Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 62,
  • Issue 5,
  • pp. 517-524
  • (2008)

Sensitive Detection and Identification of Organic Liquids Using the Second Derivative of Surface Plasmon Resonance Near-Infrared Spectra

Not Accessible

Your library or personal account may give you access

Abstract

Sensitive detection of near-infrared (NIR) spectra of several organic liquids has been carried out by surface plasmon resonance (SPR) NIR spectroscopy. For all the liquids, 50- to 100-fold enhancements of the absorption peaks were obtained in the combination band region 4500–4000 cm<sup>−1</sup> using a gold film with a thickness of 14 nm. The SPR peak shows up as an unnecessary broadband peak or trend in an SPR-NIR spectrum, and it was difficult to separate it from the absorption signals. In order to remove the contribution of SPR from the raw SPR-NIR spectrum, the second-order derivative has been employed. The second derivative of the SPR-NIR spectrum was reasonably comparable to that of the corresponding transmittance spectrum. Two simple algorithms for sample identification from the second-derivative data have been proposed. One is similarity, which directly compares the second-derivative spectrum of an unknown sample with that of a known reference sample. The other is fitness, which is defined as a ratio of the common part of absorption peak wavenumbers of the sample and the reference. Although both methods are unfit for the identification of a minor component in a mixture, a major component can be definitely identified by choosing an informative wavenumber region. It was found that the wavenumber region 4250–4080 cm<sup>−1</sup> is especially useful for the identification of similar molecules such as normal alkanes.

PDF Article
More Like This
Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range

Sylvain Herminjard, Lorenzo Sirigu, Hans Peter Herzig, Eric Studemann, Andrea Crottini, Jean-Paul Pellaux, Tobias Gresch, Milan Fischer, and Jérôme Faist
Opt. Express 17(1) 293-303 (2009)

Highly sensitive detection of nucleocapsid protein from SARS-CoV-2 using a near-infrared surface plasmon resonance sensing system

Taira Kajisa, Taka-aki Yano, Hidenori Koresawa, Kunihiro Otsuka, Ayuko Sakane, Takuya Sasaki, Koji Yasutomo, and Takeshi Yasui
Opt. Continuum 1(11) 2336-2346 (2022)

Comparison of surface plasmon resonance devices for acoustic wave detection in liquid

R. Nuster, G. Paltauf, and P. Burgholzer
Opt. Express 15(10) 6087-6095 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.