) Red–green confusion lines RG1 (open triangles), RG2 (open circles), and RG3 (open squares). (B) Blue–yellow confusion lines BY1 (open triangles), + BY 2 (open circles), BY 2 (solid circles) (in accordance with the signal polarity), and BY3 (open squares). Different dashed lines indicate the linear fits made on each confusion line while solid lines represent those fits made on each color axis over all the data. Data are presented separately for observers JA and MC. Error bars represent 95% confidence.

Fig. 3
Fig. 3

Hazard functions at isoluminance. Data are presented separately for observers JA and MC. (A) The effect of intensity in the red–green system. Examples selected in the red–green line RG2. Solid and dotted curves represent high and low RMS cone-contrast values (normalized in threshold units), respectively. In all cases error bars represent 95% confidence. Solid and open circles represent high and low contrast values, respectively. (B) The effect of intensity in the blue–yellow system. Examples selected in the tritan confusion line BY1. Solid and dotted curves represent high and low RMS cone-contrast values (normalized in threshold units), respectively. Solid and open circles represent high and low contrast values, respectively. (C) Comparison of color-opponent hazard functions at isoluminance. Stimuli classified according to the adapting stimulus. Examples selected in the confusion lines RG2 and BY2 (JA) and RG3 and BY3 (MC). In both cases, normalized RMS cone-contrast values were selected to elicit similar intensity values. Solid and dotted curves represent the hazard rate in the red–green and blue–yellow conditions, respectively. Solid and open circles represent the red–green and blue–yellow cases, respectively. (D) The effect of chromatic adaptation in the hazard functions at isoluminance. Examples selected on the red–green confusion lines RG2 versus RG1. In both cases, similar normalized RMS cone-contrast values were selected. The adaptive stage is labeled according to the cone-input values provided by Boynton’s two-stage color-vision model. Solid and dotted curves represent the hazard rate in the RG1 and RG2 conditions, respectively. Solid and open circles represent the RG1 and RG2 cases, respectively.

Fig. 4
Fig. 4

Overall hazard functions (in events per millisecond) for the (A) blue–yellow and (B) red–green systems. Examples are presented on the confusion lines RG2 and BY2 (observer JA) and RG1 and BY1 (observer MC).

Fig. 5
Fig. 5

Overall integrated hazard functions (in total events) for the red–green versus blue–yellow systems classified in pairs in accordance with the adapting stimulus selected. (A) RG3 versus BY3, (B) RG2 versus BY2, (C) RG1 versus BY1. Solid curves represent those integrated hazard functions in the red–green or L M axis, while dashed curves indicate those corresponding to the blue–yellow or S ( L + M ) axis. The adaptive stage in each opponent system is labeled according to the cone-input values provided by Boynton’s two-stage color-vision model.

Fig. 6
Fig. 6

Overall integrated red–green hazard functions (in total events) classified in pairs according to the polarity of the signal. (A) RG3 versus RG1, (B) RG3 versus RG2. Solid curves represent integrated hazard functions in the red direction while dashed curves indicate those corresponding to the opposite pole (green). The adaptive stage in each opponent system is labeled according to the cone-input values provided by Boynton’s two-stage color-vision model.

Fig. 7
Fig. 7

Overall integrated blue–yellow hazard functions (in total events) classified in pairs according to the polarity of the signal. (A) + BY 2 versus BY 2 , (B) + BY 2 versus BY3, (C) BY1 versus BY 2 . Solid curves represent integrated hazard functions in the red direction while dashed curves indicate those corresponding to the opposite pole (green). The adaptive stage in each opponent system is labeled according to the cone-input values provided by Boynton’s two-stage color-vision model.

Tables (3)

Tables Icon

Table 1 CIE-1931 Chromaticity Coordinates and Cone-Input Values of the Opponent Red–Green and Blue–Yellow Mechanisms According to Boynton’s Color Space for Each Reference Stimulus Selected in the Experiments a

Tables Icon

Table 2 Chromaticity Threshold Values Calculated by the Method of Limits for Each Red–Green and Blue–Yellow Confusion Line Selected in the CIE-1931 Chromaticity Diagram a

Tables Icon

Table 3 Values of the RT-Contrast Factor k ( ms × Normalized Contrast Units), the Asymptotic Reaction Time VRT 0 (ms), and the R 2 Regression Coefficient for Each Red–Green and Blue–Yellow Confusion Line Selected

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( L C + M C + S C 3 ) 1 2 ,
VRT = VRT 0 + k C ,
h ( t ) = f ( t ) 1 F ( t ) = d d t ln [ 1 F ( t ) ] , t > 0 ,
h ( t ) = h T ( t ) + h S ( t ) .
H ( t ) = 0 t h ( t ) d t ,
F ( t ) = 1 exp [ 0 t h ( t ) d t ] , t > 0 .
[ h ( t ) X > h ( t ) Y , t > 0 ] [ H ( t ) X > H ( t ) Y , t > 0 ] [ F ( t ) X > F ( t ) Y , t > 0 ] [ VRT X < VRT Y ] ,

Metrics