Abstract

We investigate the effect of defects in the metal-coating layer of a scanning near-field optical microscopy (SNOM) probe on the coupling of polarization modes using rigorous electromagnetic modeling tools. Because of practical limitations, we study an ensemble of simple defects to identify important trends and then extrapolate these results to more realistic structures. We find that a probe with many random defects will produce a small but significant coupling of energy between a linearly polarized input mode and a radial/longitudinal polarization mode, which is known to produce a strongly localized emitted optical field and is desirable for SNOM applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Bachelot, P. Gleyzes, and A. C. Boccara, "Reflection-mode scanning near-field optical microscopy using an apertureless metallic tip," Appl. Opt. 36, 2160-2170 (1997).
    [CrossRef] [PubMed]
  2. G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Microfabrication of a combined AFM-SNOM sensor," Ultramicroscopy 82, 33-38 (2000).
    [CrossRef] [PubMed]
  3. R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes," Appl. Phys. Lett. 77, 3695-3697 (2000).
    [CrossRef]
  4. G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, and H. Heinzelmann, "Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy," Appl. Opt. 40, 5040-5045 (2001).
    [CrossRef]
  5. J. L. Bohn, D. J. Nesbitt, and A. Gallagher, "Field enhancement in apertureless near-field scanning optical microscopy," J. Opt. Soc. Am. A 18, 2998-3006 (2001).
    [CrossRef]
  6. L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, and H. Heinzelmann, "Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips," J. Microsc. 209, 182-187 (2003).
    [CrossRef] [PubMed]
  7. R. Fikri, T. Grosges, and D. Barchiesi, "Apertureless scanning near-field optical microscopy: the need for probe-vibration modeling," Opt. Lett. 28, 2147-2149 (2003).
    [CrossRef] [PubMed]
  8. S. Aubert, A. Bruyant, S. Blaize, R. Bachelot, G. Lerondel, S. Hudlet, and P. Royer, "Analysis of the interferometric effect of the background light in apertureless scanning near-field optical microscopy," J. Opt. Soc. Am. B 20, 2117-2124 (2003).
    [CrossRef]
  9. L. J. Richter, C. E. Jordan, R. R. Cavanagh, G. W. Bryant, A. Liu, S. J. Stranick, C. D. Keating, and M. J. Natan, "Influence of secondary tip shape on illumination-mode near-field scanning optical microscopy images," J. Opt. Soc. Am. A 16, 1936-1946 (1999).
    [CrossRef]
  10. W.-X. Sun and Z.-X. Shen, "Optimizing the near field around silver tips," J. Opt. Soc. Am. A 20, 2254-2259 (2003).
    [CrossRef]
  11. L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, "Propagation of the electromagnetic field in fully coated near-field optical probes," Appl. Phys. Lett. 83, 584-586 (2003).
    [CrossRef]
  12. E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
    [CrossRef]
  13. E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. P. Herzig, "Optical properties of microfabricated fully metal-coated near-field probes in collection mode," J. Opt. Soc. Am. A 22, 1432-1441 (2005).
    [CrossRef]

2005

2004

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
[CrossRef]

2003

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, and H. Heinzelmann, "Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips," J. Microsc. 209, 182-187 (2003).
[CrossRef] [PubMed]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, "Propagation of the electromagnetic field in fully coated near-field optical probes," Appl. Phys. Lett. 83, 584-586 (2003).
[CrossRef]

S. Aubert, A. Bruyant, S. Blaize, R. Bachelot, G. Lerondel, S. Hudlet, and P. Royer, "Analysis of the interferometric effect of the background light in apertureless scanning near-field optical microscopy," J. Opt. Soc. Am. B 20, 2117-2124 (2003).
[CrossRef]

R. Fikri, T. Grosges, and D. Barchiesi, "Apertureless scanning near-field optical microscopy: the need for probe-vibration modeling," Opt. Lett. 28, 2147-2149 (2003).
[CrossRef] [PubMed]

W.-X. Sun and Z.-X. Shen, "Optimizing the near field around silver tips," J. Opt. Soc. Am. A 20, 2254-2259 (2003).
[CrossRef]

2001

2000

G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Microfabrication of a combined AFM-SNOM sensor," Ultramicroscopy 82, 33-38 (2000).
[CrossRef] [PubMed]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes," Appl. Phys. Lett. 77, 3695-3697 (2000).
[CrossRef]

1999

1997

Aeschimann, L.

