Abstract

Large-pitch kagome-lattice hollow-core photonic crystal fibers (HC-PCFs) offer appealing optical properties for beam delivery and remote sensing. However, focusing their optical mode on a submicrometer spot can be challenging due to the large mode diameter and low numerical aperture of these fibers. Here, we demonstrate that a 30 μm latex microsphere directly set at the HC-PCF end-face provides an efficient means to focus the fiber mode down to a spot of 540 nm full width at half-maximum thanks to a photonic nanojet effect. The system is used for fluorescence imaging and direct laser writing on a thin absorbing layer. Potential applications include inspection of semiconductor wafers, photolithography, laser surgery, fluorescence sensing, or optical transfection.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [CrossRef]
  2. G. Humbert, J. Knight, G. Bouwmans, P. St. J. Russell, D. Williams, P. Roberts, and B. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484(2004).
    [CrossRef]
  3. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [CrossRef]
  4. S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, “Enhanced four-wave mixing in a hollow-core photonic-crystal fiber,” Opt. Lett. 28, 1448–1450 (2003).
    [CrossRef]
  5. S. Brustlein, P. Berto, R. Hostein, P. Ferrand, C. Billaudeau, D. Marguet, A. Muir, J. Knight, and H. Rigneault, “Double-clad hollow core photonic crystal fiber for coherent Raman endoscope,” Opt. Express 19, 12562–12568 (2011).
    [CrossRef]
  6. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett. 31, 1911–1913 (2006).
    [CrossRef]
  7. S. O. Konorov, A. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Opt. Express 13, 3454–3459 (2005).
    [CrossRef]
  8. P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. St. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37, 4371–4373 (2012).
    [CrossRef]
  9. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
    [CrossRef]
  10. A. Nicia, “Lens coupling in fiber-optic devices: efficiency limits,” Appl. Opt. 20, 3136–3145 (1981).
    [CrossRef]
  11. A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
    [CrossRef]
  12. P. Ferrand, J. Wenger, M. Pianta, H. Rigneault, A. Devilez, B. Stout, N. Bonod, and E. Popov, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930–6940 (2008).
    [CrossRef]
  13. M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19, 10206–10220 (2011).
    [CrossRef]
  14. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004).
    [CrossRef]
  15. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13, 526–533(2005).
    [CrossRef]
  16. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
    [CrossRef]
  17. K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
    [CrossRef]
  18. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297–15303 (2008).
    [CrossRef]
  19. J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem. 80, 6800–6804 (2008).
    [CrossRef]
  20. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
    [CrossRef]
  21. M. H. Wu and G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection lithography,” Appl. Phys. Lett. 78, 2273–2275 (2001).
    [CrossRef]
  22. J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lithography,” Appl. Phys. Express 5, 025201 (2012).
    [CrossRef]
  23. S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16, 13713–13719 (2008).
    [CrossRef]
  24. Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31, 389–391 (2006).
    [CrossRef]
  25. A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32, 409–411 (2007).
    [CrossRef]
  26. S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92, 261111 (2008).
    [CrossRef]
  27. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems—II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 253, 358–379 (1959).
    [CrossRef]
  28. Z. Chen, H. Chu, and S. Li, “Optical metrology using a photonic nanojet,” U.S. patent 7,394,535 (1July2008).
  29. A. Darafsheh, A. Fardad, N. M. Fried, A. N. Antoszyk, H. S. Ying, and V. N. Astratov, “Contact focusing multimodal microprobes for ultraprecise laser tissue surgery,” Opt. Express 19, 3440–3448 (2011).
    [CrossRef]
  30. H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17, 19085–19092 (2009).
    [CrossRef]
  31. N. Ma, P. C. Ashok, D. J. Stevenson, F. J. Gunn-Moore, and K. Dholakia, “Integrated optical transfection system using a microlens fiber combined with microfluidic gene delivery,” Biomed. Opt. Express 1, 694–705 (2010).
    [CrossRef]

2012 (2)

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lithography,” Appl. Phys. Express 5, 025201 (2012).
[CrossRef]

P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. St. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37, 4371–4373 (2012).
[CrossRef]

