Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Design of a compact modified total internal reflection lens for high angular color uniformity

Not Accessible

Your library or personal account may give you access

Abstract

Total internal reflection (TIR) lenses are optical components that are used to collimate the light or to generate a desired uniform illumination. However, most TIR designs do not pay attention to color uniformity, an increasingly important issue for the quality of lighting, and have a considerable dimension, which also limits their applications. In this study, we proposed an effective design principle of color mixing, and a phosphor-converted white LED module integrated with a compact modified free form TIR component was presented and optimized to achieve compact size and high angular color uniformity (ACU). Optimization results indicated that modified LED packages could achieve a smaller size in vertical height (0.52) within the same horizontal radius, compared with LEDs integrated with classic TIR lenses. Meanwhile, the enhancement of ACU with an optimum appropriate divergence half angle (65°) reached as high as 84% in terms of normalized standard deviation of yellow–blue ratio from 0.888 to 0.429.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Effective freeform TIR lens designed for LEDs with high angular color uniformity

Zhili Zhao, Honghai Zhang, Sheng Liu, and Xinzhong Wang
Appl. Opt. 57(15) 4216-4221 (2018)

Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating

Run Hu, Xiaobing Luo, Huai Zheng, Zong Qin, Zhiqiang Gan, Bulong Wu, and Sheng Liu
Opt. Express 20(13) 13727-13737 (2012)

Dip-transfer phosphor coating on designed substrate structure for high angular color uniformity of white light emitting diodes with conventional chips

Huai Zheng, Yiman Wang, Lan Li, Xing Fu, Yong Zou, and Xiaobing Luo
Opt. Express 21(S6) A933-A941 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.