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. P. Herzig, "Optical properties of microfabricated fully metal-coated near-field probes in collection mode," J. Opt. Soc. Am. A 22, 1432-1441 (2005).
[CrossRef]

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, "Propagation of the electromagnetic field in fully coated near-field optical probes," Appl. Phys. Lett. 83, 584-586 (2003).
[CrossRef]

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, and H. Heinzelmann, "Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips," J. Microsc. 209, 182-187 (2003).
[CrossRef] [PubMed]

Akiyama, T.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, and H. Heinzelmann, "Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips," J. Microsc. 209, 182-187 (2003).
[CrossRef] [PubMed]

Aubert, S.

Bachelot, R.

Barchiesi, D.

Blaize, S.

Boccara, A. C.

Bohn, J. L.

Bruyant, A.

Bryant, G. W.

Cavanagh, R. R.

Dändliker, R.

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, "Propagation of the electromagnetic field in fully coated near-field optical probes," Appl. Phys. Lett. 83, 584-586 (2003).
[CrossRef]

de Rooij, N. F.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, and H. Heinzelmann, "Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips," J. Microsc. 209, 182-187 (2003).
[CrossRef] [PubMed]

G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, and H. Heinzelmann, "Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy," Appl. Opt. 40, 5040-5045 (2001).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes," Appl. Phys. Lett. 77, 3695-3697 (2000).
[CrossRef]

G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Microfabrication of a combined AFM-SNOM sensor," Ultramicroscopy 82, 33-38 (2000).
[CrossRef] [PubMed]

Descrovi, E.

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. P. Herzig, "Optical properties of microfabricated fully metal-coated near-field probes in collection mode," J. Opt. Soc. Am. A 22, 1432-1441 (2005).
[CrossRef]

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
[CrossRef]

Eckert, R.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, and H. Heinzelmann, "Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips," J. Microsc. 209, 182-187 (2003).
[CrossRef] [PubMed]

G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, and H. Heinzelmann, "Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy," Appl. Opt. 40, 5040-5045 (2001).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes," Appl. Phys. Lett. 77, 3695-3697 (2000).
[CrossRef]

Fikri, R.

Freyland, J. M.

G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, and H. Heinzelmann, "Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy," Appl. Opt. 40, 5040-5045 (2001).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes," Appl. Phys. Lett. 77, 3695-3697 (2000).
[CrossRef]

Gallagher, A.

Gersen, H.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes," Appl. Phys. Lett. 77, 3695-3697 (2000).
[CrossRef]

Gleyzes, P.

Grosges, T.

Heinzelmann, H.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, and H. Heinzelmann, "Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips," J. Microsc. 209, 182-187 (2003).
[CrossRef] [PubMed]

G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, and H. Heinzelmann, "Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy," Appl. Opt. 40, 5040-5045 (2001).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes," Appl. Phys. Lett. 77, 3695-3697 (2000).
[CrossRef]

Herzig, H. P.

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. P. Herzig, "Optical properties of microfabricated fully metal-coated near-field probes in collection mode," J. Opt. Soc. Am. A 22, 1432-1441 (2005).
[CrossRef]

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, "Propagation of the electromagnetic field in fully coated near-field optical probes," Appl. Phys. Lett. 83, 584-586 (2003).
[CrossRef]

Hudlet, S.

Jordan, C. E.

Keating, C. D.

Lerondel, G.

Liu, A.

Nakagawa, W.

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. P. Herzig, "Optical properties of microfabricated fully metal-coated near-field probes in collection mode," J. Opt. Soc. Am. A 22, 1432-1441 (2005).
[CrossRef]

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
[CrossRef]

Natan, M. J.

Nesbitt, D. J.

Noell, W.

G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, and H. Heinzelmann, "Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy," Appl. Opt. 40, 5040-5045 (2001).
[CrossRef]

G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Microfabrication of a combined AFM-SNOM sensor," Ultramicroscopy 82, 33-38 (2000).
[CrossRef] [PubMed]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes," Appl. Phys. Lett. 77, 3695-3697 (2000).
[CrossRef]

Richter, L. J.

Royer, P.

Schürmann, G.