2011 (3)

2010 (1)

2009 (2)

H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17, 19085–19092 (2009).
[CrossRef]

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
[CrossRef]

2008 (6)

J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem. 80, 6800–6804 (2008).
[CrossRef]

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[CrossRef]

S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92, 261111 (2008).
[CrossRef]

P. Ferrand, J. Wenger, M. Pianta, H. Rigneault, A. Devilez, B. Stout, N. Bonod, and E. Popov, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930–6940 (2008).
[CrossRef]

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16, 13713–13719 (2008).
[CrossRef]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297–15303 (2008).
[CrossRef]

2007 (2)

A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32, 409–411 (2007).
[CrossRef]

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

2006 (5)

2005 (2)

2004 (2)

2003 (1)

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef]

2001 (1)

M. H. Wu and G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection lithography,” Appl. Phys. Lett. 78, 2273–2275 (2001).
[CrossRef]

1981 (1)

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems—II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 253, 358–379 (1959).
[CrossRef]

Addison, C. J.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef]

Antoszyk, A. N.

Aouani, H.

H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17, 19085–19092 (2009).
[CrossRef]

J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem. 80, 6800–6804 (2008).
[CrossRef]

Arnold, C. B.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[CrossRef]

Ashok, P. C.

Astratov, V. N.

Backman, V.

Benabid, F.

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef]

Berto, P.

Billaudeau, C.

Blades, M. W.

Bonod, N.

Bouwmans, G.

Brustlein, S.

Chen, Z.

Cho, K.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lithography,” Appl. Phys. Express 5, 025201 (2012).
[CrossRef]

Chu, H.

Z. Chen, H. Chu, and S. Li, “Optical metrology using a photonic nanojet,” U.S. patent 7,394,535 (1July2008).

Couny, F.

Darafsheh, A.

Deiss, F.

Devilez, A.

Dholakia, K.

Fardad, A.

Fedotov, A. B.

Ferrand, P.

Fried, N. M.

Frosz, M.

Gachet, D.

Gérard, D.

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297–15303 (2008).
[CrossRef]

J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem. 80, 6800–6804 (2008).
[CrossRef]

Ghenuche, P.

Gunn-Moore, F. J.

Heifetz, A.

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
[CrossRef]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Herzig, H. P.

Hostein, R.

Huang, K.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Humbert, G.

Joly, N. Y.

Kapitonov, A. M.

Kim, I.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lithography,” Appl. Phys. Express 5, 025201 (2012).
[CrossRef]

Kim, J.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lithography,” Appl. Phys. Express 5, 025201 (2012).
[CrossRef]

Kim, M.-S.

Kim, W. M.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lithography,” Appl. Phys. Express 5, 025201 (2012).
[CrossRef]

Knight, J.

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef]

Kong, S. C.

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
[CrossRef]

Kong, S.-C.

Konorov, S. O.

Lee, K.-S.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lithography,” Appl. Phys. Express 5, 025201 (2012).
[CrossRef]

Lee, T. S.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lithography,” Appl. Phys. Express 5, 025201 (2012).
[CrossRef]

Li, S.

Z. Chen, H. Chu, and S. Li, “Optical metrology using a photonic nanojet,” U.S. patent 7,394,535 (1July2008).

Li, X.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13, 526–533(2005).
[CrossRef]

Light, P. S.

Lu, Y. F.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Ma, N.

Mangan, B.

Marguet, D.

Mcleod, E.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[CrossRef]

Mühlig, S.

Muir, A.

Nicia, A.

Pianta, M.

Popov, E.

Rammler, S.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems—II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 253, 358–379 (1959).
[CrossRef]

Rigneault, H.

Roberts, P.

Rockstuhl, C.

Russell, P. St. J.

Sahakian, A.

Sahakian, A. V.

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
[CrossRef]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Scalora, M.

Scharf, T.

Scharrer, M.

Schulze, H. G.

Sojic, N.

Stevenson, D. J.

Stout, B.

Taflove, A.

Turner, R. F. B.

Wang, H.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Wenger, J.

Whitesides, G. M.

M. H. Wu and G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection lithography,” Appl. Phys. Lett. 78, 2273–2275 (2001).
[CrossRef]

Williams, D.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems—II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 253, 358–379 (1959).
[CrossRef]

Wu, M. H.

M. H. Wu and G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection lithography,” Appl. Phys. Lett. 78, 2273–2275 (2001).
[CrossRef]

Yang, S.

S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92, 261111 (2008).
[CrossRef]

Yang, Z. Y.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Yi, K. J.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Ying, H. S.

Zheltikov, A.

Zheltikov, A. M.

Anal. Chem. (1)

J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem. 80, 6800–6804 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Express (1)

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lithography,” Appl. Phys. Express 5, 025201 (2012).
[CrossRef]

Appl. Phys. Lett. (3)

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92, 261111 (2008).
[CrossRef]

M. H. Wu and G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection lithography,” Appl. Phys. Lett. 78, 2273–2275 (2001).
[CrossRef]

Biomed. Opt. Express (1)

J. Appl. Phys. (1)

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

J. Comput. Theor. Nanosci. (1)

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Nanotechnol. (1)

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[CrossRef]

Opt. Express (11)

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004).
[CrossRef]

G. Humbert, J. Knight, G. Bouwmans, P. St. J. Russell, D. Williams, P. Roberts, and B. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484(2004).
[CrossRef]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13, 526–533(2005).
[CrossRef]

S. O. Konorov, A. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Opt. Express 13, 3454–3459 (2005).
[CrossRef]

P. Ferrand, J. Wenger, M. Pianta, H. Rigneault, A. Devilez, B. Stout, N. Bonod, and E. Popov, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930–6940 (2008).
[CrossRef]

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16, 13713–13719 (2008).
[CrossRef]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297–15303 (2008).
[CrossRef]

H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17, 19085–19092 (2009).
[CrossRef]

A. Darafsheh, A. Fardad, N. M. Fried, A. N. Antoszyk, H. S. Ying, and V. N. Astratov, “Contact focusing multimodal microprobes for ultraprecise laser tissue surgery,” Opt. Express 19, 3440–3448 (2011).
[CrossRef]

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19, 10206–10220 (2011).
[CrossRef]

S. Brustlein, P. Berto, R. Hostein, P. Ferrand, C. Billaudeau, D. Marguet, A. Muir, J. Knight, and H. Rigneault, “Double-clad hollow core photonic crystal fiber for coherent Raman endoscope,” Opt. Express 19, 12562–12568 (2011).
[CrossRef]

Opt. Lett. (6)

Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems—II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 253, 358–379 (1959).
[CrossRef]

Science (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef]

Other (1)

Z. Chen, H. Chu, and S. Li, “Optical metrology using a photonic nanojet,” U.S. patent 7,394,535 (1July2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) SEM of the kagome-lattice HC-PCF. A sphere of 30 μm diameter is schematically pictured over the SEM image. (b) Transmission losses, the vertical line indicates the 633 nm laser wavelength used for the experiments. (c) Optical micrographs of the HC-PCF-microsphere combination; the inset is a close-up view of the HC-PCF core region loaded with the latex microsphere.

Fig. 2.
Fig. 2.

(a) Scheme of the experiment for fluorescence endoscopy imaging. (b) Image through the HC-PCF microsphere of 20 nm fluorescent nanospheres dispersed on a glass coverslip. (c) Point spread function (PSF) obtained while scanning a 20 nm fluorescent nanosphere. (d) Transverse cut of the PSF image in (c), the FWHM is 540 nm.

Fig. 3.
Fig. 3.

Computed electric field intensity with a 30 μm latex sphere illuminated from below by the fundamental Gaussian-shaped fiber mode at λ=633nm with linear polarization along Y axis. The surrounding medium is air. The inset is a close-up view of the focus region.

Fig. 4.
Fig. 4.

Demonstration of direct laser writing using the HC-PCF-microsphere combination. The image in (a) shows the optical transmission through a layer of carbon nanoparticles after a 3×3 matrix has been written with the HC-PCF microsphere and (b) is a line cut of (a) to show the contrast obtained.

Metrics