G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, and H. Heinzelmann, "Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy," Appl. Opt. 40, 5040-5045 (2001).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes," Appl. Phys. Lett. 77, 3695-3697 (2000).
[CrossRef]

G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Microfabrication of a combined AFM-SNOM sensor," Ultramicroscopy 82, 33-38 (2000).
[CrossRef] [PubMed]

Shen, Z.-X.

Staufer, U.

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. P. Herzig, "Optical properties of microfabricated fully metal-coated near-field probes in collection mode," J. Opt. Soc. Am. A 22, 1432-1441 (2005).
[CrossRef]

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, "Propagation of the electromagnetic field in fully coated near-field optical probes," Appl. Phys. Lett. 83, 584-586 (2003).
[CrossRef]

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, and H. Heinzelmann, "Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips," J. Microsc. 209, 182-187 (2003).
[CrossRef] [PubMed]

G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, and H. Heinzelmann, "Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy," Appl. Opt. 40, 5040-5045 (2001).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes," Appl. Phys. Lett. 77, 3695-3697 (2000).
[CrossRef]

G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Microfabrication of a combined AFM-SNOM sensor," Ultramicroscopy 82, 33-38 (2000).
[CrossRef] [PubMed]

Stranick, S. J.

Sun, W.-X.

Thiery, L.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, and H. Heinzelmann, "Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips," J. Microsc. 209, 182-187 (2003).
[CrossRef] [PubMed]

Vaccaro, L.

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. P. Herzig, "Optical properties of microfabricated fully metal-coated near-field probes in collection mode," J. Opt. Soc. Am. A 22, 1432-1441 (2005).
[CrossRef]

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, "Propagation of the electromagnetic field in fully coated near-field optical probes," Appl. Phys. Lett. 83, 584-586 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes," Appl. Phys. Lett. 77, 3695-3697 (2000).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, "Propagation of the electromagnetic field in fully coated near-field optical probes," Appl. Phys. Lett. 83, 584-586 (2003).
[CrossRef]

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
[CrossRef]

J. Microsc.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, and H. Heinzelmann, "Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips," J. Microsc. 209, 182-187 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Lett.

Ultramicroscopy

G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, "Microfabrication of a combined AFM-SNOM sensor," Ultramicroscopy 82, 33-38 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diagram of the three-dimensional modeling domain. The tip of the probe is modeled as a cylindrical silica core with a conical taper having a 30° apex angle and an approximately 50 nm thick aluminum coating. A 0.1 μ m thick perfect electric conductor (PEC) plate is placed at each end of the domain along the z axis, with a 250 nm diameter hole in each forming the input and output apertures. The lateral (x and y) edges of the domain utilize an absorbing boundary condition.

Fig. 2
Fig. 2

Images of the three fundamental polarization eigenmodes for the input and output apertures of the model: (a) horizontal linearly polarized mode H with a dominant electric field component along the x axis; (b) vertical linearly polarized mode V with a dominant electric field component along the y axis; (c) radial/longitudinal polarized mode R with a dominant electric field component along the z axis.

Fig. 3
Fig. 3

(a) Normalized peak field magnitude at an observation point on the probe axis 10 nm beyond the apex as a function of spherical bubble defect diameter. (b) Normalized average field magnitude over a region 120 nm × 120 mm centered on the probe axis located 10 nm beyond the probe apex as a function of bubble diameter. The normalization is performed with respect to the peak magnitude of the input mode at the input aperture.

Fig. 4
Fig. 4

Input-to-output port mode-coupling coefficients as a function of defect diameter for a single air bubble placed in the metal-coating layer at the midpoint of the tapered section in the x z plane.

Fig. 5
Fig. 5

(a) Diagram indicating the placement of seven different air-bubble defects in the x z plane. (b) Input-to-output port mode coupling coefficients for the seven defect configurations shown in (a).

Fig. 6
Fig. 6

Diagram indicating the bubble placement for several configurations consisting of one or two spherical air defects in the axial ( x y ) plane at the midpoint of the probe tapered section.

Fig. 7
Fig. 7

Input-to-output port mode coupling coefficients for the defect configurations shown in Fig. 6.

Fig. 8
Fig. 8

Diagram showing several examples of simple but more realistic oxidized aluminum ( n = 1.54 ) defect configurations.

Fig. 9
Fig. 9

Input-to-output port mode coupling coefficients for the defect configurations shown in Fig. 8.

Metrics